CDC's National Center for Health Statistics

Design-Based Methods for State-Level Estimation under Three-Year Data Pools

William Waldron, PhD

Mathematical Statistician

Division of Research and Methodology

National Center for Health Statistics

August 8, 2024

Survey Data Collection, Estimation, and Disclosure Limitation Methods Joint Statistical Meetings

Objective

Many federal nation-wide household surveys are increasingly being used for state-level estimation.

The reliability of state-level estimates differs from national and domain estimation due to lower degrees of freedom.

We explore a series of cost-effective design choices that can collectively impact the reliability of both larger and smaller states.

Motivation 1

Pooling years from cross-sectional surveys can have diminished impact for two-stage sample designs if the PSUs are static across years.

Many designs will fix PSU geographies for a period of ten years, followed by a dependent sample selection that promotes selecting the same PSUs (Method of Maximum Overlap).

When there are cost savings in moving year-to-year PSUs to adjacent areas, the *PSU Random Walk* can balance independent PSUs and recruitment costs.

Motivation 2

Small Area Estimation under hierarchical Bayesian models can improve reliability at the cost of some added model bias.

$$\hat{y}_i = \lambda y_i + (1 - \lambda) X_i' \beta$$

Improved design variance and variance estimators can...

- reduce reliance on the synthetic SAE estimator $X_i'\beta$ (or other predictors).
- better satisfy the SAE assumption of known sampling variances used in $\lambda(.)$
- lower the overall model mean-square error of \hat{y}_i

Contents

- Single-Year Design Changes
 - Systematic Sampling
 - Weighting Issues
- PSU Cycling under three-year pooled data
 - Taylor Series Variance Estimation for Survey Data
 - Two examples with double samples

PSU Random Walk

- Markov Chains for Adjacent PSU Sampling
- Building an appropriate probability transition matrix

Single-Year Sample Design Changes

Systematic Sampling and Weighting

Single-Year Design Changes

Systematic Sampling

- Use a *continuous* variable.
- Avoid "implicit stratification".
- Consider for *all* stages.

Weighting (at the State Level)

- Balance standard errors with # controls.
- Consider weight trimming with caution.
- Reweight under three-year pooled data.

Other Issues

- Keep # Strata low.
- Keep # PSUs high.
- Proper Estimation of # Degrees of Freedom when PSUs sizes differ.
- Consider using FPC under higher firststage sampling rates.

Systematic Sampling of ABS Frames

While SAE can use *auxiliary information* on the back end for post data collection modeling, it can also be used on the front end to improve the **direct estimate**.

The best sorting variable(s) will be correlated with the main survey response of interest.

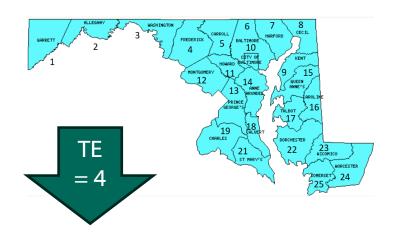
- By acquired frame information (can be *inaccurate*).
- Sorting for *spatial* dispersion using serpentine labeling.
- Sorting geographies by survey information (e.g., ACS):
 - Health Insurance Access
 - Poverty Status
 - CDC's Social Vulnerability Index

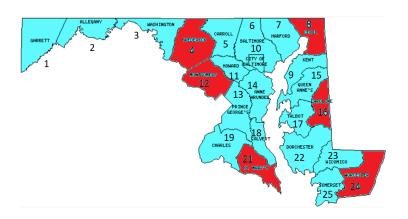
Serpentine Labeling

Serpentine labeling maps the plane onto the real line.

Used for labeling Census Tracts and Blocks by Census Bureau.

Imperfect because the plane *cannot* be continuously mapped onto the real line (see Netto's Theorem).





Sorting by County

State:

Texas, w/ 254 counties!

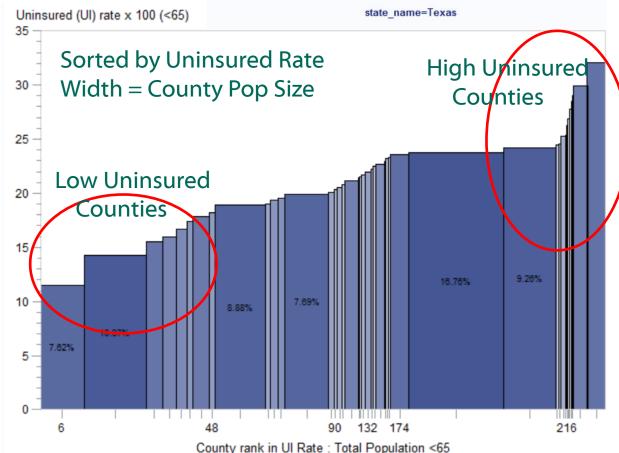
Variable of interest:

