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Abstract 

Coverage intervals for a parameter estimate computed using complex survey data are often 

constructed by assuming that the parameter estimate has an asymptotically normal 

distribution. The size of the sample and the nature of the parameter being estimated render 

the conventional “Wald” methodology and the term “confidence interval” dubious in many 

applications. A revised method of coverage-interval construction has been developed that 

“speeds up the asymptotics” of a complex-survey estimator by incorporating a measure of 

its third-central moment. Public-use data from the 2019 National Survey on Drug Use and 

Health (NSDUH) are employed to demonstrate the construction of third-moment-adjusted 

coverage intervals for population proportions of cocaine and crack use within seven 

race/ethnicities.  A third-moment-adjusted Bonferroni methodology is proposed for 

making comparison among these seven subdomains. The NSDUH public-use data set 

contains two variance primary sampling units within each variance stratum and little 

additional information about the sample design.  This complicates measuring third-central 

moments.  

Key Words: Edgeworth Expansion, Third-Central Moment, Holm-Bonferroni, Variance 

Stratum 

 

 
1. Introduction 

 
Government surveys often estimate population proportions, such as the fraction of the US 

population that had used cocaine in a previous year, based on a stratified multistage sample.   

A  two-sided (1 − )  100% coverage interval for a population proportion purports to 

contain all values P such that there is no more than (1 − )  100% probability that absolute 

difference between the nearly unbiased estimate p and P is as large as it is.  It is common, 

but misguided, to call this interval a “confidence” interval for the population proportion.  

Were the estimator normally distributed and based on a simple random sample, one could 

be confident that such an interval could be constructed .  That is not the case for a proportion 

estimated from complex survey data.  In such a case, there is no certainty involved, one 

can only expect that the interval will “cover” the true population proportion, regardless of 

what that true proportion is, around  (1 − )  100% of the time in repeated sampling.   

 

Heedless of the above caveat, it is common practice the rely on the asymptotic normality 

of the estimator p, and a nearly unbiased estimate of its variance v, and to assert that all P 

such that (p – P)2 < v(z1 − /2)2  are  in a (1 − )  100% confidence interval for the true 

proportion, where z1-/2 is the value normal score at     1− /2 (an estimator like p is “nearly 

unbiased” when its bias is of a smaller asymptotic order than the value it is estimating).  In 

fact, it is well known that  this may not even constitute a good coverage interval.   Brown 



 

et al. (2001), among others, demostrates this for simple random samples, and Franco et al. 

(2019) for complex samples. 

 

Given a stratified multistage sample and treating the sampling of primary sampling units 

(PSUs) within strata as if they were drawn with replacement, Kott and Liu (2010) argue 

that instead of the usual two-sided (1 − )  100% coverage interval for the population 

proportion, one should construct the following third-moment-adjusted interval:  
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where   = ( )2

1 /2 31 6 ( ) 3 , ,z b b m v−+ =  and m3 is a nearly unbiased estimator for the 

third-central moment of p, that is, the expected value of the cube of the difference between 

p and its expected value.    

 

Kott and Liu discuss one-sided intervals, but the extension to two-sided intervals is 

obvious. Andersson and Nerman  (2000) had previously proposed two-sided intervals that 

attempt to adjust for the impact of the v and p being correlated.  In place of  in equation 

(1), their intervals effectively feature  *= 
21

1 /22
( )z b−  (observe that   * >  when            

1 /2z − >1). Andersson-Nerman intervals are very similar to Wilson and logistic-

transformation intervals.  Kott (2017) provides a discussion of their similarities and 

differences. 

 

It is important to realize that b in equation (1) is itself an estimate.   Let B = M3/V be the 

value it is estimating, where V and M3  are respectively the second- and third-central 

moments of p. 

 

When the number of strata grows arbitrary large while the numbers of PSUs within strata 

are bounded,  converges to 0, and the interval in equation (1) to the conventional “Wald” 

interval centered at p.  Otherwise, the center of the interval moves in the same direction as 

the sign of m3, and the range of the interval increases, usually not by very much.  

    

When the sample design is with-replacement simple random sampling,  B  can be estimated 

in a nearly unbiased fashion by 
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This suggests that a more general ad-hoc estimator for B is balt = (1−2p)/n*, where  n* = 

p(1−p)/v is the so-called effective (element) sample size given the actual sample design.  

By using balt as an estimate for B, one assumes that unequal weighting, clustering, and 

stratification have the same impact on the third-central moment as they do on the second.        

