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Abstract

The United States Department of Agriculture’s National Agricultural Statistics Service conducts the Cash Rents

Survey to provide the basis for state and county estimates of the cash rent paid for each agricultural land-use category.

The use of small area models in estimation process has gained increased attention by statistical agencies. They can

“borrow strength” from related areas across space and/or time or through auxiliary information and these models can

provide “indirect” but reliable estimates for small areas while also increasing the precision. However, some of the

realized sample sizes are too small to support reliable direct estimates, and there are outliers. In addition, quantities

of interests for geographically contiguous small areas in Cash Rents Survey display a spatial pattern. Therefore, we

propose a hierarchical Bayesian area-level two-component mixture model with spatial random effects to account for

outliers and spatial correlation. Moreover, the model incorporates two years of data, and a discounting factor for the

first year provides a not-too-tight prior for the hyperparameters. That is, it avoids correlations between the two years

of data by using a power prior that partially discounts past data. We assess the effectiveness of the spatial model based

on a case study from 2021 and 2022 Cash Rents Survey. The results show superior performance of the proposed model

over the direct estimates.
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1. Introduction

The United States Department of Agriculture’s (USDA’s) National Agricultural Statistics Service (NASS),

one of thirteen US Federal Statistical Agencies, provides official statistics of both state and county-level

cash rental rates for irrigated cropland, non-irrigated cropland, pasture land, and cropland. The cash rents

estimates provide basic information needed by farmers to make decisions for both short-term and long-term

agricultural production planning. These estimates may be used by individual producers in planning for

their agricultural operation or by Agricultural Extension Services or university staff in developing operating

budgets for agricultural operations in their locale. However, some of the realized sample sizes at the state

level may be too small to support reliable direct estimates.

Traditionally, the NASS Agricultural Statistics Board has relied on survey indications combined with

historic information to produce official statistics using the survey estimates as a foundation informed by

auxiliary information, including historical data, reliable administrative data, and other non-survey data.

Although external reviews have consistently found that NASS estimates are the gold standard for the agri-

cultural industry, the process lacked transparency and reproducibility and did not lead to valid measures of

uncertainty. In 2021, a small area model for county-level cash rental rates was developed based on annual

data collection and implemented in 2021 (Chen and Nandram (2022), Young and Chen (2022)) to improve

the transparency and reproducibility. In what follows we discuss the research conducted on the state-level

models. Small area models are investigated since it would give alternatives to state estimates ahead of

county estimates, and the county-level model with state effects can be used to follow up. The objective

for the state-level model is to get a good state model that can be used early in the season to provide more

accurate benchmarks for county-level estimates.

USDA’s NASS has explored different model-based approaches for cash rental rate estimates and tradi-

tionally focused on county-level models. In a frequentist framework, Berg et al. (2014) propose a univariate

area-level model that involves fitting two sets of survey-based direct estimates. They assume that the vari-

ances for the two years are the same. The model can be characterized as an extension of the Fay-Herriot

model (Fay and Herriot (1979)). Erciulescu et al. (2019) propose a HB bivariate unit-level model under the

normality assumptions. The model is flexible to allow the variances to differ between the two time-points.

However, it is computationally intensive to fit the models in production. In 2021, Chen and Nandram (2022)

developed a hierarchical Bayesian (HB) two-component mixture model with power prior at the county level



to accommodate outliers and the model was implemented in production. The model addresses the issues of

the assumption of constant variances for two consecutive years and the computational intensity by proposing

a general HB model that puts the two years of data together and avoids the two-year correlations by using a

power prior.