Uninsured Rate <65

Bar height: Uninsured Rate

Bar width: Population < 65

SAIHE County Health Insurance Access by State for Persons > 65 Source: U.S. Census Bureau public website census.gov No adjustment for county population



SAIHE County Health Insurance Access by State for Persons > 65 Source: U.S. Census Bureau public website census.gov No adjustment for county population

Sorting by County

State:

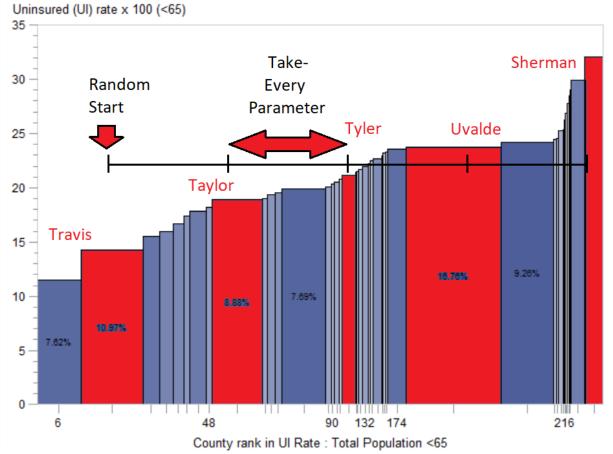
Texas, w/ 254 counties!

Variable of interest:

Uninsured Rate <65

Bar height: Uninsured Rate

Bar width: Population < 65

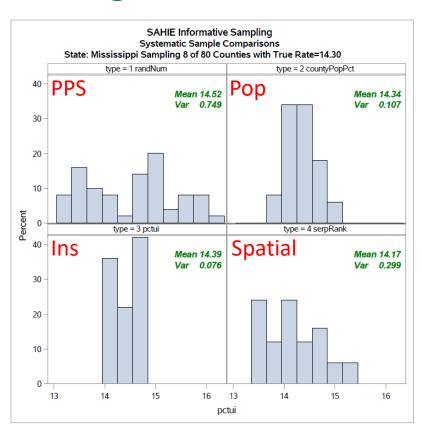


Systematic Sampling Example Using SAHIE

Small Area Health Insurance Estimates for each county were used in a simulation (n=50 for each state).

Different sort orders for selecting counties were compared.

While all sample approaches were unbiased, some samples were higher/lower than the state average.



Weighting Procedures

- 1. Select the **best set** of weighting variables for raking controls (use ACS or Census Pop.)
- More variables reduces bias. Less variables for lower variation.
- Optimize MSE = Bias² + Variance across multiple survey outcomes.
- Estimate Bias using Bootstrap or Jackknife or consider Full Model to be Unbiased.

Weighting Procedures

- 1. Select the **best set** of weighting variables for raking controls (use ACS or Census Pop.)
- More variables reduces bias. Less variables for lower variation.
- Optimize MSE = Bias² + Variance across multiple survey outcomes.
- Estimate Bias using Bootstrap or Jackknife or consider Full Model to be Unbiased.
- 2. Try to not to constrict weighting to controls (e.g., Quarterly Weights).
- When combining three years of data, it is best to rerake.

Weighting Procedures

- 1. Select the **best set** of weighting variables for raking controls (use ACS or Census Pop.)
- More variables reduces bias. Less variables for lower variation.
- Optimize MSE = Bias² + Variance across multiple survey outcomes.
- Estimate Bias using Bootstrap or Jackknife or consider Full Model to be Unbiased.
- 2. Try to not to constrict weighting to controls (e.g., Quarterly Weights).
- When combining three years of data, it is best to rerake.
- 3. Be conscious of weight sizes, perform weight trimming when possible.
- Some recommend trimming any weights larger than 5 × mean weight.
- Some recommend *against* weight trimming.

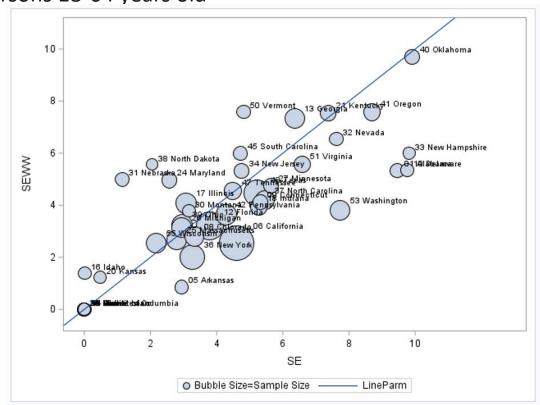
NHIS 2021: Standard Errors with and w/o Weights

Variable: Health Insurance for Persons 18-64 years old

Takeaways:

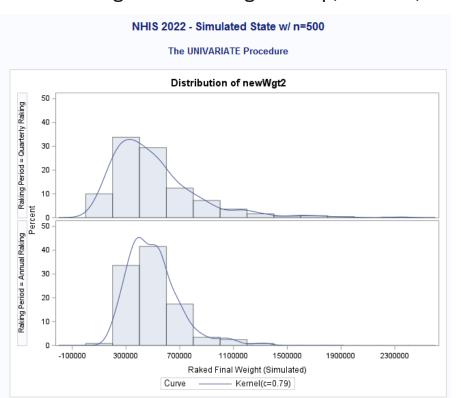
Adding weights increased standard errors for most states, but reduced bias.

