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Abstract
Calibration of totals estimated from one survey to totals estimated from another survey is used in

survey practice for consistency between these estimates and for reducing survey errors, e.g., under-
coverage and nonresponse. We discuss issues of estimation efficiency of the resulting regression
estimates for variables used in calibration and particularly for the rest of the survey variables, as
well as practical problems with variance estimation. We point out that a calibration procedure that
is statistically and operational more efficient is possible when micro-data from the other survey are
available. In this procedure the combined survey data are calibrated simultaneously, so that esti-
mated totals for common variables in the two surveys are calibrated to each other. We show that
the improved efficiency of the regression estimates generated by this calibration procedure is due
to the fact that the regression coefficients are approximately variance minimizing coefficients in-
corporating data from the two surveys. We also indicate that computations and variance estimation
are greatly facilitated. An empirical study confirming the merits of the proposed calibration is also
presented.

Key Words: Aligned estimates, composite calibration, optimal estimator, regression estimator,
survey data combination, survey errors.

1. Introduction

Calibration in survey sampling is the part of the estimation process in which the sam-
pling weights are adjusted to reproduce totals of auxiliary variables that are exactly known
from registers or administrative sources. This procedure is extensively used to reduce non-
sampling survey errors, e.g., undercoverage and nonresponse, and to improve the efficiency
of estimators.

A variant of this standard calibration procedure in which the totals are estimates from
other surveys is also used in current survey practice; examples of such calibration are given
in Dever and Valliant (2017). Typically, this calibration setting involves two surveys, a
primary survey and a “benchmark” survey, which have some common auxiliary variables
with the same unknown totals. The primary objective of such calibration is consistency
between estimates of totals from the two surveys for these auxiliary variables. Reduction of
non-sampling survey errors may also be a motive if there is indication that for the specific
variables such errors are more serious in the primary survey, but reduction of variance
of the resulting estimators may not be realized for either the auxiliary variables or any
target variable. The customary practice is to ignore the additional variability due to the
estimated calibration totals when estimating the variance of estimators. However, valid
variance estimation requires that the variance contribution due to estimating the calibration
totals be accounted for. Recent research has proposed methods for incorporating variability
of calibration totals into the variance estimation when the necessary information from the
benchmark survey is available; see Dever and Valliant (2010), Opsomer and Erciulescu
(2021), Guandalini and Tillé (2017). These methods, however, are rather complicated, and
require specialized computer programs.
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In the existing literature there is lack of detailed study of the structure and properties
of estimators generated from calibration using estimated totals. Issues such as the variance
of estimators for both the auxiliary variables and target variables as functions of their cor-
relation and the relative sample size of the primary and benchmark survey have not been
investigated.

In this article we investigate the effect of calibration to estimated totals on the prop-
erties of the resulting estimators of totals for both the auxiliary and the target variables.
We derive analytic results on the efficiency of these estimators in the case that standard
calibration generates generalized regression estimator or optimal regression estimator. In
situations where micro-data from the benchmark survey are available, then a calibration
procedure that is statistically and operationally more efficient is possible. In this procedure
the weights of the combined samples of the two surveys are calibrated simultaneously, so
that estimated totals for common variables in the two surveys are calibrated to each other.
Literature on relevant theory and practice for this type of calibration is available; see Merk-
ouris (2004, 2013). The merits of this approach relative to the current procedure are studied
both theoretically and through a simulation study.

2. Calibration and regression estimation

2.1 Calibration to known totals

Let U = {1, · · · , i, · · · , N} denote a finite population of N units, and let s denote a sample
of size n drawn from the population U , using a sampling design that defines inclusion
probability πi = P (i ∈ s) for unit i ∈ U , and joint inclusion probability πij = P (i, j ∈ s)
for units i, j ∈ U . Assuming that πi > 0 for all i ∈ U , the design weight of unit i ∈ s
is wi = 1/πi. For any variable of interest y, with values yi, i ∈ U , and population total
Y =

∑
U yi, the Horvitz-Thompson (HT) estimator of Y is defined as Ŷ =

∑
swiyk.

Consider first the standard calibration procedure whereby the weights wi are adjusted
to reproduce known totals of a number of auxiliary variables. To facilitate theoretical and
empirical analysis we consider here the case of calibration involving a single auxiliary
variable x with known total X =

∑
U xi, and HT estimator X̂ =

∑
swixi. A calibration

procedure transforms the weights wi to weights ci that satisfy the constrain
∑

s cixi = X
while minimizing a distance function between the weights wi and ci. Calibration using
the distance function

∑
s(ci − wi)

2/wi produces calibrated weights given in closed form
by ci = wi + wixi(

∑
swix

2
i )

−1(X − X̂). These calibrated weights generate the linear
estimator Ŷ R =

∑
s ciyi of Y , given also in the form of generalized regression estimator

as
Ŷ R = Ŷ + β̂(X − X̂), (1)

where β̂ =
∑

swiyixi/
∑

swix
2
i . This most commonly used calibration procedure, lead-

ing to the regression estimator Ŷ R, will help to derive exact results in the rest of this article.
For extensive discussion on the generalized regression estimation see Deville and Särndal
(1992), Särndal et al. (1992), Montanari (1998), Fuller (2002), Särndal (2007).

