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Abstract

At JSM2023, I organized an invited session of five speakers on Contributions to Inference from Sur-
vey Samples: In Honor of Joe Sedransk. I also served as the discussant of these five papers, which were
presented by Qixuan Chen, Lu Chen, Glen Meeden, Mary Meyer and Mary Thompson in this order. This
paper is a summary of my discussions at the meeting. The first 2.5 minutes was used to say congratulation
to Professor Joe Sedransk, and because my time was limited to 15 minutes, I spoke about 2.5 minutes on
each paper, and I made a small point about each paper. I highlighted some of Joe’s contributions and my
collaborations with him.
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1. Introduction

This session is to honor Professor Joe Sedransk on his 85th birthday. Joe has made many
contributions to the American Statistical Association (ASA), Survey Sampling and other areas of
Statistics. He has served on Advisory Committees to several US government agencies, i.e., the US
Census Bureau, Energy Information Administration, Environmental Protection Agency and Social
Security. He was the chair of the first two and was a founding member of the Federal Economic
Statistics Advisory Committee. He has served as a faculty member at many Statistics Departments
in the US, and was chair at the University of Iowa and Case Western Reserve University. He was
the Applications and Case Studies Editor of JASA and founding co-editor of the Journal of Survey
Statistics and Methodology. He has graduated twenty doctoral students who work in University,
government and industry positions.

As the title, “Contributions to Inference from Survey Samples: In Honor of Joseph Sedransk,”
states, this session has highlighted Joe’s contributions in survey sampling on topics such as se-
lection and non-response bias, predictive inference, order-restricted inference, small area estima-
tion, cluster sampling and data integration (combining two or more samples, one could be a non-
probability sample). These are very hot and current areas of research in Survey Sampling. Joe’s
contributions have primarily been in the use of hierarchical Bayesian models for multi-stage sur-
veys, small area estimation and cluster sampling coupled with selection and non-response bias is-
sues. At 85 years Joe is formally retired, but still an active researcher. Just recently, he has worked
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on a sole-authored paper on Bayesian informative sampling, and has many collaborators (different
from his own students) on other topics in Survey Sampling as well. Our session highlights theories,
methods and applications of these topics in Survey Sampling.

Two of the speakers are current collaborators, and one of them is a long-term friend of Joe.
One speaker is the academic grand daughter of Joe, one of my PhD students. Another presenter is
a collaborator of one of Joe’s collaborators. I am a past student of Joe and a professor at Worcester
Polytechnic Institute since my graduation in 1989 at the University of Iowa. Therefore, there are
five speakers and a discussant, Balgobin Nandram.

At the beginning Guofen Yan, another student of Joe, was supposed to chair the session. She
did all the ground work for the session, but she had to withdraw at the last moment, and had to
return to Virginia one day before the session at the JSM2023 in Toronto. I am grateful to her for
helping out this way. Therefore, Lu Chen, one of my firmer students chaired all the talks, except
her talk that was chaired by one of my other students, Jiani Yin. The session went very well, and
the attendance was good even though it was the last day of JSM2023.

The five talks in order of the presentations are listed here.

1. Yao, Y., Ogden, R. T., Zeng, C. and Chen, Q. (2023). Bivariate Hierarchical Bayesian Model
for Combining Summary Measures and their Uncertainties from Multiple Sources, Annals
of Applied Statistics, 17 (2), 1782-1800 (presented by Qixuan Chen, Columbia University,
New York).

2. Chen, L. and Nandram, B. (2023), Model for State-Level Cash Rental Rates, Joint Statistical
Meetings, pg. 1-12 (presented by Lu Chen, National Institute of Statistical Science).

3. Meeden, G. and Qureshi, N. (2023), Adaptive Cluster Sampling as Domain Estimation, Joint
Statistical Meetings, pg. 1-28 (presented by Glen Meeden, University of Minnesota).

4. Thompson, M. E. (2023), The Bayesian-Frequentist Dialogue in Survey Methodology, Joint
Statistical Meetings, pg 1-21 (presented by Mary Thompson, University of Waterloo)

5. Liao, X, Xu, X. and Meyer, M. C. (2023), Csurvey: Implementing Order Constraints in
Survey Data Analysis, Journal of Statistical Software (to appear), pg. 1-20 (presented by
Mary Meyer, Colorado State University).