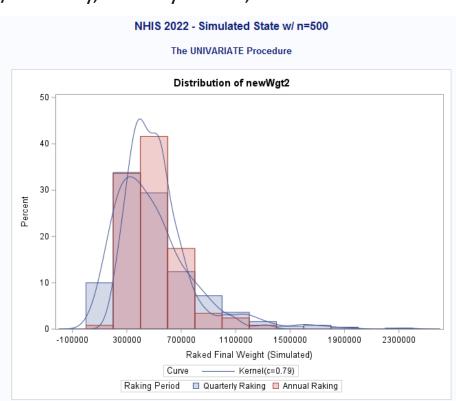
Some states with small sample sizes had lower standard errors w/ weighting.



Raking Quarterly $(4 \times n=125)$ vs. Annually (n=500)

Raking Variables: Age Group, Gender, Race/Ethnicity, Poverty Status, Health Insurance





Raking Simulation Results

Raking Type	Average Weight	Std of Weights	# Raking Iterations
Annual	504,005	193,516	18
Quarterly	504,005	317,977	27.5

Annual Weighting Controls

Health Insurance Recode							
hithins	Frequency	Weighted Frequency	Std Err of Wgt Freq	Percent		d Err of ercent	
Private	293	170771792	7121859	67.7659	1	2.1093	
Public/65+	162	58767863	4136123	23.3203		1.8081	
None/Unknown	45	22462867	3433026	8.9137	1	1.3559	
Total	500	252002522	4327150	100.0000			

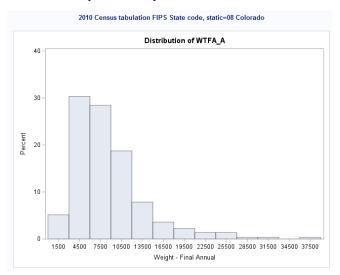
Quarterly Weighting Controls

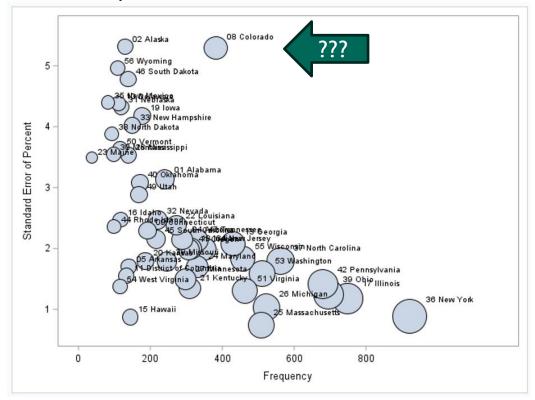
Health Insurance Recode						
hithins	Frequency	Weighted Frequency		Percent	Std Err of Percent	
Private	293	170771792	8497884	67.7659	2.3555	
Public/65+	162	58767863	4976187	23.3203	2.0457	
None/Unknown	45	22462867	3803703	8.9137	1.4918	
Total	500	252002522	7110190	100.0000		

NHIS 2021: Weight Trimming

Variable: Health Insurance for Persons 18-64 years old

Colorado had one of the largest standard errors, despite having nearly 400 sample respondents.

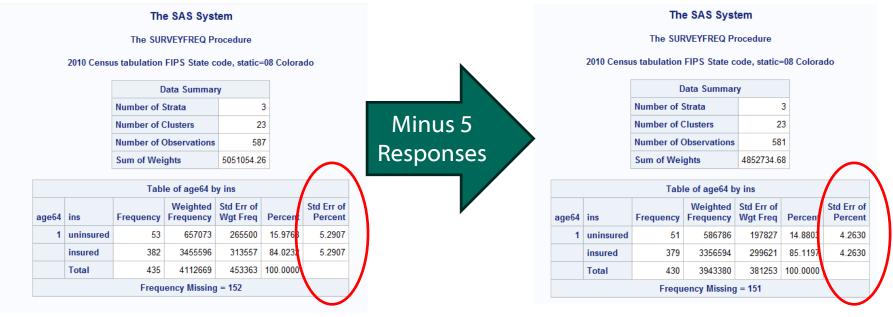




NHIS 2021: "Weight Trimming" in Colorado

Variable: Health Insurance for Persons 18-64 years old

Takeaway: Removing 5 respondents with the largest weights reduced the SE by 20% and moved the health insurance rate closer to the ACS standard (89%) for CO.