The estimator Ŷ R is asymptotically (i.e., for large samples) unbiased, i.e., E(Ŷ R) = Y ,
and its asymptotic variance of Ŷ R is given by

Var(Ŷ R) = Var(Ŷ ) + β2Var(X̂)− 2βCov(Ŷ , X̂),

where β =
∑

U yixi/
∑

U x2i is the population version of β̂.
By the calibration property, X̂R = X , and thus Var(X̂R) = 0. Besides ensuring con-

sistency between X̂R and X , calibration may increase the estimation efficiency, yielding
Var(Ŷ R) < Var(Ŷ ), if y and x are highly correlated.



2.2 Calibration to estimated totals

Now suppose that the total X is not known, and X̂ is calibrated to an estimate X̃ of X from
another survey, the “benchmark” survey, with sample s⋆; it is assumed that the expected
value of both X̂ and X̃ is X . This calibration, which treats X̃ as a constant calibration
total, generates the regression-type estimator of Y

Ỹ R = Ŷ + β̂(X̃ − X̂), (2)

where β̂ remains the same as in (1).
Again, by calibration X̃R = X̃ , and thus Var(X̃R) = Var(X̃). Obviously, the cal-

ibration estimator X̃R will have larger variance than the basic estimator X̂ if Var(X̃) >
Var(X̂).

The asymptotic variance of Ỹ R is

Var(Ỹ R) = Var(Ŷ ) + β2Var(X̂)− 2βCov(Ŷ , X̂) + β2Var(X̃)

= Var(Ŷ R) + β2Var(X̃).

It is obvious that using the estimate X̃ as calibration total increases the variance of the
resulting estimator Ỹ R by the quantity β2Var(X̃), relative to the standard regression es-
timator which involves the constant X as calibration total. It may well happen that the
estimator Ỹ R has larger variance than the basic estimator Ŷ even with high correlation of
y with x, and this variance is not estimated correctly if an estimate V̂ar(X̃) of the variance
Var(X̃) is not available (along with X̃). It is customary in survey practice to ignore the
variability of X̃ when estimating Var(Ỹ R). In case that accounting for this additional vari-
bility is possible, valid estimation of Var(Ỹ R) is possible, though complicated; see Dever
and Valliant (2017) and Opsomer (2021).

It should be noted that the estimator Ỹ R is not a proper regression estimator because,
unlike the regression estimator Ŷ R in (1), the regression coefficient β̂ is not a function
of all survey data in the zero-expectation term X̃ − X̂ . Furthermore, the condition that
E(X̃) = E(X̂) is crucial for Ỹ R to be asymptotically unbiased. Henceforth the estimator
Ỹ R will be referred to as pseudo-regression estimator.

The effect of using the estimate X̃ as calibration total is analytically assessed in the case
of the optimal regression estimation, which though is more complicated than the general-
ized regression estimation, and practicable only for certain sampling designs (i.e., simple
random sampling, Poisson sampling and their stratified versions). The optimal regression
estimator (henceforth referred to as optimal estimator) is given by

Ŷ O = Ŷ + β̂O(X − X̂), (3)

where β̂O = Ĉov(Ŷ , X̂)/V̂ar(X̂) is the optimal regression coefficient, inducing a regres-
sion estimator Ŷ O = Ŷ + β̂O(X − X̂) with minimum asymptotic variance; see, for ex-
ample, Montanari (1987, 1998) and Rao (1994). The coefficient β̂O is an estimate of the
population regression coefficient βO = Cov(Ŷ , X̂)/Var(X̂), and its explicit expression is
β̂O =

∑
s

∑
s vijyixj(

∑
s

∑
s vijxixj)

−1, where vij = (πij − πiπj)/πijπiπj ; πii = πi.
The estimator Ŷ O is generated by a calibration procedure that minimizes a special distance
function between design and calibrated weights; see, for example, Andersson and Thorburn
(2005). It can be written in linear form as Ŷ O =

∑
s c

O
i yi, with the calibrated weights cOi

given by cOi = wi +
∑

sj ̸=i
vijxi(

∑
s

∑
s vijxixj)

−1(X − X̂).

