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Abstract

It is particularly difficult to analyze digital observations due to the enormous amount of data per any given time
period. The volume of data initially presents with the problem of interception followed by the issue of storage and
analysis which all needs to fall within an appropriate infrastructure cost. The lack of pertinent information, extracted
from big data, deprives both the evaluation of the use and the performance of the network and ultimately, the
possibility of offering an effective service. This study looks to explore intercepted big data and how one may extract
pertinent knowledge while minimizing the process cost. The process of analyzing big data is seen as an adaptive
two-phase sampling design; the first-phase sample can be both stored within the available infrastructure and used
as a sampling frame for each type of potential knowledge that can be extracted. Calibration of multiple sets of
weights is completed to ensure the consistency of the estimates with constant quantities as well as between estimates
using different or same sets of weights. We examine this proposed approach and the results of an illustrative

example are presented.

Key Words: Adaptive two-phase sampling, Digital network, Job shop scheduling, Multiweights calibration,

Poisson sampling, Sample size determination.

1. Introduction

The development of the Internet and the increased availability of digital data has elicited a need for data exploration
and the extraction of pertinent knowledge through estimation. Digital data (known as big data) is complex and costly
to intercept, store, and analyse. For example, suppose you have to store and process one petabyte of data per period
of time such as a day or an hour, where a petabyte is E15 bytes of digital information and a byte is eight binary digits
long. To depict big data, it is common to use the “5Vs”: (1) Velocity: the data is generated quickly in real time; (2)
Volume: the amount of data per period of time; which complicates its manipulation using available infrastructure; (3)
Variety: data sources and types are diverse; (4) Value: the potential knowledge that can be extracted from the data;

and (5) Veracity: the level of inherent quality in big data and the likelihood of being error-prone.

Analyses of a network usage and performance first require the interception of data transmitted between network
computers and between others’ networks, possibly hidden from users’ population. Once intercepted, given that any
relevant information present in the data is unknown to the analysts, the challenge consists therefore of (1) gaining

insights into the intercepted data at low cost, and (2) defining the type of pertinent information that can be extracted



(i.e., defining the parameter of interest ® among a set 0 ,,..., 0 ¢ of K potential parameters that can be estimated given
the data at hand). Traditional sampling designs can be used under available computing infrastructure. However, there
is no guideline on how to select the sample and how to choose the hidden though available, pertinent parameter. Unlike
big data, in survey data situations, the parameter of interest @ is well defined prior to the questionnaire design and

data collection and the sample size is derived with respect to the parameter of interest.

In an attempt to analyse intercepted big data while minimizing costs, our workflow is organized as follows: in Section
2, we first present an illustrative example, based on a simplified digital network, which is the basis of our motivation
and to be used as a proxy in the simulation; in Section 3, we give a description of the proposed adaptive two-phase
sampling design for exploring big data while minimizing costs and for estimating pertinent knowledge given the data
currently available; in Section 4, we present two useful ingredients for data analysis, the first being the variance
derivation and estimation used in this document, and the second being an example of the objective function when
deriving the design parameter; in Section 5, we extend the notion of calibration to simultaneously adjust multiple sets
of design weights in order to improve the precision of the estimates and to ensure the consistency of the estimates
with constant quantities and between estimates using different or same sets of weights; finally, in Section 6, we use

the simulated network to illustrate the proposed approach.

2. llustrative Study

Digital data has augmented both the ways of understanding and the ways by which tasks are completed across an
enormous array of disciplines. In this chapter, we present the context of a digital network that forms the setting for

our simulation, the job shop problem, the scheduling method used in our simulation, and finally, the data generation.

2.1 Digital Network

Consider a simplified digital network which consists of two components: hosts and communication links. Each host
has a unique internet protocol address allocated to it by the network. A digital network supports a number of services
such as hired use of applications and data, storage servers, etc. Any given user from a population provides a service
request which is sent over to the network to a certain set of hosts to perform a task on behalf of that user. Existing
networks use thousands of hosts that serve hundreds of millions of users per day. The high number of requests impacts
the performance of the network. The input information basically consists of the exact type of desired service and
additional information including user identifiers and request times. Depending on the exact type of service required,
requests can have different formats and layouts. The network analyzes the supplied information, processes it, and
returns the results to the user, all the while generating a multitude of data during the process of requests. The data

generated continuously over time constitutes big data.



If the network only processes a single type of request, then this network can be represented diagrammatically by means
of a directed graph G = (V,E), where V is a set of vertices or nodes representing hosts with two special vertices, a
source V, and a sink V,, representing the beginning and end of the graph; and E is a set of edges or arrows representing
distinct ordered pairs of vertices. This network can also be represented by an adjacency matrix, which is a matrix

representation of exactly which nodes in the directed graph contains edges between them.

