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Abstract

Fienberg and Rinaldo (2012) propose the ”extended maximum likelihood
estimatior” (EMLE) to recuperate estimable parameters when zero cells in a
contingency table preclude the estimation of a complete MLE for a given log-
linear model. The EMLE provides positives estimates for all the estimable cells
and postulates structural zeros in place of the likelihood zeros. That is the
zero cells impeding the existence of an intact MLE. We propose extending the
method of Fienberg to involve cell predictions for the likelihood zeros instead
of postulating structural zeros while also preserving the parametric structure
recuperated through the EMLE. Our approach leads to a principled method
to identify surviving parameterizations and to define orthogonalized designs
staying clear of estimation sinkholes. We include ”"R” code bringing to life all
the algebraic constructs in the paper .

Disclaimer

Any views expressed on statistical methodology, technical or operational is-
sues are those of the authors and not necessarily those of the U.S. Census Bu-
reau.

1 Introduction

Fienberg and Rinaldo (2012) discuss the concept of ”likelihood zeros”. Those
are typically patterned zero cells in the contingency tables whose presence as a
group lead to a divergent Newton-Ralphson maximization procedure when at-
tempting to maximize the likelihood. Of course not all zero cells are likelihood
zeros meaning covering or uncovering some of the zero cells will have no effect
on estimability. Such cells are ”sampling zeros”.

The same authors propose general methods to identify in a contingency ta-
ble the likelihood zeros impeding maximization of the likelihood. Friedlander
(2016) designs an "R” package to dig out all the likelihood zero given a log-linear
model. In the situation of the paper the likelihood zeros are trivial to identify
and/or have been identified by authors previously.

Sharifi Far et al. (2021) algebraically explore the poisson likelihood to motivate
a parametric model approach to explain and transcend the EMLE of Fienberg
and Rinaldo but stop short of expanding the linear algebra characterizing the
parametric ”sinkhole” generated by likelihood zeros.

We show how to capture a comprehensive representation of the linear subspace



associated to the likelihood zeros. It is over this subspace that the parameters
to be estimated diverge to infinity. In the case of a multinomial distribution this
analysis can be carried in the space of log-odd ratios of the cell probabilities and
is easily recasted as a poisson regression in this case with unbounded parameters.

We will derive general algebraic results throughout and illustrate them on a
simple example as we expand the methodology. In the next sections we present
a demonstration example of a multinomial log-linear model.

In the last section we introduce an application that has already been the object
of analysis and we implement our approach along with glmnet regularization.

2 Multinomial Models in the Log-Odds Space

2.1 Multinomial Design Matrices

For simplicity we limit our presentation to binary response variables. The
methodology fully carries to situations involving multicategorical variables. With-
out loss of generality we consider the following product multinomial likelihood
subject to log-linear constraints:

Lx(x;m) = H Wﬂfln;”()o wTeN

Tmy,..., mo

where 7, -y is a probability vector and m; = - = mp = 2. Qis a
multinomial hierarchical log-linear model on O binary categorical variables.

Let O = 3 and assume a "no second-order interaction model” on a 2 x 2 x 2
contingency table. Then

T = [961,1,1 T211 .- 12,2,2} (2)
is a realization of the random vector of counts
X = [Xl,l,] X271)1 e X272}2] (3)

The ANOVA-style representation (Bishop, Fienberg, Holland, 1974, p. 37) for
Qin (1) is:

log () k1) = U+ uy(j) + Uo(r) + Us) + Ur2(j,k) + U13(5,0) T U2s(k,)
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where
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where the index not involved in each summation is set at 1 and 2 in turn. and

2
> mka=1 (8)

Jik,l=1

Note the constraints (4) - (7) are linear in log (7} x,;) and in the model param-
eters, whereas the constraint (8) is not. So (4) - (8) does not describe a linear
model. Formulating an equivalent model in the space of the log odd ratios re-
duces the number of parameters and lead to linearity. To do so we designate a
reference category, which we also call the baseline. Let

-
bk = log (“”) (9)

T1,1,1

The baseline implicitly defined in (9) is category (j,k,1) = (1,1,1). In general
the log-odd ratio evaluated at the baseline is 0. In this case we have ¢y 11 = 0.
Let the vector of log-odd ratios be

t
Y=1[¢1..1 .. 2.2 (10)
In general for a log-linear hierarchical multinomial model we have:
Y = Du (11)
where
(0 0 0 0 0 O]
1 0 O 1 1 0 ul(l)
/110 0 1 1 _ uz(1)
P=1oo 101 1] “=2|upuy
1 01 1 0 1 U13(171)
01 1110 U23(1,1)
1 11 0 0 0
(12)

In general, for hierarchical log-linear modelds matrices such as D in (11) can
be derived directly from the constraints of the model through toric algebra
(Geiger, Meek, Sturmsfels, 2006). The problem here is D does not comprehen-
sively characterize the multinomial distribution of X in the sense CS{D}, the



column space of D in (12), does not. For example let D* be the matrix of
log odd ratios computed using category (2,1, 1) for baseline instead of (1,1,1).
Then CS{D*} # CS{D}.