The asymptotic variance of Ŷ O is given by

Var(Ŷ O) = Var(Ŷ ) + βO2
Var(X̂)− 2βOCov(Ŷ , X̂)

= Var(Ŷ )− Cov2(Ŷ , X̂)

Var(X̂)
.



In analogy to the estimator Ỹ R, if we replace the calibration total X by the estimate X̃ in
(3), we obtain the estimator

Ỹ O = Ŷ + β̂O(X̃ − X̂), (4)

where β̂O is the same as in (3). The asymptotic variance of Ỹ O is

Var(Ỹ O) = Var(Ŷ O) + βO2
Var(X̃)

= Var(Ŷ )− Cov2(Ŷ , X̂)

Var(X̂)

[
1− Var(X̃)

Var(X̂)

]
. (5)

Clearly, Var(Ỹ O) > Var(Ŷ O). Note, though that Var(Ỹ O) = Var(Ŷ ) if Var(X̃) = Var(X̂),
while Var(Ỹ O) < Var(Ŷ ) only if Var(X̃) < Var(X̂). Rewriting (5), in terms of the
efficiency of Ỹ O relative to Ŷ , as

Var(Ỹ O)− Var(Ŷ )

Var(Ŷ )
= −ρ2(Ŷ , X̂)

[
1− Var(X̃)

Var(X̂)

]
,

we see that when Var(X̃) > Var(X̂) we get

Var(Ỹ O)− Var(Ŷ )

Var(Ŷ )
> 0,

that is, Ỹ O is less efficient than the basic estimator Ŷ . The larger than one is the ratio
Var(X̃)/Var(X̂), and the larger the correlation ρ(Ŷ , X̂), the larger the inefficiency of Ỹ O.
In simple random sampling without replacement we get ρ(Ŷ , X̂) = ρ(y, x), i.e., the esti-
mator Ỹ O loses efficiency as the correlation of y with x increases. This absurdity is likely
to hold in other sampling schemes, where the property ρ(Ŷ , X̂) = ρ(y, x) does not hold
exactly.

By the calibration property, X̃O = X̃ , and thus Var(X̃O) = Var(X̃). Hence, the
optimal regression estimator X̃O will have larger variance than the basic estimator X̂ if
Var(X̃) > Var(X̂).

3. Composite calibration and regression estimation

The estimator (4) is in fact a pseudo-optimal estimator, because it is constructed as a
calibration estimator with an estimated total as calibration total while retaining the re-
gression coefficient β̂O. The optimal regression coefficient for the estimator in (4) is
β̂CO = Ĉov(Ŷ , X̂)/

[
V̂ar(X̂) + V̂ar(X̃)

]
. This coefficient incorporates the data from the

benchmark survey, and the variability of the estimate X̃ , giving the composite optimal
regression estimator

Ỹ CO = Ŷ + β̂CO(X̃ − X̂), (6)

which combines information from the two surveys. The asymptotic variance of Ỹ CO is

Var(Ỹ CO) = Var(Ŷ )− Cov2(Ŷ , X̂)[
Var(X̂) + Var(X̃)

] .
Straightforward algebra shows that

Var(Ỹ CO)− Var(Ỹ O) = −Cov2(Ŷ , X̂)

Var2(X̂)

[
Var2(X̃)

Var(X̂) + Var(X̃)

]
. (7)



Therefore, Var(Ỹ CO) < Var(Ỹ O) regardless of the relative sizes of the variances Var(X̂)
and Var(X̃). The expression in the right hand of (7) represents the reduction in variance
when using Var(Ỹ CO) instead of Var(Ỹ O).

It follows that the composite optimal regression estimator of X is

X̃CO = X̂ + β̂CO
x (X̃ − X̂) = β̂CO

x X̃ + (1− β̂CO
x )X̂, (8)

where β̂CO
x = V̂ar(X̂)/

[
V̂ar(X̂) + V̂ar(X̃)

]
, i.e., the estimator X̃CO is a weighted aver-

age of the estimators X̃ and X̂ . In fact, X̃CO is asymptotically the best linear unbiased
combination of X̃ and X̂ . The asymptotic variance of β̂CO

x is

Var(X̃CO) =
Var(X̂)Var(X̃)[

Var(X̂) + Var(X̃)
] .

Clearly then Var(X̃CO) < Var(X̃O), with the reduction of the variance Var(X̃CO) −
Var(X̃O) being equal to Var2(X̃)/

[
Var(X̂) + Var(X̃)

]
. In percent, this amounts to a re-

duction by Var(X̃)/
[
Var(X̂) + Var(X̃)

]
.