Recent studies and papers related to NASS small area estimation research on crops county estimates,

farm labor program, and county-level cash rental rates program have shown that the HB small area mod-

els can incorporate auxiliary sources of data with survey estimates to improve the precision and increase

the accuracy of related NASS official estimates. The National Academies of Sciences, Engineering, and

Medicine Committee on National Statistics (CNSTAT) published a report (2018) to discuss several needs

and requirements for NASS county-level crop estimates that were illuminated during the activities of the

CNSTAT panel. NASS has taken important steps towards realizing the vision and recommendation in the

report, as indicated in the recent published CNSTAT report, Chapter 8 (2023). Because the interest of NASS

programs is in constructing summaries for different levels of geography (county, state, regional, and U.S.

levels), the Bayesian approach to model fitting and estimation is preferable. Nandram et al. (2022) and Chen

et al. (2022b) proposed and implemented HB subarea-level models with inequality constraints to produce

county-level estimates that satisfy important relationships between the estimates and administrative data,

along with the associated measures of uncertainty. These models for all crops with federally mandated re-

porting requirements were implemented for the 2020 crop year. Measures of uncertainty were published

with the resulting official statistics. Chen et al. (2022a) discussed several HB subarea-level models in sup-

port of estimates of interest in the Farm Labor Survey. The resulting framework provided a complete set of

coherent estimates for all required geographic levels and the modeling process was incorporated into the of-

ficial Farm Labor publication for the first time in 2020. Moreover, as mentioned before, the two-component

mixture model for county-level cash rental rates was developed based on annual data collection and imple-

mented in 2021 (Chen and Nandram, 2022). Young and Chen (2022) summarize the current NASS small

area models in production.

Our study addresses the spatial correlation among the state-level cash rental rates, especially using an

conditional autoregressive (CAR) hierarchical component to account for spatial association. The use of

CAR specifications for modeling areal data was first introduced by Besag (1974). Bayesian methods have

been the dominating paradigm for spatial models including a CAR component (Sun et al., 1999; He and

Song, 2000; Hodges et al., 2003; Banerjee et al., 2014). Based on the data exploration analysis, we found



significant spatial correlation among the estimates. Therefore, we assign the CAR prior for the spatial

random effects in the hierarchical model. In addition, similar to the county-level model, the state-level

model also addresses the issues of the assumption of constant variances for two consecutive years and the

computational intensity by proposing a general HB model that puts the two years of data together and avoids

the two-year correlations by using a power prior (Chen and Ibrahim, 2000) that partly discounts past data. In

addition, outliers issues are taken into account to increase robustness for the standard HB area-level model

with the normality assumptions. One way to accommodate outliers is to use a two-component mixture model

(e.g., Gershunskaya and Lahiri, 2017). They use an Empirical Bayes approach assisted by the expectation-

maximization (EM) algorithm. Chakraborty et al. (2019) and Goyal et al. (2021) have provided a full

Bayesian approach for the unit-level nested error regression model. By using a two-component mixture of

normal distributions, this model accommodates populations where a small portion of unit-level errors come

from a secondary distribution with a larger variance than the primary distribution. In practice, because unit-

level models generally require substantially more computational time, area-level models are more applicable

for the production of official statistics that are published on tight timelines. Therefore, we focus on the area-

level two-component mixture model.

The paper is structured as follows. Section 2 describes the survey procedures and background. The

proposed HB spatial two-component mixture model with technical details is presented in Section 3. In

Section 4, a case study using 2021 and 2022 cash rent data illustrates the performance of the model. Section

5 provides a summary and some discussion of possible future research for cash rental rates and small area

estimation more generally.

2. Data Sources and Requirements

The Cash Rents Survey is conducted on an annual basis. The survey obtains acres rented and cash rental rates

from a statistically representative sample of farmers and ranchers in the United States, excluding Alaska.

This survey provides the basis for estimates of the current year’s state-level and county-level cash rents paid

for irrigated cropland, non-irrigated cropland, and permanent pastureland. From 1950 to 1974, a list survey

of real estate appraisers was used to estimate state-level cash rents. Beginning in 1974, producers provided

information about their rental agreements by responding to questions on the June Area Survey. In the 2008

farm bill, NASS was mandated to provide mean rental rates for all counties (not just states) with at least



20,000 acres of crop land.

