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Abstract 
We discuss methods of estimating density forecasts and prediction intervals for long-term energy 
market projections (e.g., energy prices, production, and consumption) published in the U.S. Energy 
Information Administration's (EIA’s) Annual Energy Outlook. Following Kaack et al. (2017), we 
examine density forecasts based on previous projection errors and historical volatility, using both 
empirical distributions and assumed Gaussian distributions. Because of the small sample sizes of 
previous projection errors that are available for these projected series, we also consider empirically-
based density forecasts with exponential smoothing and trend extrapolation applied to the initial 
error bounds. We use estimated regression coefficients, combined with metrics of historical 
volatility, to develop uncertainty metrics for projected series with no available data on previous 
projection errors. 
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1. Background:  EIA’s Annual Energy Outlook 
 
Each year, the U.S. Energy Information Administration (EIA) publishes long-term energy market 
projections in its Annual Energy Outlook. EIA analysts base the projections on output from EIA’s 
National Energy Modeling System (NEMS), a  modular computer-based system that simulates the 
energy supply, demand, and conversion processes of U.S. energy markets. 
 
EIA uses the NEMS to project the effects that economic, environmental, and global energy factors 
may have on the U.S. energy system. The current NEMS projection period runs from the present 
year through 2050. Annual projections include energy production, consumption, and prices, for a 
variety of fuels. EIA analysts develop a variety of cases, each incorporating a different set of 
assumptions (e.g., high or low oil prices, high or low macroeconomic growth) and produce a 
different set of projections for each case. The AEO Reference case represents a  basis of comparison 
for other cases, which we call side cases, and assumes current energy policies and moderate GDP 
growth. EIA also uses the NEMS to project the impact of new energy policies under consideration. 
 
Figure 1 is a  schematic representation of the NEMS. The system incorporates modules for energy 
supply (oil, natural gas, etc.), demand (residential, transportation, etc.) and conversion (electricity 
and liquid fuels). It also simulates the effects of global energy markets and macroeconomic 
conditions on the U.S. energy system. EIA’s website offers extensive NEMS documentation [1]. 
 
Each year’s AEO presents projections for the Reference case and several side cases, as well as 
extensive analysis and discussion of current and expected energy market conditions and the effects 
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of any recent energy policy changes. EIA analysts vary the side cases and input assumptions each 
year. Typical AEO side cases include high and low cases for oil prices, macroeconomic growth, and 
technological advancement. The AEO assumptions, along with data limitations and other factors, 
are sources of uncertainty in AEO projections. 
 

 
Figure 1: Schematic representation of EIA’s National Energy Modeling System (NEMS) 

 
 

2. Motivation: Quantifying Uncertainty in AEO Projections  
 
2.1 Density Forecasts for Long-term Projections 
Users of long-term projections increasingly rely on density forecasts, or uncertainty metrics, to 
evaluate point projections and determine their appropriate uses. These metrics often indicate the 
level of uncertainty based on how far off the analysts’ projections have been in the past, on average, 
for each projection horizon. The uncertainty bounds are interpreted as probabilistic confidence 
intervals; we estimate, for example, a  95% probability that the actual values will fall between the 
95% uncertainty bounds.  
 
Methods of quantifying uncertainty in long-term energy projections, through density forecasting, 
are discussed in the economics literature. Shlyakhter et al (1994) develop a one-parameter model to 
estimate a probability distribution for projections. Sherwin et al. (2019) conjecture that the U.S. 
energy system has become harder to predict and more volatile in the past decade, in comparison to 
the past two to three decades. In the AEO Reference case projections, a  large percentage of the 
highest projection errors within the past few decades occur within the most recent decade. They also 
note the high frequency of large year-to-year changes in key energy quantities. Shlyakhter et al. 
(1994) present a  density forecasting method based on a combination of past forecasting errors and 
either (a) expert judgment of uncertainty bounds or (b) projections from other AEO cases (e.g., the 
high and low oil price cases).  
 
Kaack et al. (2017) examine four main density forecasting methods that are independent of expert 
judgment (either explicit or in the form of AEO case projections) and therefore replicable:   
 

1. Nonparametric Empirical Prediction Interval (denoted 𝑁𝑁𝑃𝑃1 ) 
2. Nonparametric Centered Empirical Prediction Interval (denoted 𝑁𝑁𝑃𝑃2 ), centered on the 

current projected series 
3. Gaussian Distribution, centered on the current projected series, with standard deviations of 

the past projection errors (denoted 𝐺𝐺1 ) 



4. Gaussian Distribution, centered on the current projected series, with standard deviations of 
the past historical proportional changes over time (denoted 𝐺𝐺2 ) 

 
Appendix B gives the formulas for methods 2 through 4, which we discuss in more detail below. To 
compare the density forecasts, Kaack et al. (2017) use the continuous ranked probability score 
(CRPS), also discussed in Appendix B. Gneiting and Raftery (2007) discuss several alternative 
scoring measures similar to the CRPS. 
 
Kaack et al. (2017) define the projection horizon 𝐻𝐻𝑖𝑖 to be the number of years between the AEO 
publication year and the projected year, plus 1 (e.g., for AEO 2020, the 𝐻𝐻0 projections are for 2019). 
They present analysis for 18 projected AEO series and for projection horizons 𝐻𝐻 = 2 to 𝐻𝐻 = 9. 
They find that methods 𝐺𝐺1  and 𝐺𝐺2  perform best overall of the four methods considered, as assessed 
by CRPS scores. Of the nonparametric distribution methods, 𝑁𝑁𝑃𝑃2  performed better than 𝑁𝑁𝑃𝑃1 .  
 
In our analyses, we focus on the utility of the different methods rather than on their CRPS scores. 
Cones of uncertainty computed by method 𝑁𝑁𝑃𝑃1 , which is based on quantiles of the relative 
projection errors from past years and not centered on the current projected series, may, in some 
cases, fail to encompass the full current projected series. Because such cones would be unintuitive 
for AEO readers, we exclude method 𝑁𝑁𝑃𝑃1  from our evaluation. Method 𝐺𝐺2 , while based on the 
implicit assumption that increased historical volatility decreases projection accuracy, is of particular 
interest from a practical standpoint, because the 𝐺𝐺2  uncertainty metrics can be computed from 
historical data, without the need for AEO Retrospective analysis, which is resource intensive. 
Method 𝐺𝐺1  is simple to apply, given the Retrospective analysis. It assumes that the relative 
projection errors follow a Gaussian distribution, an assumption that appears justified (see Appendix 
A). Method 𝑁𝑁𝑃𝑃2  requires no distributional assumption and indicates the direction, in addition to the 
magnitude, of past projection errors. 
 