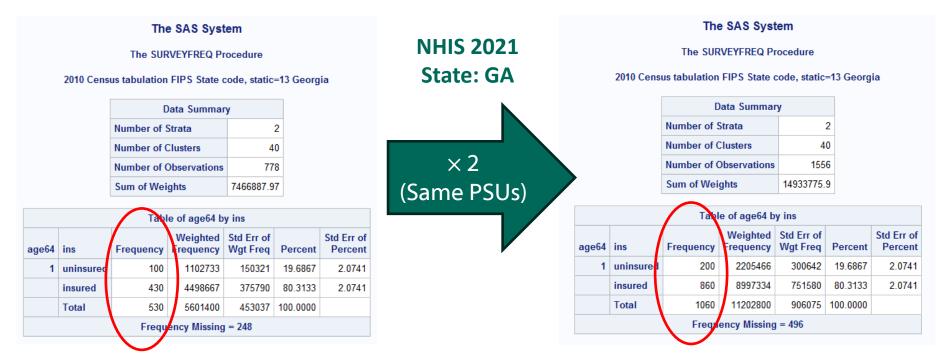


PSU Cycling

Rotating PSUs Every Two Years

Sample Size Paradox

In a two-stage design, doubling the sample size may not improve reliability if the PSU sample sizes are already adequate.



Taylor Series Variance Estimation

All reported standard errors are based on the following formula for n PSUs:

$$\widehat{V}_{TS}(\bar{y}) = \frac{n}{n-1} \frac{1}{W^2} \sum_{i=1}^{n} \left(W_i(\bar{y}_i - \bar{y}) - \sum_{s=1}^{n} W_s(\bar{y}_s - \bar{y}) \right)^2$$

$$\bar{y} = \frac{1}{W} \sum_{i=1}^{n} \sum_{j=1}^{n_i} w_{ij} y_{ij}, \ \bar{y}_i = \frac{1}{W_i} \sum_{j=1}^{n_i} w_{ij} y_{ij}, \ W_i = \sum_{j=1}^{n_i} w_{ij}, W = \sum_{i=1}^{n} \sum_{j=1}^{n_i} w_{ij}$$

Taylor Series Variance Estimation

All reported standard errors are based on the following formula for n PSUs:

$$\widehat{V}_{TS}(\bar{y}) = \frac{n}{n-1} \frac{1}{W^2} \sum_{i=1}^{n} \left(W_i(\bar{y}_i - \bar{y}) - \sum_{s=1}^{n} W_s(\bar{y}_s - \bar{y}) \right)^2$$

$$\bar{y} = \frac{1}{W} \sum_{i=1}^{n} \sum_{j=1}^{n_i} w_{ij} y_{ij}, \ \bar{y}_i = \frac{1}{W_i} \sum_{j=1}^{n_i} w_{ij} y_{ij}, \ W_i = \sum_{j=1}^{n_i} w_{ij}, W = \sum_{i=1}^{n} \sum_{j=1}^{n_i} w_{ij}$$

Under normality of y_i and equal-sized weights, $\hat{V}_{TS}(\bar{y}) \sim \frac{\left(\frac{\sigma^2}{n}\right)\chi_{n-1}^2}{n-1}$.

When more than one stratum is involved, d.f. = # PSUs - # Strata (software default).

Rules for Pooling Years with SR Strata

It is common to treat Self-Reporting PSUs as Strata and create Pseudo-PSUs from the secondary stage sampling units.

NSR PSUs: When PSUs are fixed across multiple years, they should not be considered independent. No increase in degrees of freedom.

SR PSUs: The generated pseudo-PSUs should be treated as *independent* PSUs in every year in the same separate stratum.

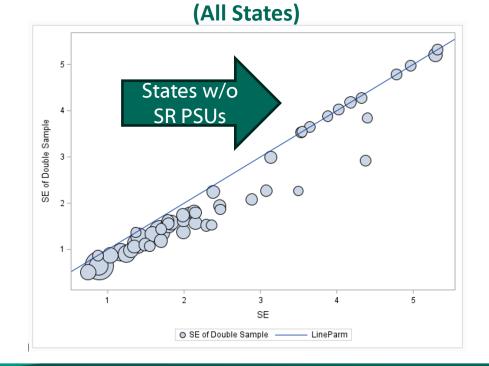
Rules for Pooling Years with SR Strata

It is common to treat Self-Reporting PSUs as Strata and create Pseudo-PSUs from the secondary stage sampling units.