 

Kott and Liu derive an equation like (1) using an Edgeworth expansion and replacing the 

variance of p with v − b(p – P), which is a more efficient − if idealized − measure of the 

variance than v when v and p are correlated (as was noted by Andersson and Nerman).  In 

their formulation the estimand need not be a population proportion so long as p is a nearly 

unbiased estimator for it.   The intervals in Kott and Liu are sensitive not only to the 



 

possible correlation between v and p, but also to p being asymetric when P is not equal to 

½.      

 

Our primary focus here will be on estimating proportions and differences among 

proportions computed from the 2019 National Survey on Drug Use and Health (NSDUH) 

public-use file (PUF) available at https://www.datafiles.samhsa.gov/dataset/national-

survey-drug-use-and-health-2020-nsduh-2020-ds0001.    What is novel here is the focus 

on estimating the differences among proportions and on problem of third-order-moment 

estimation when there are only two PSUs in a stratum, as is often the case in multistage 

government surveys.     

 

The NSDUH PUF, like the NSDUH itself, features two variance PSUs  within each of 50 

variance strata (the variance strata in the PUF are distinct unions of the 750 variance strata 

in the NSDUH itself).   One of the two design PSUs in a design stratum has been assigned 

to a variance PSU within the variance stratum containing its design stratum.  The other 

design  PSU has been assigned to the other variance PSU in the variance stratum.   Design 

PSU and stratum identifiers  are not available on the PUF, which makes it very difficult for 

an intruder to connect survey values on the PUF with  particular respondents.   

 

By treating the design PSUs as if they were selected with replacement, an inverse-

probability-weighted (i.e., design-weighted) sum computed from a variance PSU is 

independent of the corresponding weighted sums of the other variance PSUs, both within 

a variance stratum and across variance strata.  Moreover, the variance PSU’s weighted sum 

estimates half of the total for its variance-stratum.  This is very useful for variance 

estimation but not for estimating a third-central moment.   

 

Section 2 discusses the estimation of proportions, differences of proportions, and their 

second and third-central moments calculated from a stratified multistage sample assuming, 

as is common, with-replacement selection of design PSUs within each design stratum.  It 

offers two imperfect solution to the problem of estimating third-central moments with two 

PSUs per stratum.  Section 3 applies equation (1) and the estimators for the previous section  

to the estimation of the proportions of cocaine and crack use within seven race ethnicities 

using the 2019 NSDH PUF.  Section 4 proposes and implements a Bonferroni methodology 

for assessing differences among the seven subdomains. Section 5 offers some concluding 

remarks and proposes a new suppression rule based on the range where the conventional 

coverage interval can be used.            

  

2. Some Estimators (a Bit of Theory) 

 

Suppose we have a stratified multistage sample of elements from a population.  For 

simplicity, assume there is no nonresponse or measurement error in the sample or coverage 

error in the sampling frame.  Let H, the number of  (variance) strata, be large, and nh, the 

number of with-replacement sampled (variance) PSUs in stratum h be at least 3 in every 

stratum but small compared to H.   Let Y and X be population totals for two variables of 

interest, and  Yh and Xh the respective subtotals in stratum h.  Now suppose yhi and xhi are 

inverse-probability-weighted estimates of Yh/nh and Xh/nh  respectively based on the sample 

in PSU i of stratum h.  Under mild conditions, we assume to hold, a nearly unbiased 

estimator for R = Y/X is   

https://www.datafiles.samhsa.gov/dataset/national-survey-drug-use-and-health-2020-nsduh-2020-ds0001
https://www.datafiles.samhsa.gov/dataset/national-survey-drug-use-and-health-2020-nsduh-2020-ds0001
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We further assume mild conditions under which  r – R is OP(1/H1/2), and E(r – R) =  O(1/H), 

so that  the second  and  third  central-moments  of r  are  nearly equal to  E[(r – R)2]  and  

E[(r – R)3], respectively.   Moreover, conditions are such that the former, the variance/ 

mean-squared error of r, is O(1/H), and the latter is O(1/H2).   Finally, the same can be said 

about the central moments of  the unbiased estimators y and x,  the numerator and 

denominator of r.  

  

As a result of these assumptions, nearly unbiased estimators for the second and third-

central moments of r (when H is large) are 
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Each zhi  is a nearly unbiased estimator of  Zh/nh, where 
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For our purposes, x,  the denominator of r, estimates a total such as the number of non-

Hispanic blacks in the US in 2019, while y, the numerator, correspondingly estimates the 

number of non-Hispanic blacks who had ever used cocaine.  Consequently,  r estimates the 

fraction of non-Hispanic blacks in the US in 2019 who had ever used cocaine.   It is not 

hard to see that when the h denote variance strata, and nh = 2 the number of variance PSUs 

in variance stratum h, the variance estimator v in equation (3) remains nearly unbiased 

assuming H (now the number of variance strata) remains large, which is needed to justify 

using asymptotic arguments.   This is because the (yhi − Rxhi)/X  are independent across the 

variance PSUs (the hi), and the sum,  (yh1 − Rxh1)/X  + (yh2 − Rxh2)/X  estimates Zh in 

equation (4).  That is one reason why variance strata and variance PSUs are used in the 

NSDUH PUF.    