2.2. Implementing Density Forecasts in the AEO 
We present research on three density forecasting methods, as applied to the AEO Reference case 
projections: 
 

1. Method 𝑁𝑁𝑃𝑃2 , based on quantiles of the centered empirical distributions of the relative 
projection errors  

2. Method 𝐺𝐺1 , based on Gaussian quantiles multiplied by the standard deviations of the 
relative projection errors 

3. Method 𝐺𝐺2 , based on Gaussian quantiles multiplied by the standard deviations of the 
relative changes over time in historical values 

 
Subsection 2.3 provides graphical examples of uncertainty metrics computed by the above methods. 
Our goal is to develop practical methods of implementing the uncertainty metrics in the AEO. 
Because, two of the three methods rely on AEO retrospective analysis, we face two main challenges 
to implementation, based on the limited amount of historical data published in the AEO 
Retrospective: 
 
First, for each series analyzed in the most recent AEO Retrospective (from 2022), only a limited  
number of AEO projection-to-actual data comparisons are available. The small number of data 
points available for high projection horizons, together with their autocorrelation, causes the 
uncertainty cones to become unstable and often collapse. As discussed in Section 3, we apply time-
series smoothing and prediction techniques to the uncertainty bounds to stabilize them and prevent 
them from collapsing at high projection horizons. 
 
Second, the AEO 2022 Retrospective includes comparisons for 31 AEO projected Reference case 
series, but many more Reference case series are projected in each year’s AEO. For AEO projected 
series not represented in the Retrospective analysis, we compute uncertainty metrics based on a 
Gaussian error assumption and historical volatility, using Kaack’s method 𝐺𝐺2 . The underlying 
assumption is that the more volatile series are more difficult to project. Our research indicates that 



the 𝐺𝐺2  metrics, in most cases, tend to overstate uncertainty relative to Kaack’s method 𝐺𝐺1 , which is 
based on a Gaussian error assumption applied to the Retrospective comparisons. As discussed in 
Section 4, we use regression analysis to estimate adjustment factors that we can apply to the 𝐺𝐺2  
uncertainty cones to approximate 𝐺𝐺1  cones. Because we compute the 𝐺𝐺2  cones from historical data 
only, we can compute them for AEO projected series not included in the AEO Retrospective. 
 
2.3 Examples of Density Forecasts Based on Retrospective Analysis 
To illustrate the methods described in subsection 2.2, we present graphs computed by methods 𝑁𝑁𝑃𝑃2  
and 𝐺𝐺1 . Appendix B gives the technical details of the calculations.  
 
2.3.1 Energy Consumption Series 
We examined the uncertainty metrics for projections of residential, commercial, industrial, and 
transportation consumption.  Figure 2.3.1 shows results for the residential sector. Due to the small 
sample sizes and autocorrelated data points, the cones tend to collapse for the higher horizons, 
motivating the smoothing procedure we introduce in subsection 3.1 below. 

 
𝐺𝐺1  

 
𝑁𝑁𝑃𝑃2  

 
Figure 2.3.1:  Uncertainty cones for residential energy consumption (quadrillion Btu), methods 𝐺𝐺1  
and 𝑁𝑁𝑃𝑃2 . 
 
While the 𝐺𝐺1  cones are symmetric, based on Gaussian quantiles and the standard deviations of the 
relative projection errors, the 𝑁𝑁𝑃𝑃2  cones are based on empirical quantiles of the relative projection 
errors and can therefore indicate the direction, as well as the magnitude of the projection errors. In 
general, the 𝐺𝐺1  cones appear to be conservative relative to the 𝑁𝑁𝑃𝑃2  cones, i.e., they indicate 
somewhat larger projection errors. 
 
2.3.2 Energy Price Series 
Figure 2.3.2 shows the results of methods 𝐺𝐺1  and 𝑁𝑁𝑃𝑃2  for projections of natural gas prices to the 
electric power sector.  Because we assume prices follow an approximately lognormal distribution, 
we analyze the price data in log scale, and then transform back, which gives the cones a somewhat 
different shape.  
 

 
𝐺𝐺1  

 
𝑁𝑁𝑃𝑃2  

Figure 2.3.2:  Uncertainty cones for natural gas prices to the electric power sector (dollars per 
million Btu), methods 𝐺𝐺1  and 𝑁𝑁𝑃𝑃2 . 
 
Again in this case, the Gaussian (𝐺𝐺1 ) cones are conservative relative to the empirical (𝑁𝑁𝑃𝑃2 ) cones. 
Because the prices are analyzed in log scale, the general direction of the errors is difficult to discern 
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from the 𝑁𝑁𝑃𝑃2  cones. Again we see the cones computed by both methods collapsing at higher 
projection horizons. 
 
2.3.3 Macroeconomic Series 
The large number of series projected for the AEO includes gross domestic product (GDP), energy 
intensity (energy consumption per unit of GDP), and energy-related carbon dioxide (CO2) 
emissions. Figure 2.3.3 shows the uncertainty cones for energy-related CO2 emissions, computed 
by methods 𝐺𝐺1  and 𝑁𝑁𝑃𝑃2 .  The 𝑁𝑁𝑃𝑃2  cones clearly show that emissions have been over-projected, 
rather than under-projected in previous years. 

 
𝐺𝐺1  

 
𝑁𝑁𝑃𝑃2  

Figure 2.3.3:  Uncertainty cones for energy-related CO2 emissions (millions of metric tons), 
methods 𝐺𝐺1  and 𝑁𝑁𝑃𝑃2 . 
 

3. Estimation Methods 
 
3.1 Smoothing Uncertainty Bounds 
As seen in the graphs above, the uncertainty bounds for the later horizons are often unreliable, 
primarily due to small sample sizes and autocorrelated observations. We explored methods of 
smoothing the empirical and Gaussian uncertainty bounds for horizons 5 through approximately 10 
and trend-projecting the smoothed series out to horizon 15 to 20, where we adopt Kaack’s 
terminology for the horizons. For some series with particularly unstable cones, we reduced the 
length of the smoothed series (below horizon 10) and increased the length of the projected series. 
 
3.1.1. Smoothing Method 
To smooth the uncertainty cones, we used the R HoltWinters function, which implements an 
exponentially weighted filtering of the level, trend, and seasonal components of a  time series.  It 
generally involves three parameters labeled alpha, beta, and gamma, which take values in the half-
open interval (0, 1]. The alpha parameter controls the exponential smoothing of the series, while 
the beta parameter controls the smoothing of the estimated trend component. We set the gamma 
parameter, which controls the smoothing of the estimated seasonal component, to FALSE 
(implementing Holt smoothing), because our application involves only annual data. If users specify 
no values for the alpha and beta parameters, the R HoltWinters function computes parameters 
that minimize the squared one-step-ahead prediction errors for the series. 
 
To smooth each uncertainty bound 𝑌𝑌, we first identify two break points 𝑌𝑌𝑎𝑎 to  𝑌𝑌𝑏𝑏, that divide the 
series into three sections: 
 

1. The original section runs from 𝐻𝐻0  to the first break point 𝑌𝑌𝑎𝑎. We leave this section 
unchanged, because the sample sizes at low horizons are generally sufficient to provide 
good results. 

2. The smoothed section runs from the first break point 𝑌𝑌𝑎𝑎 to the second break point 𝑌𝑌𝑏𝑏. We 
use the HoltWinters function to apply exponential smoothing to this section. 

3. The predicted section runs from the second break point 𝑌𝑌𝑏𝑏 to the end of the projected series. 
For the second break point 𝑌𝑌𝑏𝑏, we choose the point at which the uncertainty cone begins to 
collapse. Rather than allowing the cone to collapse, we use the predict function in R to 
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extend the estimated trend from the smoothed section. We use a weighted average of the 
original and predicted series for this section of the uncertainty bound. 