NHIS 2021 Double Sample SE's

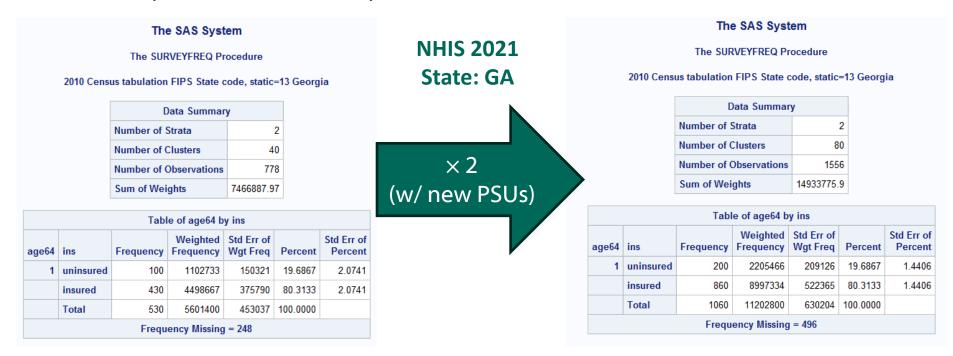
NSR PSUs: When PSUs are fixed across multiple years, they should *not* be considered independent. No increase in degrees of freedom.

SR PSUs: The generated pseudo-PSUs should be treated as *independent* PSUs in every year in the same separate stratum.



Increased # PSUs

In a two-stage design, doubling the **number of PSUs** will improve reliability if the PSU sample sizes are all adequate.



PSU Cycling

To save interview training and recruitment costs, some nationwide federal household surveys will fix PSUs for a ten-year period.

At the same time, pooling three years' worth of data is less effective for state-level estimates in some states due to the static non-representing PSUs.

In practice, many survey interviewers work part-time and do not remain employed in data collection services over a full ten-year period.

Changing PSUs every year is prohibitive. Yet large inferential gains can still be made if a PSU tenure is set to two years and if half the sampled PSUs are rotated every year.

PSU Cycling: Computing the Degrees of Freedom

In the NHIS 2020 sample design, NSR PSUs will be rotated every two years.

After a burn-in period, only half the PSUs will be rotated every year to maximize the number of PSUs in three-year pooled datasets.

Coupled with the Pseudo-PSUs, this causes even more discrepancies in the PSU sample sizes within states, requiring a Satterthwaite approximation to the *effective* df.

PSU Cycling: Computing the Degrees of Freedom

In the NHIS 2020 sample design, NSR PSUs will be rotated every two years.

After a burn-in period, only half the PSUs will be rotated every year to maximize the number of PSUs in three-year pooled datasets.

Coupled with the Pseudo-PSUs, this causes even more discrepancies in the PSU sample sizes within states, requiring a Satterthwaite approximation to the *effective* df.

$$df_{eff} = \frac{\left(\sum_{h=1}^{L} n_h \sigma_h^2\right)^2}{\sum_{h=1}^{L} \left(\frac{n_h^2}{n_h - 1}\right) \sigma_h^4}$$

For L strata with n_h PSUs in the h^{th} stratum and stratum variance σ_h^2

PSU Random Walk

Moving PSUs to Adjacent Areas

PSU Random Walk

The ideal situation is to always sample PSUs independently as in PSU Cycling.

However, there can be cases where extra clustering can be used to keep sampled PSUs nearby. Some practitioners are willing to keep the same PSU in place (overlap).

Traditional stratification based on geography can reduce the degrees of freedom. The reduction is lower under the PSU Random Walk.

We develop a sampling methodology that defines advantageous *conditional* probabilities of selection while preserving the appropriate *unconditional* probabilities of selection.

PSU Random Walk Implementation

Step 1. Initially select each PSU independently and without replacement based on the relative measure of size as the probability of selection (POS).

Step 2. Determine the *transition*, or next step, probabilities of selection that move the active PSUs to an adjacent PSU. This is done in such a way as to preserve the original, or unconditional, probabilities of selection.

Step 3. Iterate each PSU according to the adjacent conditional probabilities of selection. If any two PSUs overlap, continue the iterative sequence on as many PSUs as needed until a without replacement sample is achieved.

Research Problem

Suppose there are n PSUs. Let
$$t = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{bmatrix}$$
 denote the vector of probabilities of selection.

We must find a nontrivial $n \times n$ matrix $A \neq I$ such that the following hold:

$$t'A = t'$$

$$0 \le A_{ij} \le 1 \ \forall \ 1 \le i, j \le n$$

$$\sum_{i=1}^{n} A_{ij} = 1 \ \forall \ i$$

The Probability Transition Matrix

Any matrix satisfying those conditions is called a *probability transition matrix*. We also add the requirement that $A_{ii} = 0$.

- This requirement states that the random walk cannot stay in the same PSU and must transition to another geographical area with each iteration.
- It also means that det(A) = 0 and that A is a singular matrix.

The Probability Transition Matrix

Any matrix satisfying those conditions is called a *probability transition matrix*. We also add the requirement that $A_{ii} = 0$.