 

Unfortunately, the third-central-moment estimator m3 in equation (3) cannot be used with 

the NSDUH PUF because there are only two variance PSUs in a variance stratum.  Instead, 

the appendix shows that a reasonable measure of the third central moment, one we will use 

in the sequel,  is the following: 
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The appendix also investigates two other potential estimates for the M3, the third-central 

moment of r. One estimates M3 with m3 in equation (3) as if all 2H PSUs came from a 

single stratum.  The other requires there to be an even number of strata. It randomly divides 

the strata into groups of two and treats each group of four PSUs as if they came from a 

single stratum.   

 

To estimate the difference between two proportion using the same sample of PSUs, one 

need estimate r in equation (2) and the zhi in equation (3) and (5) separately for each 

proportion. Labels these r(k)  and zhi
(k), where k = 1 or 2 denote the two proportions being 

differenced (note that the nh  and H are the same for both estimated proportions).  The 

difference between the two estimated r is simply p (1-2) = r(1) − r(2).  For the estimates of the 

second and third-central moments of  p (1-2) one can replace the zhi  in equations (3) and (5) 

with  zhi
(1) − zhi

(2).  

 

3.  Some Coverage Intervals Computed from the 2019 NSDUH PUF 

 

The 2019 NSDUH PUF comes with analysis weights that are adjusted for nonresponse and 

undercoverage.  In this section, we will treat those weights as perfect inverse-probability 

weights and ignore the impact of the implicit model fitting involved in their determination.  

We use those weights to estimate the proportions (in percentages) of lifetime and  past year 

cocaine (in any form) and crack use (4 = 2  2 variables in all) within the following seven 

race/ethnicities for US adults 12 or above residing in noninstitutional dwelling places:  

Non-Hispanic White 

Non-Hispanic Black 

Non-Hispanic American Indian/Alaska Native (AIAN) 

Non-Hispanic Native Hawaiian/Other Pacific Islander (NHOPI) 

Non-Hispanic Asian 

non-Hispanic more than one race (Multi) 

Hispanic. 

 

In addition to the estimated proportions, 95% coverage intervals were computed using 

equation (1) estimating B in three different ways: 1, using  m3' from equation (5), yielding 

the proposed adjusted interval) 2, with (1−2p)v/n*, the ad-hoc adjusted interval; and 3, 

with 0, the conventional or Wald interval.   The results are displayed in Table 3.1.    

 

Table 3.2 digs into the results.  It displays sample sizes and the percent increases in the 

center (from p to   p + ,) and the range ( from  2(1.96) v  to 2 2(1.96) v +  ) of the interval 

caused by using the proposed adjusted interval in place of the conventional interval.    It 

also displays the estimated skewness (ideally  = m3/v3/2 =b/v1/2) computed using  m3' in 

place of m3 (the proposed approach) and then (1−2p)/n* in place of b (the ad-hoc approach). 

 

All the skewness measures, when they exist, are positive (they do not exist when p = 0).  

The proposed adjusted skewness measure is more often larger than the ad-hoc adjusted 

skewness measure.  The two appear to be correlated, but not perfectly.  The larger the 

skewness measure the larger the percent increases in the center and the range.  The latter 

increase is always smaller than the former. 



 

 

 

 

Table 3.1.  Some Estimates and the Associated Two-Sided 95% Coverage Interval 

Race/ 

Ethnicity 

Estimated 

Proportion 

(in percent) 

Lower 

Bound: 

Proposed  

 

Lower 

Bound:  

Ad-hoc 

 

Lower 

Bound: 

Wald 

Upper 

Bound: 

Proposed  

Upper 

Bound:  

Ad-hoc 

Upper 

Bound: 