Although the break points 𝑌𝑌𝑎𝑎 and 𝑌𝑌𝑏𝑏 vary by series, we automated the above process for Gaussian 
uncertainty bounds. 
 
3.1.2 Smoothing Example 
Figure 3.1.2 shows the 𝑁𝑁𝑃𝑃2  uncertainty cones for energy-related CO2 emissions, before and after 
smoothing. In this case the break points (𝑌𝑌𝑎𝑎 and 𝑌𝑌𝑏𝑏 ) were approximately 2027 and 2035. In 
particular, the lower uncertainty bounds begin to collapse at around 2035 in the unsmoothed series. 
The trend projection prevents the cones from collapsing for the later years of the projection period. 
Because some data are available for these years, however, we used a weighted average of the trend 
projection and the original series for the years beyond 2035.  
 

 
Before Smoothing 

 
After Smoothing 

Figure 3.1.2: 𝑁𝑁𝑃𝑃2  uncertainty cones for energy-related CO2 emissions (millions of metric tons), 
before and after smoothing 
 
3.2 Using Historical Volatility to Approximate Gaussian (𝑮𝑮𝟏𝟏) Cones 
EIA performs AEO Retrospective analysis every two to three years and includes a limited number 
of Reference case series (e.g., 31 series for the AEO 2022 Retrospective). We can therefore estimate 
uncertainty cones by methods 𝑁𝑁𝑃𝑃2  and 𝐺𝐺1  only for a  limited number of projected AEO series. 
Method 𝐺𝐺2 , however, relies only on measures of volatility computed from historical data, so we can 
estimate the 𝐺𝐺2  cones for all series projected in the AEO. In this section, we present a  method of 
estimating 𝐺𝐺1  cones by adjusting the standard deviations computed for the 𝐺𝐺2  cones. 
 
Figure 3.2.1 shows uncertainty cones for industrial energy consumption, estimated by method 𝐺𝐺2 , 
(historical volatility) and Figure 3.3.2 (a) shows the corresponding cones computed by method 𝐺𝐺1  
(retrospective analysis). The 𝐺𝐺2  cones are clearly wider than the 𝐺𝐺1  cones. To adjust for the extra 
width, we compute regression coefficients, based on the retrospective and historical data for 
residential energy consumption.  For the residential energy data, we fit Model 1: 
 

 𝜎𝜎1,𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝜎𝜎2,𝑦𝑦 +  𝜀𝜀, (3.2.1) 
 
where, for the variable 𝑦𝑦, 𝜎𝜎1,𝑦𝑦  is the standard deviation of the projection errors (for the 𝐺𝐺1  cones), 
𝜎𝜎2,𝑦𝑦  is the standard deviation of the historical volatility (for the 𝐺𝐺2  cones), and 𝜀𝜀  is a  normally 
distributed error term. Because we intuitively conclude that more volatile energy-related series are 
more difficult to project than stable series, Model 1 assumes a positive correlation between the 
historical volatility of an energy-related series (𝜎𝜎2 ,𝑦𝑦) and the variability of the resulting projection 
errors (𝜎𝜎1,𝑦𝑦 ). 
 
We then use the estimated coefficients 𝛽̂𝛽0  and 𝛽̂𝛽1  to estimate the 𝐺𝐺1  standard deviations for 
industrial energy consumption. We compute 
 

 𝜎𝜎�1,𝑖𝑖 = 𝛽̂𝛽0 + 𝛽̂𝛽1𝜎𝜎2,𝑖𝑖 , (3.2.2) 
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where 𝜎𝜎2,𝑖𝑖 is the vector of standard deviations computed for industrial energy consumption (pooled 
across horizons) by method 𝐺𝐺2 , and 𝜎𝜎�1,𝑖𝑖 is the estimated (based on residential energy consumption 
retrospective data) vector of 𝐺𝐺1  standard deviations for industrial energy consumption. Figure 3.2.2 
(b) shows the adjusted uncertainty cones, which are similar in width to the 𝐺𝐺1  cones computed for 
industrial energy consumption (Figure 3.2.2 (a)). 

 
Figure 3.2.1: Gaussian uncertainty cones for industrial energy consumption (quadrillion Btu), 
estimated based on historical volatility (method 𝐺𝐺2 ) 
 
 

 
(a) 𝐺𝐺1  

 
(b) Adjusted 𝐺𝐺2  

Figure 3.2.2: Gaussian uncertainty cones for industrial energy consumption (quadrillion Btu), (a) 
estimated based on Retrospective analysis (method 𝐺𝐺1 ); and (b) estimated based on historical 
volatility (method 𝐺𝐺2 ) and adjusted using Residential consumption coefficients from Model 1 
 
Figure 3.2.3 shows the standard deviations, by horizon, for commercial energy consumption. The 
blue (middle) line shows the standard deviations of the Retrospective projection errors (method 𝐺𝐺1 ), 
while the grey (top) line shows the standard deviations of the historical changes (method 𝐺𝐺2 ). To 
obtain estimated 𝐺𝐺1  standard deviations (the orange line), we adjusted the 𝐺𝐺2  standard deviations 
using the model coefficients from Model 1, fit on data for the residential sector. The adjustment 
successfully brings the standard deviations close to the correct level for method 𝐺𝐺1  (the blue line). 
 

 
Figure 3.2.3:  Standard deviations for Commercial energy consumption, estimated from standard 
deviations for Residential energy consumption, by horizon 
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To generalize the method of estimating 𝐺𝐺1  standard deviations by adjusting 𝐺𝐺2  standard deviations, 
we developed a collection of robust adjustment factors for categories of AEO Reference case 
projection series, to adjust 𝐺𝐺2  cones to approximate 𝐺𝐺1  cones. 
 

1. We computed 𝐺𝐺1  and 𝐺𝐺2  standard deviations for all series in the 2022 AEO Retrospective. 
2. We tabulated regression coefficients, 𝑝𝑝-values, and adjusted 𝑅𝑅2 statistics for Model 1: 

 
 𝜎𝜎1,𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝜎𝜎2,𝑦𝑦 +  𝜀𝜀, (3.2.3) 

 
where, for the variable 𝑦𝑦, 𝜎𝜎1,𝑦𝑦  is the standard deviation of the projection errors (for the 𝐺𝐺1  
cone), 𝜎𝜎2 ,𝑦𝑦 is the standard deviation of the historical volatility (for the 𝐺𝐺2  cone), and 𝜀𝜀 is a  
normally distributed error term. For each series, we pool the standard deviations across 
horizons to fit the regression models. Table A1 (Appendix A) gives estimated 
coefficients and diagnostics for Model 1. 
 

3. We also tabulated regression coefficients, 𝑝𝑝-values, and adjusted 𝑅𝑅2 statistics for Model 2 
(regression through the origin): 
 
 𝜎𝜎1,𝑦𝑦 = 𝛾𝛾𝜎𝜎2,𝑦𝑦 +  𝜀𝜀 , (3.2.4) 

 
where the notation is as for Model 1. The coefficient 𝛾𝛾 in Model 2 indicates whether the 
adjustment should make the 𝐺𝐺2  cone narrower or wider. Table A2 (Appendix A) gives 
estimated coefficients and diagnostics for Model 2. 
 