- This requirement states that the random walk cannot stay in the same PSU and must transition to another geographical area with each iteration.
- It also means that det(A) = 0 and that A is a singular matrix.

It is not clear how to find such a matrix, in general, if one even exists for a given topology and vector t. Matrix problems usually have the form Ax = b, solve for x.

Since the PSU Random Walk will have a finite state space and because every state communicates, we expect to see $\lim_{n\to\infty}A^n=[t',\ t',\ t',...,t']'$.

Finding the Probability Transition Matrix

Numerical methods may be used to find suitable matrices that satisfy the conditions.

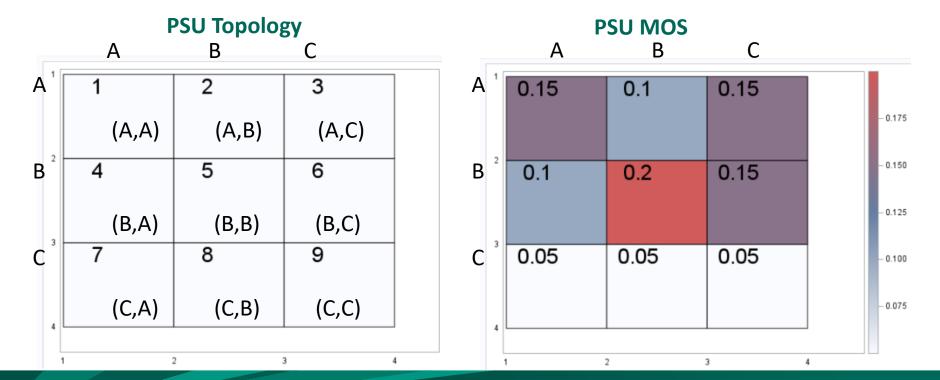
An objective function is required. The objective function should attempt to minimize the design-based variance of the survey estimator.

Minimize $Cov(1_i, 1_i)$, where 1_i is the event that the i^{th} PSU is selected.

Suitable bounds should be placed on the matrix entries to reduce variance.

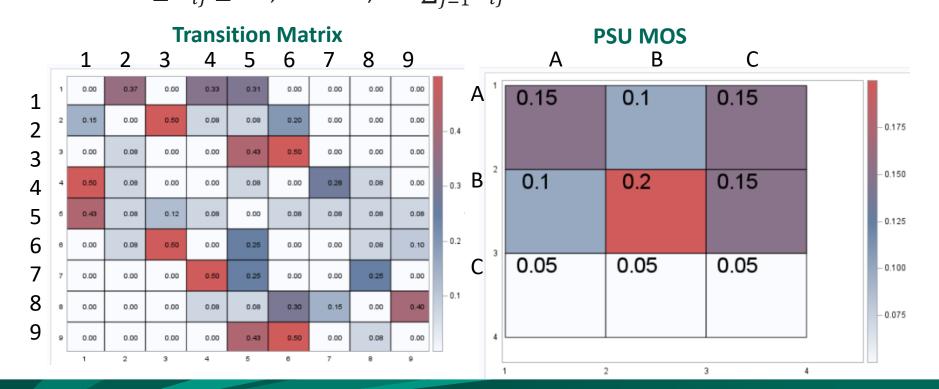
Example: 3×3 Square

Suppose there are nine PSUs arranged in a 3×3 grid with varying probabilities of selection. How to find a probability transition matrix?



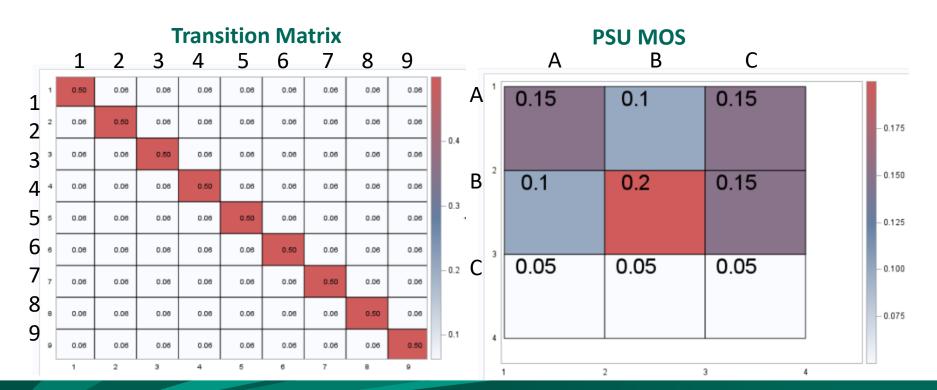
Example: 3×3 Square Solution

A linear programming algorithm was used to solve for the matrix with constraints: $0.075 \le A_{ij} \le 0.5$, t'A = t', and $\sum_{i=1}^{n} A_{ij} = 1 \ \forall i$.