Wald 

                     Cocaine Lifetime Use 

White 18.25 17.57 17.57 17.56 18.95 18.95 18.94 

Black 8.71 7.38 7.39 7.32 10.17 10.18 10.10 

AIAN 14.90 11.08 11.30 10.99 18.90 19.15 18.82 

NHOPI 10.35 7.54 7.55 7.25 13.77 13.78 13.45 

Asian 3.75 2.72 2.76 2.65 4.92 4.96 4.84 

Multi 20.34 17.78 17.66 17.56 23.37 23.24 23.13 

Hispanic 11.20 10.10 10.11 10.07 12.37 12.38 12.34 

Cocaine: Past Year Use 

White 2.01 1.82 1.82 1.81 2.23 2.23 2.22 

Black 1.66 1.20 1.16 1.10 2.36 2.30 2.23 

AIAN 1.46 0.89 0.83 0.69 2.47 2.38 2.22 

NHOPI 2.96 2.00 1.87 1.69 4.63 4.44 4.23 

Asian 0.95 0.58 0.57 0.49 1.52 1.50 1.41 

Multi 2.94 2.08 2.07 1.95 4.08 4.05 3.92 

Hispanic 2.17 1.84 1.84 1.82 2.55 2.54 2.52 

           Crack: Lifetime Use 

White 3.84 3.52 3.52 3.51 4.18 4.17 4.16 

Black 4.00 3.19 3.18 3.11 4.97 4.95 4.88 

AIAN 4.35 2.23 2.15 1.60 7.93 7.80 7.10 

NHOPI 3.56 1.63 1.39 0.66 7.94 7.45 6.47 

Asian 0.69 0.32 0.30 0.18 1.37 1.35 1.20 

Multi 8.49 6.55 6.44 6.25 11.08 10.94 10.73 

Hispanic 1.85 1.50 1.48 1.45 2.29 2.28 2.24 

           Crack: Past Year Use 

White 0.25 0.19 0.19 0.19 0.32 0.32 0.32 

Black 0.60 0.30 0.27 0.17 1.21 1.15 1.03 

AIAN 0.00 . . . . . . 

NHOPI 0.91 0.12 0.10 -0.50 3.45 3.37 2.33 

Asian 0.01 0.00 0.00 -0.01 0.04 0.04 0.03 

Multi 0.36 0.13 0.10 -0.03 1.01 0.93 0.74 

Hispanic 0.10 0.05 0.04 0.02 0.24 0.21 0.19 

AIAN- American Indian/Alaska Native:  NHOPI – Native Hawaiian/Other Pacific Islander 

  



 

                  Table 3.2.  Some Statistics About the Coverage Intervals 

Race/Ethnicity n n* proposed ad-hoc 

Percent 

Center 

Increase 

Percent 

Range 

Increase 

             Cocaine: Lifetime Use 

White 32089 12017 0.02 0.01 0.05 0.01 

Black 7256 1580 0.06 0.07 0.73 0.11 

AIAN 752 319 0.03 0.11 0.58 0.02 

NHOPI 292 371 0.13 0.14 2.88 0.46 

Asian 2697 1153 0.09 0.14 1.96 0.22 

Multi 2202 803 0.11 0.05 1.12 0.34 

Hispanic 10848 2966 0.04 0.05 0.28 0.04 

              Cocaine: Past-Year Use 

White 32089 18106 0.08 0.05 0.63 0.19 

Black 7256 1968 0.28 0.17 7.05 2.13 

AIAN 752 948 0.39 0.26 15.25 4.16 

NHOPI 292 684 0.38 0.21 12.08 3.88 

Asian 2697 1717 0.28 0.24 9.98 2.12 

Multi 2202 1128 0.20 0.17 4.85 1.04 

Hispanic 10848 6633 0.10 0.08 1.16 0.26 

                  Crack: Lifetime Use 

White 32089 13286 0.06 0.04 0.39 0.11 

Black 7256 1882 0.13 0.11 2.13 0.46 

AIAN 752 211 0.36 0.31 16.72 3.43 

NHOPI 292 156 0.57 0.40 34.32 8.50 

Asian 2697 1029 0.42 0.37 22.60 4.64 

Multi 2202 594 0.20 0.12 3.85 1.06 

Hispanic 10848 4436 0.16 0.11 2.50 0.68 

                           Crack : Past-Year Use 

White 32089 22722 0.17 0.13 3.16 0.74 

Black 7256 1262 0.49 0.36 25.68 6.34 

AIAN 752 . . . . . 

NHOPI 292 174 0.83 0.78 95.15 17.38 

Asian 2697 14492 0.72 0.72 74.70 13.19 

Multi 2202 910 0.74 0.55 59.39 13.99 

Hispanic 10848 5922 0.74 0.40 42.99 13.83 

 

 

4. Comparing Proportions Across Race/Ethnicities Using the 2019 NSDUH PUF 

 

The usual way of testing whether the proportions are the same across subdomains is with 

some version of a multivariate F test.  Korn and Graubard (1999) recommend using either 

what SUDAAN calls the Adjusted Wald F or the Satterthwaite Adjusted F (Research 

Triangle Institute, 2012, p. 315).  Both rely on the asymptotic normality of the estimated 

proportions, and both find variance estimation difficult when some of the estimated 

proportions are very small.      