I will now discuss the five papers in the order in which they were presented. On the way, I will
highlight a couple of Joe’s papers and some of my collaborations with him. I will describe how my
collaborations with Joe form the basis of my own research.

This paper has six sections, including the current one. Each paper, under discussion, is de-
scribed in a separate section and there is a section with some conclusions.

2. Qixuan Chen: Fay-Herriot with both parameters random

Qixuan gave three applications in her paper, but did not present the one on traffic safety that
uses small area estimation. A sensible modeling of sample variances should include the area sam-



ple sizes (or effective sample sizes), but this was not part of the modeling. There are area level
covariates as well.

I have an enormous amount of experience of the Fay-Herriot model at the National Agricultural
Statistics Service (NASS), USDA. In fact, my collaborators and I at NASS have written many
journal articles over the past five years. For example, see Erciulescu, Cruze and Nandram (2019),
Nandram, Erciulescu and Cruze (2019), Chen, Nandram and Cruze (2022), Nandram, Cruze and
Ericulescu (2023) and Nandram (2023), just to mention a few selected ones.

2.1 Bivariate model

For the application on traffic safety, Qixuan got

ρ1 : .09 (−.70,0.80); ρ2 = .03 (−.65, .62)

It appears that ρ1 and ρ2 are the same, basically zero correlation. So I decided to look at this more
deeply.

For i = 1, . . . ,n, define ti = log(si) and ϕi = log(σi) Then, we have the very complicated model,[
yi

ti

]
ind∼ Normal

([
θi

ϕi

]
,

[
e2ϕi ρ1eϕiσsi

ρ1eϕiσsi σ2
si

])
[
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ϕi

]
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µθ
µσ

]
,

[
r2

θ ρ2rθ rσ
ρ2rθ rσ r2

σ

])
To proceed, replacing ϕi in the covariance matrix by µσ , and integrating out (θi,ϕi),[

yi

ti

]
ind∼ Normal

([
µθ
µσ

]
,

[
e2µσ + r2

θ ρ1eµσ σsi +ρ2rθ rσ
ρ1eµσ σsi +ρ2rθ rσ σ2

si
+ r2

σ

])
That is, ρ1 and ρ2 may not be identifiable. So I presented a simpler solution.

2.2 Alternative Solution

We have
θ̂i | θi, σ̂2

i
ind∼ Normal(θi, σ̂2

i ), i = 1, . . . , ℓ.

Define κ̂i =
σ̂i

2

GM , where GM is the geometric mean of the σ̂2
i . Define ao = min(κ̂i) and bo =

max(κ̂i), and we will assume that ao and bo are known or (ao,bo) or can otherwise be specified.
Now, define ψ̂i =

κ̂i−ao
bo−ao

, i = 1, . . . , ℓ.
Then, our new assumption is

θ̂i | ψ̂i,θi,σ2 ind∼ Normal
{

θi,
σ2

(1− ψ̂i)ao + ψ̂ibo

}



and
ψ̂i

ind∼ Beta{µ
γ

1− γ
,(1−µ)

γ
1− γ

}, i = 1, . . . , ℓ.

The rest of the Bayesian Fay-Herriot model remains the same,

θi | β
˜
,ρ,σ2 ind∼ Normal(x

˜
′
iβ
˜
,

ρ
1−ρ

σ2),

β
˜
∼ Normal(β

˜
o,σ2Σo),

π(µ,γ,ρ,σ2) ∝
1

σ2 ,0 < µ,γ,ρ < 1.

2.3 Proportions

Finally, I point out that estimation of proportions is a bit tricky. Let us look at the sampling
process,

θ̂i | θi, σ̂2
i

ind∼ Normal(θi, σ̂2
i ), i = 1, . . . , ℓ.

We want to input correlations in the pairs (θ̂i, σ̂2
i ). Let us consider the case of proportions,

p̂i
ind∼ Normal{pi,

p̂i(1− p̂i)

ni
}, i = 1, . . . , ℓ.

Define Q̂i = p̂i(1− p̂i), a quadratic function, symmetric about 1
2 with a maximum of 1

4 at 1
2 . So

Cor(p̂i, Q̂i)≈ 0.

If we know more, things can be different. If 0 < p̂i <
1
2 , then the correlation will be strongly

positive, and if 1
2 < p̂i < 1, the correlation will be strongly negative. It is necessary to include such

constraints in the modeling of proportions.