The more efficient composite estimators (6) and (8) are generated through a proper
calibration procedure involving the combined samples of the two surveys, whereby the
estimates of X from the two surveys are calibrated to each other; see Merkouris (2013).
This motivates the construction of more practical composite regression estimators of Y and
X through a similar calibration procedure; see Merkouris (2004, 2013). The composite
regression estimator of Y is given then by

Ỹ CR = Ŷ + β̂CR(X̃ − X̂), (9)

where β̂CR =
∑

swiyixi/
[∑

swix
2
i +

∑
s⋆wix

2
i

]
. Similarly, the composite regression

estimator of X is given by

X̃CR = X̂ + β̂CR
x (X̃ − X̂) = β̂CR

x X̃ + (1− β̂CR
x )X̂, (10)

where β̂CR
x =

∑
swix

2
i /

[∑
swix

2
i +

∑
s⋆wix

2
i

]
.

It is to be noted that the regression coefficients β̂CR and β̂CR
x incorporate data from

the two surveys, thus enhancing the efficiency of the regression estimators Ỹ CR and X̃CR.
For the same reason these estimators are proper regression estimators, in contrast to the
estimator Ỹ R in (2) whose regression coefficient β̂ is a function of data from the primary
survey only. In effect, in the calibration of the combined samples that generates the estima-
tor Ỹ CR, the difference X̃ − X̂ , involving data from the two surveys, is calibrated to zero;
see Merkouris (2004, 2013). It is instructive to rewrite (9) in the equivalent form

Ỹ CR = Ŷ + β̂(X̃CR − X̂), (11)

where β̂ is as in (2). This would be the regression estimator generated by a calibration
procedure based only on the sample s, but using as calibration total the composite estimator
X̃CR instead of the single-survey estimator X̃ used as calibration total in the estimator X̃R

in (2). However, the calibration of the combined samples of the two surveys is much more
practical in generating Ỹ CR and in estimating its variance.

The form of the weighting coefficient β̂CR
x in the weighted average X̃CR in (10), as a

approximation of the optimal coefficient β̂OR
x in(8), suggests that X̃CR will have smaller

variance than the regression estimator X̃R = X̃ . This can be proved exactly for Var(X̂) <
Var(X̃), and approximately (assuming that β̂CR

x ≈ ns/(ns + ns⋆)) otherwise. The form
(11) of Ỹ CR suggests that this composite regression estimator has smaller variance than the
regression estimator Ỹ R, but exact proof of this is not workable. An empirical evaluation
of the efficiency of X̃CR and Ỹ CR is presented in the next section.



4. Simulation Study

In this simulation study, we compared estimators of X and Y generated by calibration
procedures that use estimated calibration totals. A vector (y, x) was specified to have the bi-
variate lognormal distribution with means E(y) = 8, E(x) = 5 and pairs of variancesVar(y) =
(10, 50), Var(x) = (10, 50), with associated coefficients of variation CV(y) = (0.40, 0.88),
CV(x) = (0.63, 1.41). For each of these four parameter combinations we specified three
correlations for (y, x), namely ρ(y, x) = (0.25, 0.50, 0.75), thus defining 12 different dis-
tributions for (y, x) to test the effect of using an estimated total as calibration total on the
efficiency of the OR and GR estimators for such varying distributional settings. For each
of these 12 distributions, a population of size N = 1000000 was simulated by generating
values of the vector (y, x). In addition, to reflect the relative sizes of Var(X̃) and Var(X̂),
three combinations of sizes (ns⋆ , ns) of two samples s⋆ and s were specified, namely, (500,
5000), (5000, 5000) and (5000, 500), thus creating a total of 36 simulation settings.

Two different sampling designs were considered for selecting, independently, the sam-
ples s and s⋆, namely simple random sampling (SRS) without replacement and Poisson
sampling. In both SRS and Poisson sampling the optimal estimator can be computed. Also,
SRS is an equal probability (of selection) sampling design, whereas Poisson is an unequal
probability sampling design, with x being used in defining the selection probabilities as
well as in estimation.

First, using SRS we drew r = 20000 pairs of samples (s⋆, s) from each of the 36
simulated populations, and with each drawing we generated the estimates X̂ , X̃ , X̃CR,
X̃CO, Ŷ , Ỹ R, Ỹ CR, Ỹ O, Ỹ CO (as defined in Sections 2 and 3). Using the r replicates
of these estimates we calculated the empirical variances of all these estimators and the
relative bias of the estimators X̃CR, X̃CO, Ỹ R, Ỹ CR, Ỹ O, Ỹ CO. The efficiency of each
of the estimators X̃CR and X̃CO is assessed through the relative difference between its
variance and the variance of the estimator X̃ , and the efficiency of each of the estimators
Ỹ R, Ỹ CR, Ỹ O, Ỹ CO is assessed through the relative difference between its variance and
the variance of the estimator Ŷ . For example, for Ỹ R the relative difference is [Var(Ỹ R)−
Var(Ŷ )]/Var(Ŷ ); this relative difference shows the reduction of the variance of Ỹ R relative
to the variance of the basic estimator Ŷ .