A conservative test for whether or not 21 (i.e.,
7

2

 
 
 

) pairs of race/ethnicity 

proportions are significantly different from each other at the .05 level is with a Bonferroni 



 

adjustment (Holm, 1979 describes the Bonferroni adjustment).  With this procedure, if any 

of the 21 pairs are significant different at the two-sided .05/21 level, then the null 

hypothesis of the equality of all seven proportions is rejected at the .05 level. 

 

Using this procedure our four variables, lifetime and past-year use of cocaine and crack, 

all show significant differences across the seven race/ethnicities.  This result obtains 

whether  we  compare  estimated   proportions  for  subdomains   f  and  g  by   computing   
( )f g

proposedb −
 = m3'/v with a combined m3' as described in Section 2, pretending the third-central 

moment of the difference is 0 (the conventional or Wald approach), or pretending that the 

estimated proportions pf and pg are close to independent andcomputing the following ad-

hoc estimator for B(f-g) when pf and pg are both between 0 and 1: 
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When pf = 0 or 1, nf* in this equation is replaced by 1.  Observe that 
( )f g

altb −
 can be positive, 

negative, or zero depending on the relative sizes of the estimated proportion and the relative 

sizes effective sample sizes.   It exists when either pf  or pg is 0, but not when both are 0.    

 

The multivariate F-test results are the same for three of the four variables.  SUDAAN warns 

against their use for the fourth, past-year crack use, because the estimated proportion of 

users among Non-Hispanic American Indian/Alaskan Natives (AIAN) is 0. 

 

One advantage of the Bonferroni procedure over a multivariate F test in general is that the 

former can be used to assess which pairs of subdomains have significantly different 

proportions. For a pair of subdomains f and g, let   
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where  p(f-g) is the difference in their estimated proportions, v(f-g) the estimated variance of 

that difference, and ( f-g) the appropriate redefinition of   in equation (1).  Surely, when 

the test statistic in equation (7) is greater than 1 for a pair f and g, the difference P(f-g) is 

significantly different from zero, and Pf and Pg are significantly different from each other. 

Setting aside the c pairs (if any) where the right-hand side of equation (7) is greater than 1, 

we can assess if any of the remaining pairs are also significantly different from each other 

by replacing 21 in the above formulation by 21 − c,  then  continuing the process and 

stopping when no additional pairs are deemed significantly different. 

 

The top half of Table 4.1 displays the nine pairs of subdomains that have proportions of 

past-year crack use that are significantly different at the .05 level using the conservative 

Holm-Bonferroni procedure described above with (f-g) determined using either the 

proposed adjusted or ad-hoc adjusted coverage interval (note that Pair 5-6 was in the 

original batch of significant differences when the proposed interval was used, but not the 

ad-hoc interval).   Using the Wald interval only two pairs are so assessed.    

 



 

A common practice after the original conservative Bonferroni procedure determines that 

at least one pair have significantly different proportions (conservative because there may 

be less than 5% probability of finding a significant difference when there is none), an 

unadjusted t test should be used to assess which pairs are significantly different.  That more 

liberal criteria (one more likely to find a significant difference when there isn’t any)  is 

employed in the bottom half of the table.   Using the proposed adjusted coverage intervals, 

16 pairs have significantly different proportions; using the ad-hoc adjusted intervals, 14 

pairs; and using the Wald, only eight. 

 

 

Table 4.1  Significantly Different Pairs at the .05/Q Level for Past-Year Crack Use   

Q Pair Difference proposed ad-hoc Testproposed TestWald Testad-hoc 

Significantly Different Pairs According to Holm/Bonferroni Procedure 

21 1-3 0.25097 0.165 0.128 2.62 2.49 2.64 

21 1-5 0.23762 0.159 0.100 2.48 2.35 2.39 

21 2-3 0.60033 0.490 0.378 1.27 Not 1.19 

21 2-5 0.58698 0.489 0.377 1.25 Not 1.17 

21 2-7 0.49668 0.474 0.364 1.12 Not 1.02 

21 3-6 -0.35698 -0.741 -0.553 1.09 Not 1.02 

21 3-7 -0.10365 -0.736 -0.390 1.26 Not 1.15 

21 5-6 -0.34363 -0.731 -0.549 1.06 Not Not (yet) 