3. Lu Chen: Mixture, discounting and robustness

Because I am a collaborator of Lu Chen, I decided to present three extensions that we can work
on.

3.1 Mixture model (historical data)

f (yi | β
˜
, p,q,ρ,γ) = (1− p−q)Normalyi(x

˜
′
iβ
˜
,
ργσ 2

a
)

+pNormalyi(x
˜
′
iβ
˜
,
γσ 2

a
)+qNormalyi(x

˜
′
iβ
˜
,
σ2

a
), i = 1, . . . ,n,

p > q and 0 < p,q, p+q,ρ,γ < 1; priors on all parameters (mild and severe outliers).



3.2 Different ai

There may be “births” and “deaths” for counties. The discounting factor is only weakly identi-
fied so one needs to be careful; see Ibrahim and Chen (2000). Thus, we use a logit model,

ai =
eγ0+γ1 log(ri)

1+ eγ0+γ1 log(ri)
, i = 1, . . . ,n,

and

ai =
ϕ0r

ϕ1
1−ϕ1
i

1−ϕ0 +ϕ0r
ϕ1

1−ϕ1
i

, i = 1, . . . ,n,

where ri are the number reports.

3.3 Clustering (Ishwaran and James, 2001)

Assume
ϕ
˜

t
ind∼ Normal{µ

˜
,δ 2(R− γW )−1}, t = 1,2,

µi
iid∼

ℓo

∑
s=1

psNormal(zs,κ2
1 ), ℓo ≤ ℓ, i = 1, . . . , ℓ, ℓo ≤ ℓ,

zs
ind∼ Normal(0,κ2

2 ),s = 1, . . . , ℓo,

p1 = ν1, p2 = ν2(1−ν1), . . . , pℓo =
ℓo−1

∏
s=1

(1−νs),

and

νs
ind∼ Beta{1−δ1,

1−δ2

δ2
+(s−1)δ1},s = 1, . . . , ℓo.

Remark: For NASS problems on county estimates, it is now my strong believe that speculative
states should be modeled separately from non-speculative states. But for coherence, the two models
should be connected into a single one. I now believe that these CAR models are not appropriate.
States, which are geographically closed, may not be so with respect to the study variable. A
speculative state may be a geographical neighbor of a non-speculative state, but they may be very
different in terms of the study variable. So it is sensible to separate the states into speculative and
non-speculative states; the two clusters are very different.

4. Glen Meeden: Adaptive cluster sampling as domain estimation

Glen introduced an approach different from Thompson (1990) for domain estimation. There
are three issues (sparseness, clustering, informative sampling). The clustering and the informative



nature of the design were not used in Glen’s method. Howerver, his approach is nonparametric
Bayesian, and the key idea is the Polya posterior.

It is pertinent to review the Polya posterior. Have n values, y1, . . . ,yn from a finite population
of size, N, and we want to sample posterior density, π(y

˜
ns | y

˜
s), to provide a Bayesian predictive

inference, when nothing is known about the population (sparse and clustered). For k = 1, . . . ,N−n,

yn+k =



y1 k1
y2 k2
. .
. .
. .

yn kn,

where we assume the counts, ki = 1, at start (all values distinct, but this is not necessary). The idea
is to sample one of y1, . . . ,yn and replace that value by two values which are same as the one drawn.
Continue this process until there are N values, including the first n values.

The population consists of N squares (grid cells), and yi, i = 1, . . . ,N, denote the counts in the
squares most of them are zeros (sparseness). Inference is needed for TD = ∑i∈D yi, where D is
domain of non-empty grid cells. In Glen’s approach θ (unknown) is the cardinality of D.

Glen has a simple random sample of n squares, but actually m ≥ n is the sample size in the
ADC sample (Population Thompson: n = 10, m = 45, apparently m is not revealed by Glen); Glen
took a random sample of 40 squares to perform the simulation.

He considered two estimators, ADC (double counting) and BAY (sparseness, quasi-Bayes, use
Polya posterior).

Table 1: Glen’s Simulation of Thompson population for inference about TD

Est Rbias Abserr Lowbd Len Freqcov

ADC 211 0.112 87.9 118 341 0.921
BAY 157 -.173 45.7 118 274 1.000

NOTE: N = 400,TD = 190,3 networks, θ
N = 21/400 = 0.0525. Simulated 1000 simple random samples of size 40.