2.2 Poisson Design Matrices

To comprehensively characterize a multinomial log-linear model as a general
linear model we represent multinomial log-linear modeling in the space of log-
odd ratios as poisson design matrices. Let T = Zik,lzl X k1 be the total of
the random counts. Under a multinomial model we have assumed a realization
of T is observed. Let T ~ Poisson(exp())), where A = log (E [T]) and let

&t = log (E[Xjk]) (13)
= IOg (E [TS} 7Tj,k:,l) (14)
= log (Wj,k,l) + A (15)

Keeping the same baselineas in (9) and from (15) we have

il —E&1,11 = Pjkl (16)
So
§ikd = 81,11 T @j kel (17)
and
1
E=1&aa1+9 (18)
1
where .
£ = [51,1 ..... 1o oo, 2] (19)
We have
£=Ap (20)
where
A=[1 | D] (21)
and .
p=[611 | v (22)

A is a poisson design matrix with an intercept (R glm documentation). Now
let
A* = [1 | D*} (23)

then CS{A*} = CS{A}.

In general changing the baseline when computing the log-odd ratios will not



alter the column space of the poisson design matrix with an intercept. The col-
umn space of a poisson design matrix comprehensively characterizes a specific
multinomial likelihood in the sense it contains the column spaces of all the asso-
ciated multinomial design matrices. There is no ambiguity when reconstructing
the multinomial log-linear model from a poisson design matrix with an intercept.

This no longer holds in general if the poisson design matrix does not include an
intercept. Then there may not be a single log-linear multinomial model for all
the baselines. We can no longer assume the poisson design matrix unambigu-
ously characterize a multinomial.

3 Estimation

3.1 Likekihood Maximization

If the MLE exists the R function glm will identify it through the Newton Ralph-
son procedure given an appropriate starting point. For the example in the paper
we show using the default starting point leads to valid results.

3.2 Likelihood Zeros

It is well known (Haberman 1973) the MLE does not exist when z111 = 2222 =
0. Then suppose we observe

z=[0 1 2 3 45 6 0 (24)

. Attempting to Using the Newton-Ralphson procedure to attempt maximize
the likelihood associated to the design matrix A fails since

Z11,1,%222 =0 (25)
while
j:j,k,l —>xj,k7,l (.]akal) 7& (17171)a(23272) (26)
as the procedure is iterated. Furthermore estimates of associated log-odd ratios
are unbounded:
log (m’}’l > ,log <7r212’2 ) — —00 (27)
1—7111 1 =722,

as Newton-Ralphson is iterated. This result aligns on that reported by Fien-
berg and Rinaldo. 111, x220 are patterned likelihood zeros and while the model
loses only one degree of freedom the table itself loses two degrees of freedom in
the failed attempt to maximize the likelihood. At the same time the surviving
estimates, £21 1, ..., 2221 perfectly fit the surviving table x211,...,222,1 and
we cannot assess the fit of the model. As such & is the EMLE.



3.3 Surviving Parameterization

The EMLE is defined at the cell level. To embed the parameter space of the
EMLE in a poisson regression we first identify a surviving parameterization Rpu,
which is any non-singular parameterization for the row space spanned by the
rows of A associated to the fascia. The fascia comprises the elements of x other
than the likelihood zeros. In this case a valid choice for R is simply the 6 middle
rows of A. We obtain

1100110
1010101
11100 11

R=1, 50101 1 (28)
1101101
1011110

R leads us to elicit the ezposed subspace. To do this let R* be of full row rank
and let the row space of R* span the orthogonal complement of the row space
of R.

3.4 Exposed Subspace
Consider the following construct
-1

c | ¢']=|-—— (29)

In general C is a right inverse for R. C'' is any full column rank matrix whose
columns spans the orthogonal complement of the column space of C. We The
dimensions of C' as the same as those of R'. Then the column space of DC'T is
the exposed space. The proof will be available in a full version of the paper. In
the meanwhile we give a heuristic and intuitive definition for the exposed space:

The exposed space is the dimensionally largest linear subspace such that the
parameterization for any linear combination of vectors in the exposed space is
not estimable.

We have ‘
:DCT:[l 000 0 00O 1] (30)

[

(30) should not come as a surprise. The exposed space is unidimensional and
matches the likelihood zeros. Rather than integrating structural zeros in the
EMLE it may possible to identify the orthogonal complement of the exposed
subspace in the column space of the design matrix A and parametrize a di-
mensionally reduced design matrix whose columns span the estimable subspace.



Table 1: Estimates for the Demonstration Example
T 0 1 2 3 4 4 6 0
EMLE 0 1 2 3 4 5 6 0
Orth Proj .572 1.58 258 2.41 4.58 441 541 1.74

Orthogonality insures no ancillary residuals from the exposed space are ported
to the orthogonal subspace and any new model constraint does not superseed
existing ones.