4. We examined the table of summary diagnostics and generalize to obtain robust, somewhat 
conservative, adjustment factors based on the 2022 Retrospective data. 

 
5. We used the robust adjustment factors, along with historical data, to estimate 𝐺𝐺1  cones for 

most of the series in Tables 1 through 11 of AEO 2023. The AEO tables are available on 
the EIA website.  

 
4. Results 

 
4.1 Smoothing Results 
Here we provide more examples of uncertainty bounds that have been smoothed by the method 
detailed in subsection 3.1.1. Figure 4.1.1 shows the 𝑁𝑁𝑃𝑃2  uncertainty bounds for delivered residential 
energy consumption. While the unsmoothed bounds become unstable and collapse toward the end 
of the series, the smoothed bounds expand. 

 
(a) 

 
(b) 

 
Figure 4.1.1: 𝑁𝑁𝑃𝑃2  uncertainty cones for residential energy consumption (quadrillion Btu), (a) 
unsmoothed and (b) smoothed 
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Figure 4.1.2 shows the original and smoothed 𝐺𝐺1  (Gaussian) uncertainty bounds for delivered 
residential energy consumption. Comparing Figure 4.1.1(b) with Figure 4.1.2(b), we find that the 
smoothed 𝐺𝐺1  uncertainty bounds are similar to the smoothed 𝑁𝑁𝑃𝑃2  uncertainty bounds. For most 
series in the 2022 Retrospective, the 𝐺𝐺1  cones provide a reasonable approximation of the 𝑁𝑁𝑃𝑃2  cones. 
 

 
(a) 

 
(b) 

 
Figure 4.1.2: 𝐺𝐺1  (Gaussian) uncertainty cones for projected residential energy consumption 
(quadrillion Btu), (a) unsmoothed and (b) smoothed 
 
Because we assume that prices follow a lognormal distribution, we analyze the price series in log 
scale. Figures 4.1.3 and 4.1.4 show the original and smoothed 𝑁𝑁𝑃𝑃2  and 𝐺𝐺1  uncertainty cones for 
nominal natural gas prices to the electric power sector (dollars per million Btu).  Again, we note the 
similarity between the smoothed 𝑁𝑁𝑃𝑃2  and 𝐺𝐺1  cones. 
 
For AEO projected series not included in the Retrospective analysis, we can only compute the 
estimated 𝐺𝐺1  cones, as discussed in subsections 3.2 and 4.2 (below). After smoothing, however, the 
Gaussian cones provide a reasonable approximation of the empirical 𝑁𝑁𝑃𝑃2  cones for most series. 
 
 

 
(a) 

 
(b) 

 
Figure 4.1.3:  𝑁𝑁𝑃𝑃2  uncertainty cones for projected nominal natural gas prices to the electric power 
sector (dollars per million Btu), (a) unsmoothed and (b) smoothed. Prices are analyzed in log scale. 
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Figure 4.1.4:  𝐺𝐺1  uncertainty cones for projected nominal natural gas prices to the electric power 
sector (dollars per million Btu), (a) unsmoothed and (b) smoothed.  
 
For the Gaussian uncertainty cones, we automated the smoothing algorithm. The automated 
algorithm smooths and projects the series of standard deviations, ensuring a monotone increasing 
series for the higher horizons. Based on default function parameters, the algorithm searches in 
specific ranges for appropriate break points between the three sections. For most series, default 
function parameters work well. We use an alternative set of function parameters for some series. 
Once the algorithm finds the appropriate break points, the smoothing is relatively straightforward. 
Figure 4.1.5 shows the 𝐺𝐺1  uncertainty cones for residential energy consumption, (a) unsmoothed 
and (b) smoothed by the automated algorithm. 
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Figure 4.1.5:  𝐺𝐺1  uncertainty cones for projected residential energy consumption (quadrillion Btu), 
(a) unsmoothed and (b) smoothed by the automated algorithm.  
 
 
4.2 Generalizing Regression Coefficients to Estimate 𝑮𝑮𝟏𝟏 Uncertainty Cones 
For those AEO series for which we have no retrospective data, we can compute uncertainty metrics 
by method 𝐺𝐺2 , based on historical data. We used the data in the 2022 retrospective to develop simple 
adjustment factors that we can apply to the 𝐺𝐺2  standard deviations to approximate 𝐺𝐺1  standard 
deviations for those series without retrospective analyses. The factors differ by type of series (e.g., 
consumption, price). 
 
4.2.1. Regression Results 
Table 1 shows the 𝛾𝛾 coefficients from Model 2 for the 31 projected series included in the 2022 AEO 
Retrospective. The coefficients indicate the accuracy of the AEO projections ( 𝐺𝐺1  standard 
deviations), relative to the volatility of the historical series (𝐺𝐺2  standard deviations). These can be 
used to adjust 𝐺𝐺2  standard deviations (based on historical data) to approximate 𝐺𝐺1  standard 
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deviations. The table gives an approximate rating of projection uncertainty for each series, relative 
to historical volatility: 
 

1. High, due to large changes not projected in the Reference case (𝛾𝛾 > 1) 
2. Medium, i.e., consistent with volatility (𝛾𝛾 close to 1) 
3. Slightly low relative to volatility (0.7 < 𝛾𝛾 < 0.9) 
4. Moderately low relative to volatility (0.4 < 𝛾𝛾 < 0.7) 
5. Very low relative to volatility (0.1 < 𝛾𝛾 < 0.4) 
6. Extremely low relative to volatility (𝛾𝛾 < 0.1) 

 
Table 1: Estimated Gamma Coefficients (Model 2) and Categories of 2022 AEO Retrospective 
Series (EP = Electric Power sector) 

 𝜸𝜸� Category 
High   
Petroleum net imports 8.2756 imports 
Coal production excluding waste coal 2.0540 production 
Total coal consumption 1.5677 consumption 
Medium 

  

Energy intensity  1.1948 macro 
Total energy-related CO2 emissions 0.9934 macro 
Slightly low 

  

Coal price to EP (nominal $) 0.8332 price 
Imported cost of crude oil (nominal $) 0.7697 price 
Imported cost of crude oil (constant $) 0.7094 price 
Moderately low 

  

Coal prices to EP (constant $) 0.6572 price 
Natural gas price to EP (nominal $) 0.6525 price 
Natural gas price to EP (constant $) 0.5753 price 
Crude oil production  0.5552 production 
Transportation energy consumption 0.5417 consumption 
Commercial energy consumption 0.4908 consumption 
Industrial energy consumption 0.4887 consumption 
Coal net generation (all sectors) 0.4776 generation 
Residential energy consumption 0.4700 consumption 
Dry natural gas production 0.4581 production 
Average electricity prices (nominal $) 0.4360 price 
Very low 

  