Remark: BAY (quasi-Bayes) underestimates variability. For the simulation study, for ADC
the range is (118,341) and for BAY the range is (118,274) much shorter.



4.1 Glen’s Bayesian approach

Have x positive squares of the m squares (samples). Therefore, we have θ − x positive squares
out of N −m (nonsamples). Then, assume a hypergeometric distribution for x? That is,

f (x | θ) = Hx(θ),x ≤ θ ≤ min(N,x+N −m).

Glen actually used this hypergeometric distribution (private communication), but it was not stated.

Table 2: Glen’s prior distribution for θ

θ k1 k2 . . . kG
π(θ) p1 p2 . . . pG

NOTE: θ/N ∼ Beta(1,90) discretized.

Glen constructed a prior based on simulation (he said) and the Beta distribution, discretized, for
θ/N, where sparseness (many zeros) of the cells is taken into consideration, but not the informative
nature of the design (selection probabilities)?

Posterior distribution of θ

Pr(θ = k j | x) = q j =
p jHx(k j)

∑G
j′=1 p j′Hx(k j′)

, j = 1, . . . ,G.

Bayesian Analysis is straight forward.

a. Draw θ from its posterior.

b. Have y1, . . . ,yx (seen); need yx+1, . . . ,yθ (useen) and use Polya posterior to get them. Com-
pute T = ∑x

i=1 yi +∑θ
i=x+1 yi.

c. Repeat (a) and (b) to estimate the posterior distribution of T .

4.2 Another Bayesian approach

Rapley and Welch (Bayesian Analysis, 2008) provided a Bayesian model with selection bias.
Let N denote the number of points; M the number of grid cells (squares); x the number of

non-empty grid cells and p the number of nonempty networks. We have p ≤ x ≤ M, and an initial
simple random sample (without replacement), S = (i1, . . . , im).

For ith network, let yi denote number of non-empty grid cells (squares) and Ni the number of
points. Note that x = ∑p

i=1 yi.



Hierarchical Bayesian model
We have the following assumptions,

[x] (truncated Binomial),

[p | x] (truncated Binomial),

[y
˜
| p,x] (truncated multinomial),

Pr(S | x, p,y
˜
) (PPS sampling of non-empty networks),

[N
˜
| y

˜
, p] =

p

∏
i=1

[Ni | yi] (truncated Poisson).

Posterior inference is required for

N =
p

∑
i=1

Ni.

Remark: Selection bias is taken care of in the fourth line of the model.

5. Mary Meyer: Domain estimation with order restrictions

Mary provided an algorithm to do domain estimation. Apparently, she used only the domain
averages with the appropriate survey weights.

5.1 Software

The population is partitioned into D domains, and inference is required for the finite population
mean.

Have survey data with survey weights, W , and study variable y.
Mary finds the order restricted estimates, θ̂

˜
, such that

minθ
˜
(ȳ
˜
−θ

˜
)′W (ȳ

˜
−θ

˜
),Aθ̂

˜
≥ 0,

where A specifies any linear constraint.

Comments

1. The R software, Csurvey, works for all kinds of linear constraints;

2. Nonparametric procedure (least square estimators);

3. Covariates can be included;

4. Confidence intervals and tests for empty domains or domains with small number of observa-
tions;



5. Unfortunately, it appears that within domain variability is lost.

minθ
˜

D

∑
i=1

ni

∑
j=1

Wi j(yi j −θi)
2,Aθ̂

˜
≥ 0.

Note that
D

∑
i=1

ni

∑
j=1

Wi j(yi j −θi)
2 =

D

∑
i=1

ni

∑
j=1

Wi j(yi j − ȳi)
2 +

D

∑
i=1

Wi·(ȳi −θi)
2,

where ȳi =
∑

ni
j=1 Wi jyi j

∑
ni
j=1 Wi j

and Wi· = ∑ni
j=1Wi j. The first term on the right-hand side disappears

because it is not a function of θ
˜
. Therefore, the variability is underestimated but the point

estimators should be fine.

5.2 Bayesian example (normal means)

Have survey data (wi j,yi j), j = 1, . . . ,ni, i = 1, . . . ,D (wi j are adjusted survey weights)

yi j | θi,
ind∼ Normal{θi,

σ2

wi j
},

π(θ
˜
,σ2) =

1
σ2 ,θ1 ≤ . . .≤ θD.