The target population for the cash rents estimate program is all farms and ranches with $1,000 or more in

agricultural sales (or potential sales) who rent land from others on a cash rent basis. The Cash Rent Survey

sample is selected from a list frame of farm and ranch operators maintained by NASS. NASS is constantly

seeking qualifying farming operations from outside sources to be added to the list. A profile, known as

control data, of each operation is maintained, which indicates what the farm has historically produced and a

general indication of size. This information allows NASS to define sampling populations that are specific to

each survey and employ advanced and more efficient sample designs. Samples for the Cash Rents Survey

are drawn with a county-level stratified design to produce state and county-level estimates. Large operations

in each county are stratified into the census strata, where all are included in the sample. The national sample

size for the Cash Rents Survey is approximately 260,000. The sample is stratified by state and county within

state to produce state and county-level estimates. Data collection occurs from late February until the end of

June. Variances for cash rental rate estimates are constructed using a second-order Taylor series expansion

for the ratio.

From the Cash Rents Survey, county, state, and national rental rates (dollars/acre) for each land-use cat-

egory (irrigated, non-irrigated, and pasture) are published (see Figure 1 for the 2022 state-level published

cash rental rate estimates for cropland, combined land type with irrigated land and non-irrigated land). Al-

though total value of cash rents and acres rented on a cash basis are computed, these values have not been

published. Historically, the state-level direct survey estimates were reviewed and, if deemed appropriate,

adjusted by NASS staff or the Agricultural Statistics Board. The primary reason for adjustment was a large

difference between the previous year’s published cash rental rate and the current year’s survey estimate due

to small sample sizes. The adjusted estimate was restricted to being between, or on, the current survey esti-

mate and the previous year’s published estimate so that the direction of change was honored. If the number

of responses within a state was substantial, then the survey estimate received the greatest weight. If only few

responses were received, then the previous year’s published value and the estimates from surrounding coun-

ties or the agricultural statistics district were given more weight. Any model to replace the expert opinion

needs to follow the guidelines used in the review process.

In 2021, the two-component mixture model was implemented for the county-level cash rental rate pro-

duction process. It accounts for the previous-year estimates and also accommodates the outliers, providing

both key indicators for the county-level official statistics and the corresponding measures of uncertainties.



However, the state-level estimates are published before the county-level ones, and they are based on the

review of the Agricultural Statistics Board. The state-level models are also under research to provide more

transparent and reproducible methods. This paper describe the process and the model for the state-level

model. It would provide alternatives to state estimates ahead of county estimates.

Figure 1: State-level published cash rental rate estimates for cropland

3. Model

In this section, we describe a HB spatial two-component mixture model that accounts for spatial association

and outliers and uses the power prior to control how much of the past data is used. Bayesian spatial models

are commonly used when the data are not independent and have spatial patterns. The spatial random effects

are often described by a CAR distribution, and a CAR prior is adopted to this distribution. For the outlier

operations, the two-component mixture model is applied (Chen and Nandram, 2022). In addition, since the

research interest is only in the second year (i.e., the year of the survey), we can use the data in the prior

year(s) to obtain a power prior (Ibrahim and Chen, 2000; Ibrahim, et al., 2015) for the parameters of the

current year. In this way, the correlation between survey data from the two consecutive years can be avoided,

which reduces the computational time to a manageable scale.



3.1 A Hierarchical Bayesian Spatial Two-Component Mixture Model

We consider a model for cash rents data at the state level for both years. The model penalizes last year’s data

and also incorporates outliers in the mixture model with a penalty. In addition, neighboring states should

be similar, and therefore a spatial analysis may be useful. For all states, we consider the incidence matrix

W , with diagonal elements being zeros and off-diagonal elements being ones if two states are in the same

neighborhood and zero otherwise. This is symmetric matrix with real eigenvalues. Let ri =
∑ℓ

j=1wij , i =

1, . . . , ℓ and R denote the diagonal matrix, R = Diag(ri, i = 1, . . . , ℓ). The spatial matrix we considered is

(R − γW )−1, the CAR model, where γ is the so-called spatial correlation and λ−1
1 < γ < λ−1

ℓ for matrix

(R− γW )−1 to be positive definite, where λ1, ..., λℓ are the eigenvalues of W . Note that λ1 is negative and

λℓ is positive, and so γ is in a limited sub-interval of (−1, 1).