Example: 3×3 Maximum Overlap Solution

Some practitioners advocate for conditional probabilities that promote staying in the same PSU no matter the POS. Permanent random numbers are used to preserve POS.



Example: Transition Matrix A

	1	2	3	4	5	6	7	8	9
1	0	0.366667	0	0.325	0.308333	0	0	0	0
2	0.15	0	0.5	0.075	0.075	0.2	0	0	0
3	0	0.075	0	0	0.425	0.5	0	0	0
4	0.5	0.075	0	0	0.075	0	0.275	0.075	0
5	0.425	0.075	0.125	0.075	0	0.075	0.075	0.075	0.075
6	0	0.075	0.5	0	0.25	0	0	0.075	0.1
7	0	0	0	0.5	0.25	0	0	0.25	0
8	0	0	0	0.075	0.075	0.3	0.15	0	0.4
9	0	0	0	0	0.425	0.5	0	0.075	0

Example: 3×3 **Square POS Computation**

POS Computation for Cell 1

$$0.15 = p_1 =$$

$$\sum P(X_{k+1}=1|X_k=i)P(X_k=i) = \sum A_{i1}p_i = A_{21}p_2 + A_{41}p_4 + A_{51}p_5$$

$$= 0.15 * 0.1 + 0.5 * 0.1 + 0.425 * 0.2$$

$$= 0.15$$

Example: A^2

	<u>'</u> 1	2	3	4	5	6	7	8	9
1	0.348542	0.047500	0.221875	0.050625	0.051875	0.096458	0.112500	0.047500	0.023125
2	0.069375	0.118750	0.109375	0.054375	0.314375	0.255625	0.026250	0.026250	0.025625
3	0.191875	0.069375	0.340625	0.037500	0.130625	0.046875	0.031875	0.069375	0.081875
4	0.043125	0.188958	0.046875	0.316875	0.234167	0.043125	0.016875	0.074375	0.035625
5	0.048750	0.176458	0.075000	0.186875	0.270417	0.137500	0.031875	0.035625	0.037500
6	0.117500	0.056250	0.068750	0.030000	0.266250	0.356250	0.030000	0.026250	0.048750
7	0.356250	0.056250	0.031250	0.037500	0.056250	0.093750	0.193750	0.056250	0.118750
8	0.069375	0.033750	0.159375	0.080625	0.288125	0.205625	0.026250	0.101250	0.035625
9	0.180625	0.069375	0.303125	0.037500	0.130625	0.054375	0.043125	0.069375	0.111875

Example: A^4

	1	2	3	4	5	6	7	8	9
1	0.230945	0.071270	0.189095	0.066093	0.136595	0.121413	0.076973	0.054082	0.053533
2	0.116912	0.109253	0.122109	0.101780	0.233410	0.188064	0.039895	0.041866	0.046709
3	0.181497	0.083570	0.217834	0.073818	0.165319	0.110192	0.051995	0.057736	0.058039
4	0.084888	0.137293	0.104763	0.167644	0.243802	0.134698	0.032169	0.054254	0.040489
5	0.101622	0.124833	0.112199	0.134224	0.238250	0.159904	0.037133	0.047294	0.044540
6	0.135494	0.095676	0.121406	0.086604	0.222253	0.204614	0.045171	0.040623	0.048159
7	0.243816	0.069090	0.159277	0.063727	0.131816	0.129145	0.091926	0.052652	0.058551
8	0.121596	0.103368	0.140652	0.107368	0.221871	0.164355	0.039764	0.051096	0.049929
9	0.180688	0.083570	0.212525	0.073614	0.166385	0.112706	0.053232	0.057511	0.059767

Example: A^8

	1	2	3	4	5	6	7	8	9
1	0.166947	0.093173	0.161799	0.091059	0.186137	0.142730	0.055211	0.051265	0.051681
2	0.143035	0.102565	0.143901	0.103016	0.206199	0.155007	0.047962	0.049074	0.049241
3	0.159404	0.095995	0.160374	0.094475	0.191505	0.143427	0.052287	0.051217	0.051317
4	0.133684	0.107357	0.138268	0.110667	0.212870	0.154432	0.045259	0.049280	0.048184
5	0.138551	0.104902	0.141139	0.106757	0.209392	0.154662	0.046689	0.049179	0.048728
6	0.146829	0.100811	0.145745	0.100511	0.203433	0.154831	0.049172	0.049089	0.049580
7	0.168992	0.092483	0.160873	0.090286	0.184948	0.143358	0.056244	0.051110	0.051705
8	0.144555	0.102078	0.146481	0.102650	0.204441	0.152432	0.048258	0.049595	0.049509
9	0.159272	0.096046	0.160000	0.094538	0.191681	0.143719	0.052292	0.051161	0.051291