In the following tables, the efficiencies (%) of the estimators X̃CR, X̃CO relative to
the estimator X̃ are displayed under the headings X̃CR|X̃ and X̃CO|X̃ , respectively, and
the efficiencies of the estimators Ỹ R, Ỹ CR, Ỹ O, Ỹ CO relative to the estimator Ŷ are dis-
played under the headings Ỹ R|Ŷ , Ỹ CR|Ŷ , Ỹ O|Ŷ , and Ỹ CO|Ŷ , respectively. Negative sign
indicates efficiency gain (percent reduction of variance).

As shown in Table 1, the efficiency of X̃CR is around 91%, 50% and 9.5% for the
sample size settings (500, 5000), (5000,5000) and (5000, 500), respectively, in all four
distributions and irrespective of the three correlations ρ(y, x). This performance of the
composite regression estimator X̃CR is explained by its construction as a weighted combi-
nation of the estimators X̂ and X̃ , with weights reflecting the relative sample sizes of the
two samples.

Regarding the efficiency of the estimator Ỹ R, for the sample size setting (500, 5000)
this estimator is vastly less efficient than the basic estimator Ŷ , more so as the cv and
skewness of x gets larger than the cv and skewness of y, and as the correlation ρ(y, x)
increases. The estimator Ỹ R shows some bias (not reported in Table 1), ranging from a
negative maximum of -4.0% (relative to Y ) in distribution 3 to a positive maximum of
4.7% in distribution 1.

For the sample size setting (5000, 5000), when V ar(X̃) ≈ V arX̂), the estimator Ỹ R

is less inefficient than the estimator Ŷ , but not as severely as before. This inefficiency is as



before with respect to the relative size of cv of x and y, but decreases as ρ(y, x) increases.
The estimator Ỹ R is more efficient than Ŷ , by 2.3%, only in one of the twelve simulation
settings (4 distributions by 3 correlations). The bias of Ỹ R is smaller then before, with a
maximum of 1.5%.

As expected, for the third sample size setting (5000, 500), when V ar(X̃) < V arX̂),
the inefficiency of Ỹ R is even less severe. Its pattern with respect to the cv of y and x
and the correlation ρ(y, x) (except for sharper decrease as ρ(y, x) increases) is as in the
setting (5000, 5000), but now Ỹ R is more efficient than Ŷ in three simulation settings (in
distributions 1 and 2), by a maximum of 51%. The bias of Ỹ R ranges from a minimum of
-0.41% to a maximum of 2%.

The efficiency of the composite regression estimator Ỹ CR, relative to Ŷ , increases as
ρ(y, x) increases, more sharply as we move from (500, 5000) to (5000, 500). The estimator
Ỹ CR is more efficient than Ŷ in five of the twelve simulation settings in each of the three
sample size settings, mostly for higher cv of y. These efficiency gains get larger as we
move from (500, 5000) to (5000, 500), with highest gain of 5% in (500, 5000), 28% in
(5000, 5000) and 51% in (5000, 500). The empirical bias of Ỹ CR is negligible, comparable
to the empirical bias of Ỹ CR. Finally, Ỹ CR is more efficient than the pseudo regression
estimator Ỹ R in all settings, more vastly as ns⋆ gets smaller than ns, and as we move from
distribution 1 to distribution 4. This efficiency is not reported in Table 1, but can be easily
derived from the reported efficiencies Ỹ R|Ŷ and Ỹ CR|Ŷ .

Table 2 displays the efficiencies of X̃CO, Ỹ O and Ỹ CO. The efficiency of X̃CO is
almost identical to that of X̃CR (displayed in Table 1) in all 36 simulation settings.

For the sample size setting (500, 5000), the estimator Ỹ O is very inefficient relative to
the basic estimator Ŷ , but much less than the regression estimator Ỹ R; the performance of
Ỹ O is very similar across the four distributions. A clear loss of efficiency as the correla-
tion ρ(y, x) increases is shown, confirming the oddity noted in Section 2.2. For the sample
size setting (5000, 5000) the empirical variances of Ỹ O and Ŷ are about the same, con-
firming the theoretical property Var(Ỹ O) = Var(Ŷ ) shown in Section 2.2. For the setting
(5000, 500), Ỹ O is more efficient than Ŷ in all 12 other simulation settings, the efficiency
increasing with increasing correlation ρ(y, x) but being stable across the four distributions.