For our dataset of 49 states including three covariates, the survey estimates, and the corresponding

survey standard errors, we found significant spatial correlation. We estimated the spatial correlation using

Moran’s I (Moran, 1950). We obtained 0.553, 0.524, 0.451 for the three covariates; and 0.811 for the survey

estimates; and 0.293 for the survey variances, with the p-values in all cases being at most 0.009; for the

standard errors, the spatial correlation is 0.528. This confirms that there is significant spatial correlation.

For modeling, the subscript 1 will denote year 1 (e.g., previous year), and the subscript 2 will denote

year 2 (e.g., the current year). Let θ̂ts denote the direct estimates and σ̂2
ts denote the corresponding sampling

variances, where t = 1, 2 indicating years and s = 1, . . . , S indicating states. The spatial two-component

mixture model is,

θ̂1s | z1s = 0 ∼ Normal(x
˜
′
1sβ

˜
+ ϕ1s, ρ

σ̂2
1s

a
), θ̂1s | z1s = 1 ∼ Normal(x

˜
′
1sβ

˜
+ ϕ1s,

σ̂2
1s

a
)

and

θ̂2s | z2s = 0 ∼ Normal(x
˜
′
2sβ

˜
+ ϕ2s, ρσ̂

2
2s), θ̂2s | z2s = 1 ∼ Normal(x

˜
′
2sβ

˜
+ ϕ2s, σ̂

2
2s).

We list the priors in the following. First, the random effect ϕ
˜
t is assigned the CAR prior,

ϕ
˜
t | Ω

ind∼ Normal(0
˜
, δ2(R− γW )−1), t = 1, 2,

where W is the adjacency matrix as described above and R is the diagonal matrix.

Second, the latent variables are zts. It is computationally advantageous to augment the joint posterior



density for mixture models using the latent binary variables. Define zts, where zts = 1 if a state is an outlier

and zts = 0 otherwise. The priors are

zts ∼ Bernoulli(pt), pt ∼ Uniform(0,
1

2
), t = 1, 2, s = 1, . . . , S.

Third, for parameter (δ2, γ), the prior is π(δ2, γ) ∝ 1/δ2, λ−1
1 < γ < λ−1

ℓ , δ2 > 0.

Fourth, an empirical diffuse prior is assigned to the coefficients β, that is, a multivariate normal prior

distribution with fixed and known mean and variance and covariance matrix β∼MN(β̂, 1000Σ̂β̂). Here, β̂

are the least squares estimates of β obtained from fitting a simple linear regression model of the county-level

survey estimates on the auxiliary data xij and Σ̂β̂ is the estimated covariance matrix of β̂.

3.2 Computation

We can write these assumptions compactly as follows. Let

d210s = ρ
σ̂2
1s

a
, d211s =

σ̂2
1s

a
, d220s = ρσ̂2

2s, d221s = σ̂2
2s, s = 1, . . . , S.

The model can be written as

θ̂ts | zts = u ∼ Normal(x
˜
′
tsβ

˜
+ ϕts, d

2
tus), t = 1, 2, u = 0, 1, s = 1, . . . , S. (1)

The assumption (1) represents the entire likelihood function. Let Ω = {a, ρ, γ, δ2} denote the set of all

hyper-parameters. Then given Ω, the θ̂ts are independent with

f(θ̂ts | zts,Ω) =
1

(2πd2t0s)
(1−zts)/2

1

(2πd2t1s)
zts/2

exp{−(
1− zts
2d2t0s

+
zts
2d2t1s

)(θ̂ts − x
˜
′
tsβ

˜
− ϕts)

2}

=
1

(2πd2t0s)
(1−zts)/2

1

(2πd2t1s)
zts/2

1

(1−zts
d2t0s

+ zts
d2t1s

)1/2
Normalϕts

{
θ̂ts − x

˜
′
tsβ

˜
,

1
1−zts
d2t0s

+ zts
d2t1s

}
.