21 5-7 -0.09030 -0.731 -0.362 1.18 Not 1.01 

13 5-6 -0.34363 -0.731 -0.549 1.08 Not 1.02 

Significantly Different Pairs without a Bonferroni Adjustment 

1 1-2 -0.34936 -0.481 -0.367 1.10 Not 1.02 

1 1-3 0.25097 0.165 0.128 3.95 3.86 4.00 

1 1-5 0.23762 0.159 0.100 3.73 3.64 3.63 

1 1-7 0.14732 -0.345 -0.159 1.14 1.43 1.30 

1 2-3 0.60033 0.490 0.378 1.66 1.41 1.59 

1 2-5 0.58698 0.489 0.377 1.63 1.37 1.56 

1 2-7 0.49668 0.474 0.364 1.43 1.17 1.33 

1 3-4 -0.91484 -0.833 -0.796 1.07 Not 1.06 

1 3-5 -0.01335 -0.718 -0.720 1.10 Not 1.10 

1 3-6 -0.35698 -0.741 -0.553 1.29 Not 1.23 

1 3-7 -0.10365 -0.736 -0.390 1.59 1.26 1.51 

1 4-5 0.90148 0.837 0.798 1.07 Not 1.05 

1 4-7 0.81118 0.833 0.792 1.01 Not Not 

1 5-6 -0.34363 -0.731 -0.549 1.25 Not 1.20 

1 5-7 -0.09030 -0.731 -0.362 1.45 1.10 1.31 

1 6-7 0.25333 0.697 0.523 1.03 Not Not 

        Pair Numbers: 

1. Non-Hispanic White 

2. Non-Hispanic Black 

3. Non-Hispanic American Indian/Alaska Native 

4. Non-Hispanic Native Hawaiian/Other Pacific Islander 

5.   Non-Hispanic Asian 

6.    Non-Hispanic more than one race 

7. Hispanic 

         Not – Not significant at the .05/Q level. 

 



 

For convenience, let us say that the pairs of proportions significantly different using the 

Holm-Bonferroni procedure are certain to be significantly different, while those pairs 

significant different only under the more liberal criteria may be significantly different. 

 

For the other three variables studied here the following number of pairs were deemed 

certain to be significantly different at the .05 level (not shown): 13 pair of proportions of 

lifetime cocaine users employing each of the three intervals,  4 pairs of past-year cocaine 

users again employing each of the three intervals, and 9 pairs of lifetime crack users 

employing Wald intervals and 10 employing either one of the other two intervals.   16, 9, 

and 14 pairs may have been significantly different for lifetime cocaine, past-year cocaine, 

and lifetime crack use employing either the proposed adjusted or the ad-hoc adjusted 

intervals.  Employing Wald intervals, those numbers decreased W to 15, 6, and 12.    

 

In all cases,  all the pairs deemed significant employing Wald intervals were also deemed 

significant using either one of the other two intervals.  The pairs deemed significant 

employing the proposed adjusted intervals and the ad-hoc adjusted interval were the same.  

There is no guarantee of these relationships for all variables.  

 

5. Some Concluding Remarks 

 

5.1 Summarizing the Findings 

An initial motivation for this endeavor was to apply two-sided versions of the coverage 

intervals described and empirically justified in Liu and Kott (2009) and Kott and Liu (2009, 

2010) to subdomain proportions estimated from a complex US government survey like the 

2019 NSDUH, and in so doing, display their practical relevance.  It turned out, however, 

that the two-sided interval in equation (1) could not be computed directly because the 2019 

NSDUH PUF, like many multistage government surveys, features only two variance PSUs 

in each variance stratum.    

 

Two competing methods were used here for measuring the third-central moment of an 

estimator for a proportion.  One, called the proposed method,  makes a sensible assumption 

(contained below equation (5)) but requires computer code not yet readily available. The 

other, the ad-hoc method, pretends the impact on the third-central moment of an estimated 

proportion of unequal weighting, clustering, and stratification, jointly measured in the 

effective sample size, is the same as the impact on the second.   The two methods yielded 

somewhat, but not exactly, similar results and neither was investigated empirically here.  

 

The two methods were used to construct two-sided coverage intervals for lifetime and past-

year use of cocaine and crack for seven race/ethnicity subdomains.  The results are 

displayed in Tables 3.1 and 3.2.   We can see in the tables that the smaller the element 

sample size of the subdomain, the more sensitive its coverage interval is to the skewness 

of the investigated estimator.  The skewness tends to increase as the estimated proportion 

gets smaller (that is for estimates less than .5, which was always the case here).  

Of growing concern in the US is testing differences in proportions among tightly defined 

race/ethnicity subdomains of various sizes.  That is something not frequently addressed in 

the literature but faced directly here.  For testing differences among proportions, the 

Bonferroni procedure, described in Section 4, is recommended over more conventional 

multivariate F tests. The Bonferroni procedure can capture the nonnormality of the 

estimated differences (see Table 4.1), and it can be used even when one of the estimated 

proportions is 0, which may be due to the associated subdomain’s small sample size rather 



 

than the value of the estimand.  Here, again the two method of measuring the impact of 

third-central moments yield similar but not identical results.  