Using Bayes’ theorem, the joint posterior density is

π(θ
˜
,σ2 | y

˜
) ∝ (

1
σ2 )

n/2+1e−
1

2σ2 ∑D
i=1 ∑

ni
j=1 wi j(yi j−ȳi)

2
e−

1
2σ2 ∑D

i=1 wi· ∑
ni
j=1(ȳi−θi)

2
,θ1 ≤ . . .≤ θD,

where ȳi =
∑

ni
j=1 wi jyi j

∑
ni
j=1 wi j

and wi· = ∑ni
j=1 wi j, i = 1, . . . ,D.

1. The joint posterior density of (θ
˜
,σ2) is proper.

2. It is easy to use the Gibbs sampler to draw samples from the the CPD σ2, inverse gamma,
and the CPDs of the θi, truncated normal distributions.

3. If we assume domain d is missing (i.e., no data for µd using only domain d), we can simply
eliminate the part of the posterior without domain data, but keep the support.

4. In a similar manner, we can do any other distribution (e.g., Bernoulli for binary data); Eu-
clidean distance is not appropriate though.



5.3 Comments on order restrictions

A fundamental paper on all my work on Bayesian order restricted inference is Sedransk, Mona-
han and Chiu (1985). I actually presented it in a seminar when I was a PhD student at the University
of Iowa.

There are many other papers based on this work. Nandram, Sedransk and Smith (1997) wrote
a paper on the aging of fish, which were stratified by length. There is a unimodal order on cell
proportions within each stratum and there is also a unimodal across the modes. It is interesting that
uncertainty of the modal positions was added to the multinomial-Dirichlet model. Sometime later
I gave a talk on this topic at the University of Iowa, and one member in the audience told me that
we should call it the umbrella ordering. We have written several papers later (e.g., Nandram and
Peiris, 2018), and I have recently advised a PhD dissertation (Xinyu, 2021) on this topic, and Joe
was one of the Dissertation Committee members.

As Mary mentioned shape restrictions, I finally noted in my discussions that problems with
logconcave and unimodal restrictions are interesting. Logconcave densities are a special sub-class
of the wider class of unimodal densities; logconcave densities are more docile. These provide more
flexible (i.e., nonparametric) models, and order restrictions are used to study these.

6. Mary Thompson: Bayesian-frequentist dialogue

Mary raised the very interesting topic of the Bayesian-frequentist dialogue. I want to point out
that superpopulation theory holds the key to this dialogue. In this school, the finite population is
a random sample from a parametric model (the superpopulation) and a probability sample is taken
from this finite population. Unlike design base analysis, this permits all the finite population values
to be treated as random variables. Therefore, this also permits using parametric (and nonparamet-
ric) models, a break through for complex applications. For example, small area estimation needs
models; see Nandram and Choi (2010) and Molina, Nandram and Rao (2014). This was initiated
by many papers such as Ericson (1969), Scott and Smith (1969) and Royal (1970). In the era of
Markov chain Monte Carlo methods, the hierarchical Bayesian models are the workhorse for com-
plex applications. But I differ with Mary a bit because she wrote “the probability sampling design
unrelated to y might or might not play a role” in the analysis. It is now well-known that informative
(selection is related to y) probability sample design does play a crucial role in Bayesian analysis,
especially when data integration of a probability sample and a non-probability sample, an emerg-
ing area in survey sampling and statistical methods, is needed; see Nandram and Rao (2021, 2023)
and Nandram, Choi and Liu (2021), which use surrogate sample (Nandram 2007) to do Bayesian
predictive inference.

For Mary, I addressed the issue of equivalent sample sizes and normalization constants when
survey weights are used. We note that survey weights are attributes of the entire ensemble, not
just an individual unit (e.g., Gelman 2007). Survey weights are different from regular covariates.
Besides there is hardly going to be any simple relation between the study variable and the survey
weights.



6.1 Equivalent sample size

We have (Wi,Yi), i = 1, . . . ,n, where Wi are original survey weights and Yi are responses. We
assume (normality is not required)

Y
˜
∼ Normal

{
θ j

˜
,{(1−ρ)I +ρJ}σ2} ,

where 0 < ρ < 1 is an intra-class correlation.
Consider estimation of θ using the Horvitz-Thompson estimator (optimal or sub-optimal),

θ̂ =
∑n

i=1WiYi

∑n
i=1Wi

.