Petroleum and liquids consumption 0.3837 consumption 
Natural gas net imports 0.3784 imports 
Total energy consumption (all sectors)  0.3753 consumption 
Total natural gas consumption 0.3378 consumption 
Average electricity prices (constant $) 0.2492 price 
Hydroelectric net generation 0.2214 generation 



Total electricity sales excl. direct use 0.1780 consumption 
Natural gas net generation (all sectors) 0.1370 generation 
Extremely low 

  

Real GDP (cumulative growth)  0.0016 macro 
Solar net generation (all sectors) 0.0015 generation 
Wind net generation (all sectors) 9.04E-05 generation 
Nuclear net generation (all sectors) 4.80E-05 generation 

 
As shown in Tables A1 and A2 (Appendix A) the estimated 𝛽̂𝛽1 coefficients for Model 1 are similar 
in overall magnitude to the estimated 𝛾𝛾� coefficients from Model 2. For simplicity, we therefore use 
the 𝛾𝛾� coefficients to develop the robust adjustment factors, despite the significance of many of the 
intercept terms 𝛽̂𝛽0 . We seek a one-step method of adjusting the 𝐺𝐺2  standard deviations to 
approximate the 𝐺𝐺1  standard deviations. 
 
To generalize the 𝛾𝛾� values, we fit ordinary least squares regression models, using all 31 series, with  
𝛾𝛾� as the dependent variable and various functions of the 𝐺𝐺2  standard deviations as independent 
variables. We tried for example, the median standard deviation, the fourth moment of the relative 
differences (variance of the variance), and the 𝐺𝐺2  sample size. None of the independent variables 
proved significant. Most had 𝑝𝑝-values exceeding 0.5, and the adjusted 𝑅𝑅2 values for the models 
were less than 0.2. Table 1, however, shows a clear correlation between the 𝛾𝛾� coefficients and the 
series categories in the third column. Most of the consumption series, for example, fall in the 
“moderately low” and “very low” categories. A regression model with 𝛾𝛾� as the dependent variable 
and these categories as independent variables gives better results (detailed diagnostics are in 
Appendix A). Based on these results, we developed the simple adjustment factors shown in Table 
2. 
 
Table 2: Generalized Adjustment Factors for 𝐺𝐺2  Standard Deviations, by Category 

Category Adjustment Factor 
  
Price 0.7 
Production or Consumption 0.5 
Oil Imports 1 
Other Imports 0.5 
Electricity Generation 0.4 
Macroeconomic 1 

 
Because these factors are only approximate, they are conservative, deflating the 𝐺𝐺2  standard 
deviations by a minimal amount to approximate 𝐺𝐺1  standard deviations.  
4.2.2. Estimating 𝑮𝑮𝟏𝟏 Cones from 𝑮𝑮𝟐𝟐 Cones  
We apply the adjustment factors in Table 2 to estimate 𝐺𝐺1  uncertainty cones for delivered residential 
energy consumption and natural gas prices to the electric power sector. Figure 4.2.2.1 shows the 𝐺𝐺1  
and unadjusted 𝐺𝐺2  cones for residential energy consumption. The 𝐺𝐺2  cones are clearly too wide to 
serve as estimates of the 𝐺𝐺1  cones. 
 
Table 2 gives an adjustment factor of 0.5 for consumption series. Applying this factor gives the 
uncertainty cones in Figure 4.2.2.1 (b), which approximate the 𝐺𝐺1  cones in order of magnitude.  
 



 
(a) 

 
(b) 

 
Figure 4.2.2.1: Uncertainty cones for projected residential energy consumption (quadrillion Btu) 
computed by (a) method 𝐺𝐺1  (b) method 𝐺𝐺2   
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(b) 

 
Figure 4.2.2.2: Uncertainty cones for projected residential energy consumption (quadrillion Btu) 
computed by (a) method 𝐺𝐺1  (b) estimated method 𝐺𝐺1   
 
Similarly, Figure 4.2.2.3 shows the uncertainty cones for natural gas prices to the electric power 
sector, estimated by (a) method 𝐺𝐺1  and (b) method 𝐺𝐺2 . Again, the 𝐺𝐺2  cones are too wide. Table 2 
gives an adjustment factor of 0.7 for price series. Applying this factor (with calculations in log scale) 
gives the uncertainty cones in Figure 4.2.2.4 (b), which approximate the 𝐺𝐺1  cones in order of 
magnitude.  
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Figure 4.2.2.3: Uncertainty cones for projected natural gas prices to the electric power sector 
(nominal dollars per million Btu) computed by (a) method 𝐺𝐺1  (b) method 𝐺𝐺2   
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Figure 4.2.2.4: Uncertainty cones for projected natural gas prices to the electric power sector 
(dollars per million Btu) computed by (a) method 𝐺𝐺1  (b) estimated method 𝐺𝐺1   
 
4.2.3. Series with Non-Gaussian Relative Historical Changes 
The adjustment method illustrated above works well when both the relative projection errors used 
to compute the 𝐺𝐺1  cones and the relative historical changes used to compute the 𝐺𝐺2  cones follow 
Gaussian distributions, as assumed under the 𝐺𝐺1  and 𝐺𝐺2  methodologies. For all series in the AEO 
2022 Retrospective, the relative projection errors are approximately Gaussian, as shown in Figure 
A.1 in Appendix A. For some series, however, the relative historical changes (inputs to the 𝐺𝐺2  
cones) fail the Shapiro-Wilk normality test, as shown in Figures A.2 through A.4 in Appendix A. 
We’re currently developing special procedures to approximate the 𝐺𝐺1  cones for these series. 
 
The reasons behind the compromised Gaussian assumption vary by series. For example, Figure 
4.2.3.1 shows the historical series for solar net generation (million Btu). Because of the rapid 
increase in solar generation from 2010 to the present, the historical relative changes for this series 
fail the normality test. Figure 4.2.3.2 shows the 𝐺𝐺1  and 𝐺𝐺2  uncertainty cones on the same scale. An 
extreme adjustment factor would be needed to adjust the 𝐺𝐺2  cones for this series, and such factors 
are unlikely to be easily generalized to other series. Series with non-Gaussian relative historical 
changes make up 15% to 20% of the projected AEO Reference case series. The non-Gaussian series 
include: 
 

• Solar, wind, and nuclear electricity generation 
• Some other electricity generation series 
• Some import and export series 
 

As discussed in Section 5, we’re currently testing alternative estimation procedures for these series. 
 

 
(a) 

 
(b) 

 
Figure 4.2.3.1: (a) Historical series for solar net generation (million Btu) and (b) 𝐺𝐺1  uncertainty 
cones for projected solar net generation (billion kwh) 
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Figure 4.2.3.2: Uncertainty cones for solar net generation (billion kwh), on the same scale, for (a) 
method 𝐺𝐺1  and (b) method 𝐺𝐺2   
 

5. Current Research 
 
EIA’s current research on AEO uncertainty measures focuses on two areas: (1) automating the 
smoothing and projecting algorithm for nonparametric (𝑁𝑁𝑃𝑃2 ) uncertainty cones and (2) estimating 
𝐺𝐺1  uncertainty cones for series with non-Gaussian historical relative changes. 
 