      

5.2 Cochran’s Conjecture (and a new suppression rule)  

Tables 3.1 and 3.2 appear to confirm what Cochran (1963, p. 41) advises for simple random 

samples:  When the estimated skewness is less the .2, it is relatively safe to use the 

conventional coverage interval.  Note that this was always the case in 2019 for the Non-

Hispanic White proportions and for all lifetime cocaine-use proportions.  Cochran’s advice 

suggests one should estimate skewness first before constructing a conventional interval.  

Using the proposed method is preferred, but the ad-hoc method is relatively trivial to 

compute, especially when it can be determined that the conventional interval is adequate 

for one’s needs. 

 

Cochran’s focus on the estimated skewness  rather than on b = m3/v makes some sense 

because the range of the coverage interval in equation (1) is dominating by a multiple of 

v1/2, while , the displacement of the center of the interval, is linearly related to the  times 

v1/2,  which is of a smaller asymptotic order. 

 

The ad-hoc estimated skewness of an estimated proportion p is   

 

                                                        𝜏𝐴𝐻 =
1−2𝑝

[𝑛∗𝑝(1−𝑝)]1/2 . 

 

Some algebra reveals that this values is safely less than .2 when 

 

                                                           
25

𝑛∗   ≤ 𝑝 ≤ 1 −
25

𝑛∗ . 

  

This suggests when p is within this range, the conventional [confidence] interval can be 

used (and p published if that is the issue).  Otherwise, prudent practice when p is less than 

25/n*, is to replace p as the estimate with the assertion  that the true P is estimated to be 

less than 25/n*.  Analogously, when p is greater than 1 − 25/n*, P is estimated to be greater 

than 1 − 25/n*.  In both cases, a conventional upper (or lower) bound can be computed, 

treating the estimated standard error as if it was [(25/n*)(1 − 25/n*)/n*]1/2.     

 

5.3 Calibration Weights  

One subject not yet addressed here is how to use the interval in equation (1) when the 

estimated p is computed with calibrated weights rather than inverse-probability weights.  

If the calibration is to population totals of the calibration variables, the zhi in the equations 

(3) and (5) can be replaced by regression residuals when estimating a total and by 

regression residuals divided by the (estimated) population size when estimating a mean.  

When calibrating to pre-nonresponse sample totals or estimated totals from a previous 

phase of sampling, how to estimate third-central moments is a question for future research.       

A subject given much undo attention in the literature (starting with Korn and Graubard 

(1998)) is the possible need to adjust for the variance of the variance estimator v in equation 

(1).  Standard practice is to treat (p – P)/v1/2  as if it had close to a Student’s t distribution 

with degrees of freedom equal to the number of variance PSUs minus the number of 

variance strata.  That won’t do here because (p – P)/v1/2  is unlikely to have anything close 

to a t distribution.  Moreover, it is not the variance of v that is relevant here, but the variance 

of v − b(p – P)  v − B(p – P), which is smaller by design.  Realizing that equation (1) is 



 

only an approximation (with most terms of smaller asymptotic order than OP(1/H) 

removed), we make no “degrees of freedom” adjustment to the z1-/2 in the equation.  

 

Appendix 

 

The equality (a + b)3 = a3 + 3a2b +3ab2 + b3 is used repeatedly in what follows.  

  

Estimating M3  (when H is large and all nh = 2) with m3' in equation (5) 

 

Suppose z1  and z2 are independent and unbiased estimators of ½ Z,  so that z1  + z2 is an 

unbiased estimator of Z .   The third-central moment of  z = z1  + z2  is  

 

E[(z1  + z2 − Z)3] = E{([z1 − ½ Z] + [z2 − ½ Z])3} = E(e1
3) + E(e2

3), 

 

where ej = zj − Z/2, j = 1 or 2, which are nearly independent with mean 0.  

 

Observe that   

 

z1
3

  + z2
3= (½ Z + e1)3 + (½ Z + e2)3  

             =  (½ Z)3 + 3(½ Z)2e1 + 3(½ Z)e1
2 + e1

3 + (½ Z)3 + 3(½ Z 2)2e2 + 3(½ Z)e2
2 + e2

3 

 

implies E[z1
3
  + z2

3] = (1/4)E(Z3) +  3(½ Z)E[(e1 + e2)2]  + E (e1
3) + E(e2

3), 

while 

 

(z1  + z2)3 = [(½ Z + e1) + (½ Z + e2)]3 = [Z + (e1 + e2)]3 

                      =  Z3 + 3Z2(e1+e2) + 3Z(e1 + e2)2 +  e1
3 + e2

3     

 

implies E[(z1  + z2)3] = E(Z3) +  3Z E[(e1 + e2)2]  + E(e1
3) + E(e2

3). 