The composite optimal estimator Ỹ CO is more efficient than the basic estimator Ŷ in
all 36 simulation settings, increasingly so as we move from the samples (500, 5000) to the
samples (5000, 500) and from low to high correlation ρ(y, x). The performance of Ỹ CO is
very similar across the four distributions. Furthermore, Ỹ CO is more efficient than Ỹ CR in
all 36 simulation settings, and more efficient than Ỹ O in all settings, more so as ns⋆ gets
larger than ns.

The results for the Poisson sampling are displayed in Tables 3 and 4.
As shown in Table 3, the efficiency of X̃CR is very similar to that in SRS, only very

slightly weaker for the samples (5000, 500).
The estimator Ỹ R is quite inefficient relative to Ŷ for the samples (500, 5000), but

less than in SRS. The inefficiency of Ỹ R increases as ρ(y, x) increases and decreases as
we move from distribution 1 to distribution 4. For the samples (5000, 5000) and (5000,
500) Ỹ R is more efficient than Ŷ (as expected for the inefficient Poisson sampling) in all
simulation settings. The efficiency of Ỹ R is higher for the samples (5000, 500), more so
for increasing ρ(y, x) and in distributions 1 and 2. The bias of Ỹ R reaches a negative
maximum of -4.3%.

The composite regression estimator Ỹ CR is more efficient than Ŷ in all 36 simulation
settings, more in distributions 1 and 2. The efficiency increases as ns⋆ gets larger than ns

and as ρ(y, x) increases. The estimator Ỹ CR is more efficient than Ỹ R, more as ns⋆ gets
smaller than ns, except for the samples (5000, 500) in distributions 1 and 2 where the two



Table 1: Efficiency (%) of the X̃CR, Ỹ R and Ỹ CR estimators (SRS)

ρ(y.x) (ns⋆ = 500.ns = 5000) (ns⋆ = 5000.ns = 5000) (ns⋆ = 5000.ns = 500)

X̃CR|X̃ ỸR|Ŷ ỸCR|Ŷ X̃CR|X̃ ỸR|Ŷ ỸCR|Ŷ X̃CR|X̃ ỸR|Ŷ ỸCR|Ŷ

Distribution 1: CV(y)=0.88. CV(x)=0.63

0.25 -90.84 343.84 0.47 -50.18 38.99 2.53 -9.76 8.90 4.87
0.50 -90.93 408.05 -2.05 -50.39 20.82 -11.03 -9.71 -17.83 -20.19
0.75 -91.03 479.66 -5.06 -50.35 -2.30 -27.53 -9.58 -50.67 -50.90

Distribution 2: CV(y)=0.40. CV(x)=0.63

0.25 -91.13 1.586.71 8.51 -50.02 228.20 41.68 -9.44 104.41 80.93
0.50 -91.13 1.721.17 4.17 -50.07 199.47 18.23 -9.48 55.38 34.84
0.75 -91.13 1.861.56 -0.78 -50.03 164.85 -8.88 -9.45 0.45 -16.70

Distribution 3: CV(y)=0.88. CV(x)=1.41

0.25 -91.12 529.09 1.90 -49.76 62.63 6.42 -9.84 24.87 15.90
0.50 -91.12 775.11 -0.22 -49.78 64.49 -5.78 -9.85 0.52 -8.61
0.75 -91.11 1062.49 -3.39 -49.64 59.78 -23.79 -9.77 -34.59 -43.10

Distribution 4: CV(y)=0.40. CV(x)=1.41

0.25 -91.09 2.044.43 13.67 -49.36 299.50 55.73 -9.54 161.37 120.27
0.50 -91.09 2.506.47 10.87 -49.39 313.57 38.59 -9.57 127.34 84.54
0.75 -91.09 3.017.96 7.05 -49.37 324.02 16.08 -9.55 81.56 37.99

estimators have almost identical efficiency.
Table 4 displays the efficiencies of X̃CO, Ỹ O and Ỹ CO. The efficiency of X̃CO is

almost identical to that of X̃CR (displayed in Table 3) in all 36 simulation settings.
For the samples (500, 5000), the optimal estimator Ỹ O is very inefficient relative to

Ŷ , more so as ρ(y, x) increases. For the samples (5000, 5000) the estimator Ỹ O is very
slightly inefficient. For the samples (5000, 500), Ỹ O is more efficient than Ŷ in all 12 other
simulation settings (more in distributions 1 and 2), the efficiency increasing with increasing
correlation ρ(y, x). For the samples (5000, 500) the efficiency of Ỹ O is similar to that of
Ỹ R, but a little higher in distributions 3 an 4. It is also much higher than in the case of SRS.