We can run an ordinary Gibbs sampler with all the conditions. We have encountered difficulties with β
˜

mixing slowly; a possible cause is its connection to ϕ
˜
. So we draw β

˜
and ϕ

˜
together, and this is done using

the decomposition,

π(β
˜
, ϕ

˜
| Ω, θ̂

˜
) = π(β

˜
| Ω, θ̂

˜
)π(ϕ

˜
| β

˜
,Ω, θ̂

˜
).



To obtain the CPD of ϕ
˜
t, we define

µ
˜
t = (µts), µts = θ̂ts − x

˜
′
tsβ

˜
− ϕts, s = 1, . . . , S,

Dt = Diag{ 1
1−zts
d2t0s

+ zts
d2t1s

, s = 1, . . . , S}, t = 1, 2.

Then,

ϕ
˜
t | Ω, y

˜
∼ Normal(µ

˜
t, Dt), t = 1, 2,

and this is combined with the prior,

ϕ
˜
t | Ω

ind∼ Normal(0
˜
, δ2(R− γW )−1), t = 1, 2,

to get the CPD of ϕ
˜
t,

ϕ
˜
t | Ω, y

˜
ind∼ Normal

{
[D−1

t +
1

δ2
(R− γW )]−1D−1

t µ
˜
t, [D

−1
t +

1

δ2
(R− γW )]−1

}
, t = 1, 2.

Therefore, each ϕ
˜
t can be drawn independently from a multivariate normal density.

The integrated CPD of β
˜

has two parts, with and without the prior on β
˜
. We first integrate out ϕ

˜
t, t =

1, 2, and then we combine this with the prior on β
˜
; sampling of τ is another CPD, not needed in this

discussion (done in a previous section). We have the following,

θ̂ts | zts = u
ind∼ Normal(x

˜
′
tsβ

˜
+ ϕts, d

2
tus), t = 1, 2, u = 0, 1, s = 1, . . . , S,

which we write more compactly as

θ̂
˜
t | β

˜
, ϕ

˜
t
ind∼ Normal(Xtβ

˜
+ ϕ

˜
t, Dt), t = 1, 2, (2)

and for ease of presentation, we drop all obvious conditioning variables. Recall that our prior on ϕ
˜
t is

ϕ
˜
t
ind∼ Normal{0

˜
, δ2(R− γW )−1}, t = 1, 2. (3)



Then, integrating out ϕ
˜
t from (2) and (3), we have

θ̂
˜
t | β

˜
ind∼ Normal{Xtβ

˜
, δ2(R− γW )−1 +Dt}, t = 1, 2. (4)

Recall that the conditioning is actually on all variables.

First, we consider the integrated CPD of β
˜

with the prior, π(β
˜
) = 1. Letting

Σ̂ =

[
2∑

t=1

X ′
t{δ2(R− γW )−1 +Dt}−1Xt

]−1

, β̂
˜
= Σ̂

[
2∑

t=1

X ′
t{δ2(R− γW )−1 +Dt}−1θ̂

˜
t

]
,

we have

β
˜
| θ̂

˜
∼ Normal(β̂

˜
, Σ̂). (5)

Second, recall that originally we assume a hierarchical prior for β
˜
,

β
˜
| τ ∼ Normal(β

˜
, τΣo), (6)

where β
˜

and Σo = 1000Σβ̂ are specified as before. It is now easy to combine (5) and (6) to finally get

β
˜
| τ, θ̂

˜
∼ Normal(Λβ̂

˜
+ (I − Λ)β

˜
o, (I − Λ)Σo),

where Λ = {Σ̂−1 +Σ−1
o }−1Σ̂−1 = Σo(Σ̂ + Σo)

−1, and only one matrix inversion is needed.