3.5 Orthogonal Design Matrix

The projection of the orthogonal complement of the exposed space E onto the
column space of A can be expressed as the column space of the following matrix

p=[aT | g’ (31)

In the form of an executable statement in ”"R”, using the package ”pracma”,
(31) can be written as

P <- null( t( cbind( null( t( Delta ) ), Xi ) ) )

Since the column space P is orthogonal to E, the intercept is not in the column
space of P. So, while P is a poisson design matrix, it does not characterize
a multinomial. Table 1 displays the estimates for the EMLE along with the
orthogonal projection obtained using P as poisson design matrix. the total
of the poisson estimates is not the same as the total of the observations and
the data cannot be interpreted as independent multinomial observations with a
fixed total in general.

4 Discussion

In the case of our demonstration example the likelihood zeros and the number
of degrees of freedom were previously identified. It is fair to say half the work
had already been done. In a more complexe situation identifying the likelihood
zeros and the number of lost degrees of freedom can be challenging. Wang,
Rauhyand, Massam (2019) report when the number of dimensions exceed 16
the linear programming methods proposed by Fienberg and Rinaldo become
difficult to implement. These authors propose a more nuanced approach. We
hope our presentation will help further the development of strictly likelihood-
based estimation methods based on log-linear models in high dimension and/or
in presence of sparse tables. A by-product could be, in the case of multinomial
log-linear models, to offer alternatives to regularization methods -see Friedman,
Hastie, Tibshirani (2008), Tibshrani (1996)- which have become so popular.
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A R Code

library(pracma)

Delta <- matrix(nrow=8, ncol=7)

Deltal[,1] <- c(1,1,1,1,1,1,1,1)
Deltal[,2] <- ¢(0,1,0,1,0,1,0,1)
Deltal[,3] <- ¢(0,0,1,1,0,0,1,1)
Deltal,4] <- ¢(0,0,0,0,1,1,1,1)
Deltal[,5] <- ¢(0,1,1,0,0,1,1,0)
Deltal,6] <- ¢(0,1,0,1,1,0,1,0)
Deltal[,7] <- ¢(0,0,1,1,1,1,0,0)

DeltaFrame <- matrix(nrow=8, ncol=8)

DeltaFrame[,1:7] <- Delta

DeltaFrame[,8] <- c(0,1,2,3,4,5,6,0)

colnames(DeltaFrame) <- ¢(’D0’,’D1’,’D2’,°D3’,’D4’,’D5’,°D6’,°0BS’)
DeltaFrame <- as.data.frame(DeltaFrame)

DeltaFrameOutput4 <- glm( formula = 0BS ~ DO + D1 + D2 + D3 + D4 + D5 + D6 -1,
data = DeltaFrame, family = poisson, maxit = 1000, epsilon = .00001 )
DeltaFrameQutput8 <- glm( formula = 0BS ~ DO + D1 + D2 + D3 + D4 + D5 + D6 -1,
data = DeltaFrame, family = poisson, maxit = 1000, epsilon = .000000001 )

R <- matrix(nrow=6, ncol=7)
R[, ] <- Delta[2:7, ]

Rorth <- null(R)

# Rorth <- c¢(-2,0,0,0,1,1,1)

RoverRorth <- rbind(R, t(Rorth))
CandCtop <- solve(RoverRorth)

Ctop <- matrix(nrow = 8, ncol = 1)
Ctop <- CandCtopl[,7]

Xi <- Delta %x*}% Ctop

P <- null( t( cbind( null( t(Delta) ), Xi ) ) )

PFrame <- matrix(nrow=8, ncol=7)

PFrame[,1:6] <- P

PFramel[,7] <- ¢(0,1,2,3,4,5,6,0)

colnames (PFrame) <- c(’SD1’,’8SD2’,’SD3’,’8SD4’,’SD5’,’8SD6’,°0BS’)
PFrame <- as.data.frame(PFrame)

PFrameOutput4 <- glm( formula = 0BS ~ SD1 + SD2 + SD3 + SD4 + SD5 + SD6 -1,
data = PFrame, family = poisson, maxit = 1000, epsilon = .00001 )
PFrameOutput8 <- glm( formula = 0BS ~ SD1 + SD2 + SD3 + SD4 + SD5 + SD6 -1,



data = PFrame, family = poisson, maxit = 1000, epsilon = .000000001 )

> PFrameOutput4$fitted.values
1 2 3 4 5 6 7 8
0.5721164 1.5878898 2.5878898 2.4121110 4.5878898 4.4121103 5.4121103 1.7478961

> PFrameOutput8$fitted.values

1 2 3 4 5 6 7 8
0.5721165 1.5878897 2.5878897 2.4121103 4.5878897 4.4121103 5.4121103 1.7478959
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