5.1 Automating the Smoothing and Projecting Algorithm for 𝑵𝑵𝑷𝑷𝟐𝟐 Cones 
Our automated algorithm for smoothing and projecting Gaussian uncertainty metrics smooths and 
projects the series of standard deviations of the relative projection errors. The algorithm ensures that 
the smoothed series of standard deviations is monotone increasing. We then compute the uncertainty 
cones based on the smoothed standard deviations and Gaussian quantiles. 
 
We can extend this method to the 𝑁𝑁𝑃𝑃2  cones by smoothing and projecting the series of differences 
between the 𝑁𝑁𝑃𝑃2  uncertainty bounds and the values of the projected series. Ensuring that the series 
of differences is monotone increasing will prevent the 𝑁𝑁𝑃𝑃2  cones from collapsing. We’re currently 
working to automate the 𝑁𝑁𝑃𝑃2  smoothing algorithm. 
 
5.2 Estimating 𝑮𝑮𝟏𝟏 Uncertainty Cones for Non-Gaussian Series 
We’re investigating several options for estimating 𝐺𝐺1  uncertainty cones for series with non-
Gaussian historical relative changes: 
 

1. Truncate the historical series, using the longest most recent period for which the data 
appear Gaussian. 

2. Apply logarithmic or other transformations to the proportional changes to induce normality 
before computing standard deviations.  (Reverse transform before computing uncertainty 
bounds.) 

3. Compute uncertainty cones using a Gaussian distribution with the standard deviations set 
to the differences between the Reference case projections and the projections from the 
farthest AEO side case (Kaack’s method 𝑆𝑆𝑃𝑃1 ). 

 
As an example of approach (1) above, the available series of annual relative historical changes in 
nuclear electricity generation (billion kwh) runs from 1957 to 2022 and is non-Gaussian. Figure 
5.2.1 shows the 𝐺𝐺1  and 𝐺𝐺2  uncertainty cones for this series. The 𝐺𝐺2  cones are clearly too wide to 
adjust to the level of the 𝐺𝐺1  cones without the use of extreme adjustment factors. If we truncate the 
series and use only data from 2002 to 2022 (Figure 5.2.1 (b)), the resulting uncertainty cones are 
much narrower and are the same order of magnitude as the 𝐺𝐺1  cones. Although the 𝐺𝐺2  cones 
computed from the truncated series are narrower than the 𝐺𝐺1  cones, they can be adjusted using 
factors that may be generalizable to other series. 
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Figure 5.2.1: Uncertainty cones for nuclear net generation (billion kwh), computed by (a) method 
𝐺𝐺1  and (b) method 𝐺𝐺2 , using data from 1957 to 2022 for the 𝐺𝐺2  cones 
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Figure 5.2.2: Uncertainty cones for nuclear net generation (billion kwh), computed by (a) method 
𝐺𝐺1  and (b) method 𝐺𝐺2 , using data from 2002 to 2022 for the 𝐺𝐺2  cones 
 
Future research will focus on developing the special procedures for non-Gaussian series and on 
refining the robust adjustment factors given in Table 2 for the 𝐺𝐺2  uncertainty cones. 
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Appendix A:  Supplementary Results 
 
Here we present additional graphics and analytical results. Figure A.1 shows box plots of the 𝑝𝑝-
values of the Shapiro-Wilk normality test for the series in the 2022 AEO Retrospective analysis, by 
horizon. The null hypothesis of the Shapiro-Wilk test is normality, so we accept as normal any 
series/horizon combination whose 𝑝𝑝-value exceeds 0.05 (the red horizontal line in Figure A.1. Based 
on these results, we conclude that the relative retrospective errors are largely normal and that the 
use of method 𝐺𝐺1  is justified. 
 

 
Figure A.1: Box plots of the 𝑝𝑝-values of the Shapiro-Wilk normality test for the relative projection 
errors published in the AEO 2022 Retrospective analysis. Based on the test results, we conclude that 
the use of method 𝐺𝐺1  is justified. 
 
For the 𝐺𝐺2  uncertainty cones, we evaluate the normality of the relative changes in the historical 
series. For almost all series, the changes at the lower horizons pass the normality test, as shown in 
Figures A.2 through A.4. For the higher horizons, the results vary widely. For the series in AEO 
Table 1, “Total Energy Supply, Disposition, and Prices,” normality holds only up to about horizon 
15 (Figure A.2). By contrast, for series in AEO Table 4, “Residential Key Indicators and 
Consumption,” normality holds past horizon 50. (Many of these series go back several decades.) 
For series in AEO Table 8, “Electricity Supply, Disposition, Prices, and Emissions,” normality 
breaks down after about horizon 10. This table includes the solar, wind, and nuclear electricity 
generation series, for which we’re developing special procedures (see Section 5). 
 



 
Figure A.2: Box plots of the 𝑝𝑝-values of the Shapiro-Wilk normality test for the historical relative 
changes for series in AEO Table 1, “Total Energy Supply, Disposition, and Prices” 
 

 
Figure A.3: Box plots of the 𝑝𝑝-values of the Shapiro-Wilk normality test for the historical relative 
changes for series in AEO Table 4, “Residential Key Indicators and Consumption” 
 

 
Figure A.4: Box plots of the 𝑝𝑝-values of the Shapiro-Wilk normality test for the historical relative 
changes for series in AEO Table 8, “Electricity Supply, Disposition, Prices, and Emissions” 



 
Table A1: Regression Results for Model 1 (EP = Electric Power sector) 

Series Description 𝜷𝜷�𝟎𝟎 𝜷𝜷�𝟏𝟏 
p-value, 
𝜷𝜷�𝟎𝟎 

p-value,  
𝜷𝜷�𝟏𝟏 Adj. 𝑹𝑹𝟐𝟐       

Prices 
     

Natural gas price, EP (const. $) 0.07762 0.49731 0.21100 1.646E-06 0.80264 
Natural gas price, EP (nom. $) 0.06049 0.58000 0.33364 2.498E-06 0.79070 
Coal price, EP (constant $) -0.08361 0.85323 0.00250 3.806E-10 0.93978 
Coal price, EP (nominal $) -0.07709 1.05971 0.00352 2.804E-10 0.94235 
Ave. electricity price (const. $) 0.05255 0.14579 0.01673 0.00346 0.43025 
Ave. electricity price (nom. $) 0.03532 0.32532 0.03572 0.00002 0.72230 
Imported cost of oil (const. $) -0.17515 0.89981 0.03458 4.171E-08 0.88263 
Imported cost of oil (nom. $) -0.17795 0.98535 0.05184 2.036E-07 0.85308 
Production 

     

Crude oil production 0.03760 0.44680 0.00741 1.073E-08 0.90319 
Dry natural gas production 0.03342 0.36924 0.06209 3.004E-06 0.78519 
Coal prod. excl. waste coal -0.31924 4.27892 4.981E-08 1.358E-11 0.96254 
Consumption 

     