Therefore, we can draw (β
˜
, ϕ

˜
) from their joint CPD, and this is more efficient than drawing β

˜
and ϕ

˜
from their respective CPDs. Once ϕ

˜
2 and β

˜
are drawn, one can estimate θ

˜
2 = X2β

˜
+ ϕ

˜
2.

It is remarkable by simply drawing (δ2, γ) simultaneously, we are able to improve the Gibbs sampler

enormously.

We note here that the joint CPD of (δ2, γ) comes from ϕ
˜
t | δ2, γ

ind∼ Normal(0
˜
, δ2(R − γW )−1), t =

1, 2, π(δ2, γ) ∝ 1/δ2, 0 < γ < 1, δ2 > 0. Then, the joint CPD of (δ2, γ) is

π(δ2, γ | ϕ
˜
) ∝ |R− γW |

(δ2)S+1
e−

1
2δ2

∑2
t=1ϕ

˜
′
t(R−γW )ϕ

˜
t , δ2 > 0, λ−1

1 < γ < λ−1
ℓ .

Therefore,

δ2 | γ, ϕ
˜
∼ InvGam{2S

2
,

∑2
t=1 ϕ

˜
′
t(R− γW )ϕ

˜
t

2
},



and integrating out δ2,

π(γ | ϕ
˜
) ∝ |R− γW |

{
∑2

t=1 ϕ
˜
′
t(R− γW )ϕ

˜
t}S

, λ−1
1 < γ < λ−1

ℓ .

Then, π(δ2, γ | ϕ
˜
) = π(δ2, γ | ϕ

˜
)π(γ | ϕ

˜
) (i.e., draw γ from π(γ | ϕ

˜
) and δ2 from π(δ2, γ | ϕ

˜
)).

4. Case Study

In this section, 2021 and 2022 cash rental rates data are selected as the case study. We fit the model in

Section 3 for each land type (non-irrigated land, irrigated land and pasture land) for 49 states in the US.

The covariates x
˜
ts are the known auxiliary information used in the model and include an intercept,

the corresponding previous year state-level official estimates, the number of positive responses, and the

National Commodity Crop Productivity Indices (NCCPIs). NCCPIs, which measure the quality of the soil

for growing non-irrigated crops in climate conditions best suited for various crops, are available at the

county-level and state-level in the US. They are also correlated to the crop yield. Other covariates are the

percentages of farmland by land types in the 2017 Census of Agriculture and the state-level population

densities from Census 2020.

In Section 4.1, we discuss the model fit, Bayesian diagnostics, and the computation time related to the

model. In Section 4.2, we show nationwide comparisons among model, survey, and published estimates.

4.1 Model Fit and Estimation

The spatial two-component mixture model introduced in Section 3 is a useful tool for producing model-

based estimates of cash rental rates with measures of uncertainty. We fit the cash rental rate model for each

land type (non-irrigated land, irrigated land and pasture land) for 49 states in the US.

Convergence diagnostics are conducted. The convergence for parameters involved is monitored using

trace plots, the Geweke test of stationarity(Geweke (1992)) and the effective sample sizes. There is a single

run of 25,000 iterates to fit the model and a ”burn in“ of 5,000 iterates. In order to eliminate the correlations

among neighboring iterations, those iterations are thinned by taking a systematic sample of 1 in every 20

samples. Finally, 1,000 MCMC samples are obtained to construct the posterior distributions of parameters

and make inferences for the current year cash rental rate estimates θ2s, s = 1, . . . , 49. Table 1 shows that

the Gibbs sampler is mixing very well. It shows that the Geweke tests for all the parameters in the model



are not significant and the effective sample sizes are all near the actual sample size of 1,000 (mostly all of

them are 1,000). Computation time is an additional factor when candidate models are evaluated for use in

NASS production. In the case study, the computation time for models fitted for all states by three land types

was less than 10 mins, which is acceptable for the production process.