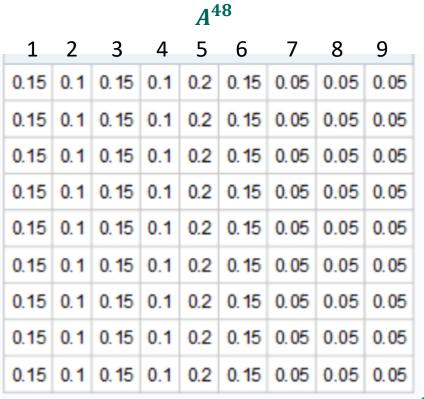
Example: A^{16}

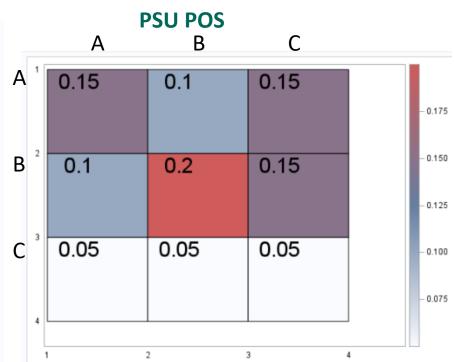
	1	2	3	4	5	6	7	8	9
1	0.150881	0.099637	0.150692	0.099513	0.199265	0.149584	0.050258	0.050074	0.050097
2	0.149630	0.100152	0.149701	0.100202	0.200311	0.150186	0.049893	0.049967	0.049959
3	0.150542	0.099776	0.150445	0.099701	0.199543	0.149727	0.050156	0.050049	0.050061
4	0.149123	0.100364	0.149316	0.100490	0.200728	0.150402	0.049744	0.049929	0.049904
5	0.149386	0.100254	0.149515	0.100341	0.200512	0.150290	0.049821	0.049949	0.049932
6	0.149823	0.100071	0.149847	0.100093	0.200152	0.150103	0.049950	0.049981	0.049980
7	0.150957	0.099605	0.150739	0.099472	0.199205	0.149558	0.050281	0.050078	0.050104
8	0.149723	0.100114	0.149783	0.100152	0.200231	0.150131	0.049919	0.049977	0.049970
9	0.150532	0.099781	0.150436	0.099706	0.199552	0.149733	0.050153	0.050048	0.050060

Example: A^{24}

	1	2	3	4	5	6	7	8	9
1	0.150047	0.099981	0.150037	0.099974	0.199961	0.149977	0.050014	0.050004	0.050005
2	0.149980	0.100008	0.149984	0.100011	0.200017	0.150010	0.049994	0.049998	0.049998
3	0.150029	0.099988	0.150023	0.099984	0.199976	0.149986	0.050008	0.050002	0.050003
4	0.149953	0.100019	0.149963	0.100026	0.200039	0.150022	0.049986	0.049996	0.049995
5	0.149967	0.100014	0.149974	0.100018	0.200027	0.150016	0.049990	0.049997	0.049996
6	0.149990	0.100004	0.149992	0.100005	0.200008	0.150005	0.049997	0.049999	0.049999
7	0.150051	0.099979	0.150040	0.099972	0.199957	0.149976	0.050015	0.050004	0.050006
8	0.149985	0.100006	0.149988	0.100008	0.200012	0.150007	0.049996	0.049999	0.049998
9	0.150029	0.099988	0.150023	0.099984	0.199976	0.149986	0.050008	0.050002	0.050003

Example: 3×3 Square Limiting Distribution





How to adjust the degrees of freedom?

Dependent PSUs. Since the PSUs selected within the same PSU Random Walk are correlated, we should not treat them as if they were sampled *independently*. The transition matrix should optimize the sample variance

We propose the following adjustment to the degrees of freedom to account for this relationship for each PSU pairing in a three-year pool.

$$\# PSUs = 2 - Corr(1_i, 1_i)$$

Recap

Systematic sampling can obtain a more representative sample w/o adding more degrees of freedom under multiple contexts: spatially or w.r.t. a highly correlated frame variable.

Survey practitioners should be cognizant of the overall bias-variance tradeoff when

- adding variables to weighting models
- correcting for non-response bias
- weighting trimming and other adjustments

Alternative first and second stage sampling methods can be used to improve reliability without adding prohibitive costs.

References

Durrett, R. (2016). Essentials of Stochastic Process. Springer.

Fay, R. (2014). The Sample Overlap Problem for Systematic Sampling. *Proceedings of the Joint Statistical Meetings (2014).* The American Statistical Association.

Korn, E., Graubard, B. (1999). Analysis of Health Surveys. John Wiley and Sons.

Valliant, R., Dever, J., Kreuter, F. (2013). *Practical Tools for Designing and Weighting Surveys*. Springer.

Thank you!

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