 

As a result,   E[(4/3)(z1
3
  + z2

3) − (1/3)(z1  + z2)3] = E(e1
3) + E(e2

3) + Z E[(e1 + e2)2] .     

   

Replacing zj with zhj from Section 2, ej with ehj, and Z with Zh, where h and j respectively 

denote variance strata and PSUs, we have the near equality (“near” because the zhj are 

nearly unbiased for ½ Zh when H is large), 

 

( ) ( )
3 2

3 3 3 3

1 2 1 2 1 2 1 2

1 1 1 1

1
3

E ( ) [E( ) E( )] E4
3

H H H H

h h h h h h h h h

h h h h

z z z z e e Z e e
= = = =

   
+ − +  + + +   

   
     . 

 

The right-hand size of the above near equality is approximately  

 

3 3

1 2

1

[E( ) E( )]
H

h h

h

e e
=

+ 
3

1 2

1

E[( ) ]
H

h h h

h

z z Z
=

+ − when ( )
2

1 2

1

H

h h h

h

Z e e
=

+  0.  (Recall 
1

0.
H

h

h

Z
=

= ) 

 

The zh = zh1  + zh2   are nearly independent, so
3

1 21
E[( ) ]

H

h h hh
z z Z

=
+ −  is a good measure of 

the third-central moment of r in equation (2) when ( )
2

1 21

H

h h hh
Z e e

=
+  0 .  Obseve that the 



 

expection of the last expression on the right is 1 21
Var( ) Var( )

H

h h hh
Z e e

=
 +   or 

2 2 2

1 21 1

H H

h h h h hh h
Z Z

= =
  +  =    , where

2 2 2 2

1 2=Var( ),  and .hj hj h h he  =  +   

 

Heuristically, if Zh was positively correlated with 2

h  (neither the Zh nor the 2

h are random 

variables), then we would expect the bias of this method to be  positive.   We would expect 

the reverse if Zh was negatively correlated with 2

h , and no bias if they were uncorrelated.    

 

Estimating M3  (when  H is large and all nh = 2) with m3 in equation (2) treating all the 

PSUs as if they came from the same stratum; that is,  

 

                    
( )

2
2

31
3 2

1 1

2
'' ( )

(2 1)(2 2)

H

hi H

h i

H
m z z

H H = =

= −
− −
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1

H

h

h

z z
=

=    

 

Assuming zh1  and zh2 are nearly independent and nearly estimators of  ½ Zh,  so that zh = 

zh1  + zh2 is a nearly unbiased estimator of Zh.   The third-central moment of  r  (from equation 

(2)) is nearly  
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1 1
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(when H is large and r − R = OP(1/H1/2)) 
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where the ehj = zhj - Zh/2, j = 1 or 2,  are nearly independent with mean 0.  

 

Now 
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Consequently, if all the Zh were 0, m3'' would be nearly unbiased.  Otherwise, it has two 

bias terms.  When H is large, the first is nearly 3

1

H

hh
Z

= , which can be positive, negative, 

or zero, while the second is nearly 3/2 times the bias of  m3', which also can be positive, 

negative, or zero.  There is no guarantee that m3'' has the greater absolute bias, but it seems 

likely.   

 

Estimating M3  (when H is large and all nh = 2) when H is even by randomly pairing 

the strata and then  treating each pair as a single stratum when computing m3 in 

equation (2).  

 

Let L = H/2 be the number of stratum pairs, and h and h' denote the two strata in a particular 

pair.  The contribution to M3 coming from the pair (our estimation target is) 

   
3 3 3 3

1 2 '1 '2E( ) E( ) E( ) E( ).h h h hC e e e e + + +  

 

The question we need to address is how good an estimator for C is 
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Obseve that  ' ' 1 2 '1 '24 ( ) 2( ) 4 ( )hi h h h h hi h h h hz z z Z Z− + = − +  −  +  +  +  ,  so, for example, 

  

E 3

1 '{[4 ( )] }h h hz z z− + =  
3

'8( )h hZ Z− +     

( )2 2 2 2 3 3 3 3
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When  the PSUs h2, h'1, or h'2 replace h1, the results are analogous, so that a little work 

reveals 

 

  ( )2 2

' '( ) 2( ) .h h h hE c Z Z C= −  −  +  

 

There is a potential bias coming from this pair of strata only when 'h hZ Z .  The bias could 

be in either direction.  It need not be in the same direct for every pair.   

 

Heuristically, suppose Zh was positively or negatively correlated with 2

h  (again, neither 

the Zh nor the 2

h are random variables), while  Zh'  is uncorrelated with 2

h  because of the 

randomness of the pairing.  It is then easy to see that the bias of this method is twice that 

of the proposed method.  
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