Table 1: P-value (pval) of Geweke test and the effective sample size (ESS)

Parameter Pval ESS
β0 0.86 1000.00
β1 0.72 1000.00
β2 0.68 1000.00
β3 0.85 1000.00
β4 0.90 1000.00
a 0.51 1000.00
ρ 0.93 1000.00
p1 0.98 807.76
p2 0.90 1000.00
δ2 0.94 1000.00
γ 0.31 1000.00

To check the model fit, we have computed the Bayesian predictive p-value (BPP) for entire model and

for the part of the model for the current year. Letting a1 = a and a2 = 1, we note that

θ̂ts | Ω
ind∼ (1− ps)N(x

˜
′
t,sβ

˜
+ ϕts, ρσ̂

2
ts/as) + psN(x

˜
′
tsβ

˜
+ ϕts, σ̂

2
ts/as), t = 1, 2, s = 1, . . . , S.

It is easy to show that

E(θ̂ts | Ω) = x
˜
′
t,sβ

˜
+ ϕts, Var(θ̂ts | Ω) = (1− ps)ρσ̂

2
ts/as + psσ̂

2
ts/as.

Using the discrepancy function,

T (θ̂
˜
; θ

˜
) =

2∑
t=1

S∑
s=1

{
θ̂ts − E(θ̂ts | Ω)

}2

Var(θ̂ts | Ω)
,

we can calculate the BPP,

BPP = Pr{T (θ̂
˜

(rep)
; θ

˜
) ≥ T (θ̂

˜

(obs)
; θ

˜
) | θ̂

˜
}.



For both years, the BPP is 0.837 and for the current year it is 0.872, showing that the model is reasonable.

In Table 2, we present posterior summaries of the hyperparameters with 95% highest posterior density

intervals (HPDIs). Two of the regression parameters are significant; a 95% HPDIs for β1 and β4, respec-

tively, are (0.522, 2.635) and (1.348, 2.031). In addition, the 95% HPDI for the spatial ‘correlation’ param-

eter γ is (0.002, 0.854) and the posterior mean (PM) is 0.488 with a posterior standard deviation (PSD) of

0.242, indicating that the spatial correlation is significant. As for the outliers, the 95% HPDIs for p1 and p2

are, respectively, (0.080, 0.500) and (0.150, 0.500) and the PMs (PSDs) are respectively 0.293 (0.123) and

0.354 (0.104). It is useful that the model is able to detect states that are outliers.

Table 2: Posterior summaries for hyper-parameters

Parameter PM PSD 95% HPDI
β0 -5.031 14.669 (-34.574, 23.396)
β1 1.469 0.563 (0.522, 2.635)
β2 -0.013 0.013 (-0.038, 0.010)
β3 5.511 3.656 (-0.368, 13.479)
β4 1.726 0.179 (1.348, 2.031)
a 0.546 0.271 (0.099, 0.99)
ρ 0.564 0.276 (0.095, 0.998)
p1 0.293 0.123 (0.080, 0.500)
p2 0.354 0.104 (0.150, 0.499)
δ2 6556.999 2260.816 (2956.877, 11510.399)
γ 0.488 0.242 (0.002, 0.854)

4.2 Numerical Summaries and Comparisons

The model of Section 3 was fit to the cash rental rates reported on the 2021 and 2022 Cash Rent Surveys

(CRSs) at the state level for 49 states in the US. Survey estimates, model posterior means, and previous

published estimates for pasture land, respectively, are displayed in Figure 2 from left to right. The colors

indicate the magnitude of the point estimates ($/Acres). The darker the color, the higher the value is. It is

straightforward to see that the patterns of the map based on survey estimates are different from those based

on the model and previously published estimates. This is due to the spike in states with few number of

reports. However, the model estimates are adjusted when integrating with other data through the models. In

addition, the spatial patterns can be seen on the maps as well. The states with higher values are concentrated

in the middle of the US and spread to the east. Based on visual inspection of Figure 2, the model adjusted



Figure 2: The plots of state-level maps based on survey direct estimates, model point estimates, and previous
year published estimates for pasture land.

outliers are also maps also indicated that the model also adjusted outliers.