Under the model,

θ̂ ∼ Normal
{

θ ,{(1−ρ)
W ′W
( j
˜
′W

˜
)2 +ρ}σ2

}
.

Here θ̂ is both design unbiased and model unbiased.
Then, the effective sample size (Kish, 1965) is

nρe =
ne

(1−ρ)+ρne
=

ne

1+(ne −1)ρ
,

independent of σ2, where ne =
(∑n

i=1 Wi)
2

∑n
i=1 W 2

i
. Note that 1 ≤ ne ≤ n; see also Potthoff, Woodbury and

Manton (1992).
Remark: When survey weights (not design weights) are used, they should be included in a

normalized composite likelihood not as covariates. If they are used as covariates, they will increase
precision (small or large) but when they are used in a composite likelihood, they will decrease
precision (mitigate bias) and this is what is required.

6.2 Normalization constants

We have the data, (Wi,yi), i = 1, . . . ,n, where Wi are original survey weights and yi are study
variable. If we assume that yi are correlated; we use composite likelihood with independence, of
course. Let g(y | θ

˜
) be a density for the yi.

We use adjusted weights, not original weights, wi = ne
Wi

∑n
i=1 Wi

. Then

n

∏
i=1

g(yi | θ
˜
)wi

is not a density. The correct density is

f (y
˜
| θ

˜
) =

∏n
i=1 g(yi | θ

˜
)wi

∏n
i=1{

∫
g(yi | θ

˜
)widyi}

With respect to Bayesian-frequentist dialogue, there are two issues.



a. The normalization constant should be used because if the denominator is a function of θ
˜
, the

likelihood without it will be incorrect. Both non-Bayesians and Bayesians drop the normal-
ization constant and this is clearly incorrect. At least Bayesians should keep the normaliza-
tion constant. But, in general, it is difficult to work with the normalization constant.

b. For all practical applications, there are more 2-tuples than 1-tuples, so that when a pairwise
composite likelihood is used, there will be an artificial gain in precision. This is true for 3-
tuples and so on. (For example, for a sample of size n,

(n
2

)
>
(n

1

)
,n ≥ 4.) See Rao, Verret and

Hidiroglou (2014), Ribatet, Cooley and Davison (2012) and Varrin, Reid and Firth (2011)
for discussion on composite likelihoods.

6.3 Comments on Scott and Smith (1969)

Scott-Smith model was introduced to analyze data from two-stage cluster sampling, but it can
be used just as well for small area estimation with different inferential objectives. This is the
reason why Battese, Harter and Fuller (BHF, 1988) did not recognize this model; the Scott-Smith
model does not accommodate covariates and it is a special case of the BHF model. Indeed, my
PhD dissertation, advised by Joe Sedransk, at the University of Iowa started with the Scott-Smith
model. I am very pleased that Mary mentioned the Scott-Smith model. Bayesian analyses of the
BHF model are given by Molina, Nandram and Rao (2014) and Toto and Nandram (2010).

I have written many papers in which the Scott-Smith model. Nandram and Sedransk (1993)
on the analysis of binary data from cluster sampling has been the basic starting point of many
of my papers. Nandram, Toto and Choi (2011) is a prominent example, where a full Bayesian
analysis is discussed with computations. Lockwood (2023) is a PhD dissertation that uses the
Scott-Smith model extensively. She used the Scott-Smith model to express no relation between
the study variable and the covariates. Similar ideas are used in current work of Nandram on non-
probability samples.

7. Concluding Remarks

I am very honored to be a student of Professor Joe Sedransk. In 1984, he practically brought
me and my family (Minwantie and Nankumarie) to the United States to study under him at SUNY,
Albany. After a year, I moved with him to the University of Iowa, where he became chair in 1985,
and I earned my PhD in 1989. Joe is an outstanding professor and researcher. I owed at lot to my
collaboration with him. Joe is very personable and a great friend.

It was a pleasure for me to organize this invited session on his 85th birthday. Although, it was
extremely hard work, it was fun to work for the discussion of the five papers. It took about one
month’s of my summer time (four months) to prepare for this auspicious occasion, and it is an event
that I will always, always, remember.
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