The composite optimal estimator Ỹ CO is more efficient than the basic estimator Ŷ in
all 36 simulation settings, increasingly so as we move from the samples (500, 5000) to the
samples (5000, 500) and from low to high correlation ρ(y, x). In the samples (5000, 5000)
and (5000, 500) the efficiency of Ỹ CO is higher in distributions 1 and 2. The efficiency
of Ỹ CO is comparable to that of Ỹ CR in most setting; it is a litle higher in samples (5000,
5000), (5000, 500) and in distributions 2 and 3. Finally, Ỹ CO is considerably more efficient
than Ỹ O in samples (500, 5000), (5000, 5000), but almost as efficient in samples (5000,
500).



Table 2: Efficiency (%) of the X̃CO, Ỹ O and Ỹ CO estimators (SRS)

ρ(y.x) (ns⋆ = 500.ns = 5000) (ns⋆ = 5000.ns = 5000) (ns⋆ = 5000.ns = 500)

X̃CO|X̃ ỸO|Ŷ ỸCO|Ŷ X̃CO|X̃ ỸO|Ŷ ỸCO|Ŷ X̃CO|X̃ ỸO|Ŷ ỸCO|Ŷ

Distribution 1: CV(y)=0.88. CV(x)=0.63

0.25 -90.83 56.58 -0.58 -50.16 0.15 -3.07 -9.66 -5.10 -5.29
0.50 -90.91 227.83 -2.28 -50.36 0.61 -12.29 -9.60 -21.75 -22.18
0.75 -91.02 518.41 -5.01 -50.31 1.50 -27.52 -9.47 -50.03 -50.70

Distribution 2: CV(y)=0.40. CV(x)=0.63

0.25 -91.12 57.77 -0.50 -49.99 -0.43 -3.27 -9.34 -4.99 -5.17
0.50 -91.12 230.53 -2.04 -50.04 -0.02 -12.30 -9.38 -21.68 -22.10
0.75 -91.12 519.04 -4.64 -50.00 0.67 -27.50 -9.35 -49.85 -50.59

Distribution 3: CV(y)=0.88. CV(x)=1.41

0.25 -91.07 60.12 -0.57 -49.56 -0.09 -3.23 -9.40 -4.21 -4.79
0.50 -91.07 238.50 -2.06 -49.58 0.62 -12.37 -9.41 -20.58 -21.83
0.75 -91.06 531.37 -4.51 -49.43 1.09 -27.74 -9.32 -48.98 -50.72

Distribution 4: CV(y)=0.40. CV(x)=1.41

0.25 -91.04 60.25 -0.46 -49.15 -0.46 -3.39 -9.08 -4.45 -4.96
0.50 -91.04 238.61 -1.86 -49.18 0.04 -12.63 -9.12 -20.77 -22.09
0.75 -91.04 535.72 -4.20 -49.16 1.37 -27.96 -9.09 -49.00 -51.28

Table 3: Efficiency (%) of the X̃CR, Ỹ R and Ỹ CR estimators (Poisson)

ρ(y.x) (ns⋆ = 500.ns = 5000) (ns⋆ = 5000.ns = 5000) (ns⋆ = 5000.ns = 500)

X̃CR|X̃ ỸR|Ŷ ỸCR|Ŷ X̃CR|X̃ ỸR|Ŷ ỸCR|Ŷ X̃CR|X̃ ỸR|Ŷ ỸCR|Ŷ

Distribution 1: CV(y)=0.88. CV(x)=0.63

0.25 -91.39 321.44 -3.97 -50.23 -14.40 -24.53 -9.61 -45.83 -44.82
0.50 -91.38 523.13 -5.55 -50.63 -8.36 -32.22 -9.01 -58.85 -58.52
0.75 -91.39 814.83 -6.61 -50.45 4.13 -40.32 -9.28 -72.00 -73.07

Distribution 2: CV(y)=0.40. CV(x)=0.63

0.25 -91.04 353.17 -4.86 -50.36 -23.80 -32.08 -9.00 -60.97 -59.03
0.50 -91.02 452.26 -5.45 -50.30 -23.17 -37.04 -9.20 -69.55 -67.78
0.75 -91.03 569.40 -6.23 -50.54 -20.70 -42.15 -9.19 -78.45 -77.01

Distribution 3: CV(y)=0.88. CV(x)=1.41

0.25 -91.24 40.04 -2.14 -49.50 -15.57 -10.81 -8.41 -21.32 -19.93
0.50 -91.24 108.60 -3.63 -49.46 -24.12 -19.14 -8.62 -37.42 -35.31
0.75 -91.23 242.72 -5.30 -49.85 -31.20 -30.08 -8.63 -58.70 -56.03

Distribution 4: CV(y)=0.40. CV(x)=1.41

0.25 -91.04 31.51 -2.05 -49.92 -16.92 -11.109 -8.63 -21.95 -20.44
0.50 -91.10 55.81 -2.74 -49.93 -22.17 -15.282 -8.61 -30.28 -28.31
0.75 -91.05 90.55 -3.66 -49.92 -28.06 -20.450 -8.55 -40.04 -37.58