One way of illustrating the differences between the model-based estimates and the survey’s direct es-

timates is to use the ratios of the model-based estimate to the corresponding survey’s direct estimate as a

function of the sample size. The ratios can provide further insights into the differences in the two methods

of estimation (see Figure 3 for plots of the ratios of model estimates to survey estimates for the estimated

cash rental rates). The widest range of ratios between the model estimates and the survey’s direct estimates

was for states with small sample sizes, and the ratios tended to become closer to one as the sample size

increased for all three estimates. This illustrates the shrinkage of the direct estimates toward the modeled

(regression) estimates obtained by using all available sources of information.

To demonstrate the gain in reliability of estimates based on the model relative to the survey, we compare

the posterior coefficients of variation (CVs) from the model to the CVs from the survey. The CV compar-

isons between model and survey in all three different land types are displayed in Figure 4. The posterior

CVs have a greater reduction when compared to the CVs of the survey estimates. The results demonstrate

the tendency of the small area model to improve the reliability of estimates when compared to the reliability

of survey estimates. The overall average reductions in the CVs are approximately 12%, 15%, and 18%,

respectively, for non-irrigated, irrigated, and pasture land.

5. Conclusion

We have proposed a spatial two-component mixture model that accounts directly for outliers, and it uses the

power prior to input how much of the past data one wants to use. Instead of using all the past data, as is



Figure 3: Relative measures of model estimates versus survey’s direct estimates of cash rental rates in all
three different land types.

Figure 4: Coefficients of variation (%) for state-level model and survey estimates of cash rental rates in all
three different land types.



suggested by the two published papers (Berg et al., 2014; Erciulescu et al., 2019) on this topic, we model

the percentage of the usage of the past data similar to the county-level model proposed by Chen and Nan-

dram (2022). One contribution discussed in this paper is that the state-level model takes the neighborhood

structure into consideration based on the CAR model prior. The spatial model is preferable since it accom-

modates one additional physical feature (spatial) of the data. The area-level model provides anther way to

operationalize the unit-level SAE model (Erciulescu et al., 2019). Therefore, the new proposed area-level

model is practical in terms of computation time when compared with the unit-level model, which is a key

factor for the evaluation of a model to be used in production.

In the case study using data from 2021 and 2022 CRSs, we compare between model-based estimates

and survey estimates. First, the model diagnostics are good in different aspects, showing good mixing and

a reasonable model. The maps illustrate the spatial pattern and the difference between survey estimates and

the model estimates. The model could adjust the outliers. Moreover, the associated measures of uncertainty

(CVs) from models are generally smaller than the CVs of the survey estimates. The model can reduce the

CVs while borrowing strength from auxiliary information and all counties within one region. Therefore,

the performance of the model with a respect to accuracy, precision, and reliability, illustrates significant

improvement of the state-level estimates of cash rental rates for all three land types.

Ongoing and future research related to the model involve the investigation of different auxiliary infor-

mation. The auxiliary information considered here is the nationwide data sources available at the state level.

Future efforts will be on investigating and applying other useful data sources to strengthen the model. Tax

data, farm intensity data and other census data are available at the county level in specific states.

In addition, for the spatial model, it is possible to move into the more desirable nonparametric approach

via the stick-breaking prior with Gaussian process. Nearest neighbor type spatial models may over shrink,

creating ‘a false sense of security’ with artificially small CVs.

On the other hand, the future research is to combine both state-level models and county-level models.

Since the state estimates of cash rental rates are determined prior to setting county estimates, NASS em-

ploys a “top-down” strategy, first setting state-level estimates and then setting corresponding county-level

estimates. For the county-level estimates, the CAR models discussed in the paper are not quite appropriate.

States with the highest production (speculative states) should be modeled separately from those with lower

production (non-speculative states). However, for coherence, the two models should be connected into a

single one. Geographically closed states may not be so with respect to the study variable. For example, a



speculative state may be a geographical neighbor of a non-speculative one, but they may be very different

in terms of the study variable.
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