Liquids consumption 0.02400 0.28563 0.05104 0.00007 0.66937 
Natural gas consumption 0.04925 0.20930 0.00752 0.00052 0.55951 
Coal consumption -0.15947 2.20070 1.764E-06 4.270E-13 0.97713 
Total energy consumption 0.01453 0.29705 0.00696 4.029E-08 0.88320 
Residential consumption. 0.02893 0.30245 0.00002 5.795E-08 0.87703 
Commercial consumption 0.01430 0.41989 0.00021 2.393E-13 0.97894 
Industrial consumption 0.01891 0.37600 0.10358 0.00010 0.64968 
Transportation consumption 0.01529 0.45617 0.00451 1.957E-10 0.94522 
EP sales excl. direct use 0.00694 0.16405 0.00413 6.233E-15 0.98749 
Imports 

     

Petroleum net imports 0.67264 7.75921 0.86763 0.03651 0.22463 
Natural gas net imports -3.59228 0.53413 0.00150 1.089E-08 0.90299 
Electricity generation 

     

Solar net generation 0.15312 -0.00203 2.491E-10 1.977E-06 0.82155 
Wind net generation 0.17137 -0.00003 0.00001 0.16871 0.07433 
Hydroelectric net generation 0.07963 -0.04166 0.00001 0.30181 0.01103 
Coal net generation 0.02623 0.42862 0.27223 0.00000 0.84917 
Natural gas net generation 0.07025 0.03467 0.00005 0.10581 0.12614 
Nuclear net generation 0.03660 -0.00003 0.00000 0.06521 0.17914 
Macro 

     

Real GDP (cum. growth) 0.00911 0.00011 0.00007 0.69246 -0.05909 
Energy-related CO2 emissions -0.02329 1.20257 1.540E-07 2.171E-17 0.99442 
Energy intensity 0.01250 1.01845 0.00003 1.025E-14 0.98657 



 
Table A2: Regression Results for Model 2 (EP = Electric Power sector)  

𝜸𝜸� 
p-value,  

𝜸𝜸� Adj. 𝑹𝑹𝟐𝟐     

Prices 
   

Natural gas price, EP (const. $) 0.57527 5.372E-14 0.97758 
Natural gas price, EP (nom. $) 0.65253 4.072E-14 0.97839 
Coal price, EP (constant $) 0.65718 5.758E-15 0.98335 
Coal price, EP (nominal $) 0.83320 2.687E-15 0.98496 
Ave. electricity price (const. $) 0.24919 2.225E-09 0.90785 
Ave. electricity price (nom. $) 0.43601 3.678E-12 0.96065 
Imported cost of oil (const. $) 0.70942 2.427E-14 0.97983 
Imported cost of oil (nom. $) 0.76966 7.719E-14 0.97647 
Production 

   

Crude oil production 0.55519 8.138E-15 0.98256 
Dry natural gas production 0.45807 1.194E-11 0.95398 
Coal prod. excl. waste coal 2.05400 5.651E-10 0.92317 
Consumption 

   

Liquids consumption 0.38374 1.080E-10 0.93833 
Natural gas consumption 0.33781 3.640E-09 0.90164 
Coal consumption 1.56769 7.508E-13 0.96815 
Total energy consumption 0.37534 2.659E-13 0.97226 
Residential consumption. 0.47000 2.322E-12 0.96299 
Commercial consumption 0.49083 2.675E-17 0.99186 
Industrial consumption 0.48872 2.859E-11 0.94831 
Transportation consumption 0.54169 2.076E-15 0.98546 
EP sales excl. direct use 0.17797 1.100E-18 0.99468 
Imports 

   

Petroleum net imports 8.27558 0.00002 0.68892 
Natural gas net imports 0.37840 2.261E-09 0.90766 
Electricity generation 

   

Solar net generation 0.00155 0.03452 0.23008 
Wind net generation 0.00009 0.00214 0.46592 
Hydroelectric net generation 0.22140 0.00001 0.76236 
Coal net generation 0.47760 3.687E-12 0.96890 
Natural gas net generation 0.13696 2.651E-06 0.78894 
Nuclear net generation 0.00005 0.14997 0.08089 
Macro 

   

Real GDP (cum. growth) 0.00162 2.196E-11 0.95009 
Energy-related CO2 emissions 0.99339 1.463E-17 0.99249 
Energy intensity 1.19476 1.189E-19 0.99605 

 



Regression Diagnostics for the Effect of Category on 𝛾𝛾� 
Call: 
lm(formula = Gamma ~ -1 + Category, data = GammaTest) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-3.9486 -0.1680 -0.0463  0.1292  3.9486  
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|) 
Categoryconsumption   0.5371     0.3962   1.356    0.187 
Categorygeneration    0.1396     0.4852   0.288    0.776 
Categoryimports       4.3270     0.8405   5.148 2.54e-05 
Categorymacro         0.7299     0.6862   1.064    0.298 
Categoryprice         0.6103     0.4202   1.452    0.159 
Categoryproduction    1.0224     0.6862   1.490    0.149 
                        
 
Multiple R-squared:  0.5755, Adjusted R-squared:  0.4736  
F-statistic: 5.648 on 6 and 25 DF, p-value: 0.0008072 
 
 

Appendix B:  Technical Details 
 
Formulas for Uncertainty Metrics 
As in Kaack et al. (2017), for series other than prices, we define 𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑦𝑦�−𝑦𝑦

𝑦𝑦
, where 𝑦𝑦� is the AEO 

Reference case projection of the historical value 𝑦𝑦, and use the approximation 
 

 
𝑠𝑠𝑟𝑟 ≡ 𝑠𝑠𝑠𝑠(𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟) = 𝑠𝑠𝑠𝑠 �

𝑦𝑦�− 𝑦𝑦
𝑦𝑦

� (B1) 

 
to compute the 𝐺𝐺1  uncertainty cones for non-price series. We use the approximation 𝑠𝑠𝑟𝑟 = 𝑠𝑠𝑠𝑠 �𝑦𝑦�−𝑦𝑦

𝑦𝑦
� 

for the ratio 𝑠𝑠𝑠𝑠
(𝑦𝑦�−𝑦𝑦)

𝑦𝑦
 because, for each horizon, we pool the relative errors across time periods, so the 

historical values 𝑦𝑦 (in the denominator) vary across the ratios. When we compute the error bounds, 
we multiply 𝑠𝑠𝑟𝑟 by the current projection 𝑦𝑦� (see equation B3). 
 