Table 4: Efficiency (%) of the X̃CO, Ỹ O and Ỹ CO estimators (Poisson)

ρ(y,x) (ns⋆ = 500, ns = 5000) (ns⋆ = 5000, ns = 5000) (ns⋆ = 5000, ns = 500)

X̃CO|X̃ ỸO|Ŷ ỸCO|Ŷ X̃CO|X̃ ỸO|Ŷ ỸCO|Ŷ X̃CO|X̃ ỸO|Ŷ ỸCO|Ŷ

Distribution 1: CV(y)=0.88, CV(x)=0.63

0.25 -91.40 508.91 -3.94 -50.22 1.90 -25.27 -9.62 -45.61 -46.22
0.50 -91.38 639.20 -5.55 -50.63 2.47 -32.36 -9.04 -58.09 -58.84
0.75 -91.39 789.78 -6.68 -50.45 1.75 -40.35 -9.32 -72.23 -73.07

Distribution 2: CV(y)=0.40, CV(x)=0.63

0.25 -91.04 654.50 -4.88 -50.36 2.65 -33.83 -9.03 -62.01 -62.65
0.50 -91.02 736.05 -5.40 -50.31 2.35 -38.37 -9.22 -69.79 -70.50
0.75 -91.03 820.91 -6.14 -50.54 2.62 -42.99 -9.22 -77.95 -78.78

Distribution 3: CV(y)=0.88, CV(x)=1.41

0.25 -91.25 305.56 -3.22 -49.51 0.95 -15.77 -8.41 -29.14 -29.39
0.50 -91.24 466.73 -4.62 -49.47 0.82 -24.25 -8.61 -44.49 -44.92
0.75 -91.24 668.64 -5.93 -49.85 1.93 -34.28 -8.60 -63.61 -64.23

Distribution 4: CV(y)=0.40, CV(x)=1.41

0.25 -91.05 344.18 -3.28 -49.91 1.80 -17.79 -8.70 -31.98 -32.48
0.50 -91.10 436.55 -3.97 -49.92 1.86 -22.54 -8.66 -40.79 -41.41
0.75 -91.06 538.09 -4.95 -49.92 2.00 -28.08 -8.62 -50.75 -51.42

5. Discussion

We have investigated the effect of calibration to estimated totals of auxiliary variables on
the properties of the resulting pseudo-regression or pseudo-optimal estimator of the total of
any survey variable. Obviously, since such an estimator of the total of an auxiliary variable
is identical to the total estimated from the benchmark survey, there will be loss of precision
if its variance has larger variance than the total estimated from the primary sample.

For any other survey variable, we have shown theoretically and empirically that the
pseudo-regression estimator is grossly inefficient not only relative to the standard regression
estimator but also relative to the basic Horvitz-Thompson estimator when the benchmark
survey is of much smaller size than the primary survey; oddly this inefficiency increases
as the correlation between this variable and the auxiliary variable increases. The pseudo-
optimal estimator is also very inefficient, though less than the regression estimator. The
inefficiency of the pseudo-regression estimator lessens as the size of the benchmark sample
becomes larger than that of the primary survey. For such samples, and depending on the
sampling design, the pseudo-regression estimator may be more efficient than the basic es-
timator; the same applies to the pseudo-optimal estimator. Notably, the pseudo-regression
estimator is somewhat biased, but not the pseudo-optimal estimator.

We have also shown that the composite calibration procedure, feasible when micro-data
from the benchmark survey are available, generates more efficient regression and optimal
estimators. The composite regression estimator for the auxiliary variable is always more
efficient than the basic estimator from the benchmark survey; the efficiency of this estima-
tor reflects the relative sample size of the primary and benchmark survey. The efficiencies
of the composite regression estimator and the composite optimal estimator are almost iden-



tical.
For any other survey variable, the composite regression estimator and the composite

optimal estimator are always more efficient than the pseudo-regression and pseudo-optimal
estimators, respectively. The efficiency increases as the correlation of the particular variable
with the auxiliary variable used in the calibration increases, and as the sample size of the
benchmark survey gets larger than that of the primary survey.

Besides producing consistent estimates for common variables between surveys, com-
posite calibration produces more accurate estimates for any variable than the customary
calibration procedure, and, more conveniently, valid estimates of their variances account-
ing for the variability of the random calibration totals.

Construction of composite optimal estimators involving two surveys with common vari-
ables with unknown totals, but not through a calibration procedure, and without the com-
parative analysis of Section 3, is presented also in Guandalini and Tillé (2015).

Finally, the calibration approach proposed in this article can be easily extended to more
than two surveys with common variables.
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