For price series, which we analyze in log scale, we define 𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙 = ln 𝑦𝑦�−ln𝑦𝑦 and, for each horizon, 
consider the standard deviation 
 

 𝑠𝑠𝑙𝑙 ≡ 𝑠𝑠𝑠𝑠�𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙� = 𝑠𝑠𝑠𝑠(ln 𝑦𝑦� −ln𝑦𝑦). (B2) 
 
With approximation (1), we compute the upper and lower 𝐺𝐺1  Gaussian confidence bounds 𝑏𝑏𝑈𝑈,𝑄𝑄 
and 𝑏𝑏𝐿𝐿,𝑄𝑄 for confidence level 𝑄𝑄 for a  projected series 𝑦𝑦� other than prices as 
 

  𝑏𝑏𝑈𝑈,𝑄𝑄 ≈ 𝑦𝑦�+ �𝑎𝑎𝑈𝑈,𝑄𝑄 × 𝑦𝑦�× 𝑠𝑠𝑟𝑟�, (B3) 
and 
 

 𝑏𝑏𝐿𝐿,𝑄𝑄 ≈ 𝑦𝑦�+ �𝑎𝑎𝐿𝐿 ,𝑄𝑄 × 𝑦𝑦�× 𝑠𝑠𝑟𝑟�, (B4) 
 
where 𝑎𝑎𝑈𝑈,𝑃𝑃  and 𝑎𝑎𝐿𝐿 ,𝑃𝑃  represent the appropriate Gaussian quantiles. Note that, in this context, 𝑦𝑦� is a  
current projection for a  future year. For price series, we compute the Gaussian confidence bounds 
as 
 

 𝑏𝑏𝑈𝑈,𝑄𝑄,𝑃𝑃 ≈ exp �ln𝑦𝑦�+ �𝑎𝑎𝑈𝑈 ,𝑄𝑄 × 𝑠𝑠𝑙𝑙�� = 𝑦𝑦 �× exp �𝑎𝑎𝑈𝑈,𝑄𝑄 × 𝑠𝑠𝑙𝑙�, (B5) 



and 
 𝑏𝑏𝐿𝐿,𝑄𝑄 ,𝑃𝑃 ≈ exp�ln𝑦𝑦�+ �𝑎𝑎𝐿𝐿 ,𝑄𝑄 × 𝑠𝑠𝑙𝑙�� = 𝑦𝑦 �× exp�𝑎𝑎𝐿𝐿 ,𝑄𝑄 × 𝑠𝑠𝑙𝑙�. (B6) 

 
The relevant quantiles 𝑎𝑎𝑈𝑈,𝑄𝑄  and 𝑎𝑎𝐿𝐿 ,𝑄𝑄 from the Gaussian density are as follows: 
 

Q 𝑎𝑎𝑈𝑈,𝑄𝑄  𝑎𝑎𝐿𝐿,𝑄𝑄  
   

0.50 0.674 -0.674 
0.90 1.645 -1.645 
0.95 1.96 -1.96 

 
To compute the 𝐺𝐺2  uncertainty cones, we follow the same procedure as for the 𝐺𝐺1  cones, except that 
we substitute relative historical changes 𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟,𝑡𝑡 =

𝑦𝑦𝑡𝑡2−𝑦𝑦𝑡𝑡1
𝑦𝑦𝑡𝑡1

 for the relative projection errors 𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑦𝑦�−𝑦𝑦
𝑦𝑦

 

for non-price series. Similarly, for price series, we substitute log-scaled historical changes 𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙 ,𝑡𝑡 =
ln𝑦𝑦𝑡𝑡 2 −ln 𝑦𝑦𝑡𝑡 1 for the log-scaled relative projection errors 𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙 = ln 𝑦𝑦�−ln 𝑦𝑦. 
 
To form the centered empirical error bounds (method 𝑁𝑁𝑃𝑃2 ), we first compute the centered relative 
(or log) errors for each horizon: 
 

 𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑐𝑐𝑐𝑐𝑐𝑐 ≡ 𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟),  (B7) 
and 

 𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙 ,𝑐𝑐𝑐𝑐𝑐𝑐 ≡ 𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙�, (B8) 
 
where the medians are taken over all 𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟 or 𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙  associated with a horizon.  We then compute the 
quantiles of the centered error distributions.  Because this is a  two-sided distribution, we compute 
the following quantiles for the upper and lower bounds: 
 

Q 𝑐𝑐𝑈𝑈,𝑄𝑄 𝑐𝑐𝐿𝐿 ,𝑄𝑄 
   

0.50 0.750 0.250 
0.90 0.950 0.050 
0.95 0.975 0.025 

 
Given the centered empirical quantiles, we compute the centered empirical error bounds: 
 

 𝐷𝐷𝑈𝑈 ,𝑄𝑄 ≈ 𝑦𝑦�+ �𝐶𝐶𝑄𝑄 × 𝑦𝑦��, (B9) 
and 
 

 𝐷𝐷𝐿𝐿 ,𝑄𝑄 ≈ 𝑦𝑦� − �𝐶𝐶𝑄𝑄 × 𝑦𝑦��, (B10) 
 
where 𝐶𝐶𝑄𝑄 represents the appropriate empirical quantile of the 𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟,𝑐𝑐𝑐𝑐𝑐𝑐 .  For price series, we 
compute the empirical confidence bounds as 
 

 𝐷𝐷𝑈𝑈 ,𝑄𝑄,𝑃𝑃 ≈ exp �ln𝑦𝑦�+ 𝐶𝐶𝑄𝑄,𝑃𝑃� = 𝑦𝑦 �× 𝑒𝑒𝐶𝐶𝑄𝑄,𝑃𝑃 ,  (B11) 
and 

 𝐷𝐷𝐿𝐿 ,𝑄𝑄,𝑃𝑃 ≈ exp �ln𝑦𝑦�− 𝐶𝐶𝑄𝑄,𝑃𝑃� = 𝑦𝑦 �×𝑒𝑒−𝐶𝐶𝑄𝑄,𝑃𝑃 , (B12) 
 
where 𝐶𝐶𝑄𝑄,𝑃𝑃  represents the appropriate quantile of the centered empirical distribution. 
 
Continuous Ranked Probability Score (CRPS) 
For each forecast horizon 𝐻𝐻, and each forecast, let 𝐹𝐹𝑡𝑡  be the cumulative distribution function (CDF) 
of the forecast density, let 𝑛𝑛𝐻𝐻  be the number of pairs of observations and forecasts 𝐻𝐻 years apart 



(i.e., having forecast horizon 𝐻𝐻), let 𝜉𝜉𝑡𝑡  be the forecast error for year 𝑡𝑡, and let 𝜖𝜖𝑡𝑡  be a point of the 
predictive error distribution. The CRPS is defined as 
 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝐻𝐻(𝐹𝐹𝑡𝑡 , 𝜖𝜖) =

1
𝑛𝑛𝐻𝐻

� � [𝐹𝐹𝑡𝑡(𝜖𝜖𝑡𝑡) − 𝟏𝟏(𝜖𝜖𝑡𝑡 ≥ 𝜉𝜉𝑡𝑡)]2𝑑𝑑𝜖𝜖𝑡𝑡

∞

−∞

𝑛𝑛𝐻𝐻

𝑡𝑡=1

,  (B13) 

 
where 𝟏𝟏(𝜖𝜖𝑡𝑡 ≥ 𝜉𝜉𝑡𝑡) is a  step function that is 0 for all real values less than 𝜉𝜉𝑡𝑡  and 1 for all real values 
greater than or equal to 𝜉𝜉𝑡𝑡 . The CRPS is a  scoring function that essentially compares the CDF of the 
density forecast with a step function that represents the CDF of the difference between an AEO 
projection and its true value (based on a retrospective analysis).  It averages the squared differences 
between these CDFs across each forecast probability distribution (the integral) and across all 
forecast-observation pairs with horizon 𝐻𝐻  (the sum). A lower CRPS indicates that the forecast 
densities are closer to the step functions, on average, and therefore closer to representing the true 
error distribution. Because the step function is infinitely sharp, the CRPS is a  measure of both 
calibration and sharpness (favoring narrower densities). 
 