2.2 Networks of Queues

Any network is supplemented with a routing matrix which indicates the order of hosts to be visited by each service.
Since each type of services has its own routing in terms of hosts, a network can be seen as a combination of S networks
sharing the same hosts, where S denotes the number of available types of services. Each type s consists on a sequence

of 0¢) operations or tasks, which must be performed in predetermined ordered sequence 0 = (o(y),...,0w)) and

each operation must be processed on a given host. Each single host can process only one operation at a time and once
an operation starts on a given host it must be completed on the same host without interruption. In order to increase the
execution capacity of the network, a host h may represent a collection of H® hosts, with H® > 1. With this
representation, a host h can simultaneously perform H® requests simultaneously. When all the H® hosts are busy,
any additional requests must wait in queue h, say (. Hence q(™ represents the queue is where requests waited to be
served in one of the to H™ hosts. Since q™ is attached to H™ hosts, a digital network can also be seen as a network
of queues, in which each g™ controls access to H™ hosts. When a single host becomes available; the first waiting
request is assigned for service. If the queue processes requests in the order that they arrive; this management is termed

(n) (n) _
k

as first come first serve. Each request k arrives at queue ¢ at time a;", so that the interarrival time is Afch)z a;

a,((h_)l, with a(()h) = 0. Once a request arrives, it waits in the queue until all previous requests have been processed. The

waiting time W,((h) spent in the queue ¢™® is given by w™ = max(a,((h),b;h)) —a (Krivulin 1994), where g =

argmin (bih), . bg},)l)) and bih), . bgg,) is the vector of times where each component g represents when single host g

in queue ¢ for request k is given by

will next be available for request k. The response time rk(h) rk(h) ) 4 g

=W gk’
where sgllz denotes the service time in the singe host g of queue ™. Once the service has been completed, the request

leaves queue ¢™. The departure time of request k is given by d = a® + 7™
2.3 Job Shop Scheduling

Scheduling is the allocation of shared hosts over time to competing requests. This scheduling task is known in the
literature as “Job Shop Scheduling” or “Job Shop Problem”. The objective of the Job Shop Problem is to schedule the
requests on the hosts so as to minimize some objective function such as the makespan; the time to complete all requests
under constraints such as: (1) no operation can be started until the previous operation for the same request is completed,
(2) a single host can only process one operation, and (3) a single host must complete processing without interruption.

This optimization problem is found to be NP-hard (Muth and Thompson 1963, Garey and Johnson 1979). For our



illustration, requests are sorted in each queue g™ by first arrival time and then by ascending order of their expected
processing time. Let a; denote the arrival time to the network, then the response time r, and the departure time dj, from

the network are respectively given by

Tk = Yoco®X gl(gg)rk(g)’
and dy = ap+ry,

where the indicator variable I[E 9 is defined as I((,g ) = 1if the single host g processed operation o, and is Ié 9 = 0 if not.
2.4 Data Generation

To create heterogeneity in our synthetic population of size N, we first generate two explanatory variables u;, =

(g, Uzyp)T for each element k of the population independently from w,~N(w )7, with p = (uy, 1), and X =

o 010 . . . .
o 011172 P Uiz 2]. We maintained the population values u;, fixed for k = 1,...,N, and then we generated the interarrival
time between requests sent by user k from an exponential distribution with parameter a; satisfying log(a; ) = uf;k B,

U = (L Uy, gy )7, and B = (BT, B, BIYT. For each request ', a service type s\ is generated from a

multinomial distribution with values {1,,2,...,S}, and probability p’ = (p\) ..., pS)7, where s\ = (s{2,...,s{0)7,

®

P = A+ 35, exp(uly B, pui = pug X exp(ully B

) for 1=2,...,S, and ugy = (1, ugp, Uz, ). Value of

simulation parameter is provided in Table 1.

The processing time of a host is generated based on host’s clock speed. A computer’s clock speed, also referred to as
clock rate or computer frequency, is an indicator of its performance and how rapidly a computer can process data. A
higher frequency suggests better performance in common tasks. Usually, the clock speed is expressed in gigahertz
(GHz) and reveals the number of instructions cycles the processor can run in a second, where one GHz is equals to E9
Hz =1 000 000 000 Hz. For example, a 4.2GHz processor is capable of running 4.2 billion cycles per second, and a
clock speed of 3.2 GHz processor executes 3.2 billion cycles per second. Sometimes, multiple instructions are

completed in a single clock cycle, while in other cases, one instruction might be handled over multiple clock cycles.

Processing time of an operation i of service s in host h is generated from an exponential distribution with parameter

o  with

si;k»

) ) ¢
loy(@gi;)k) = lBs(i) +v ug;l)c’

@®)

where y is a specified parameter to account for time variation, u,; is a random variable generated from a N(0,1). The

ordered operations sequence for each service type as well as values of the processing parameters are given in Tables

1 and 2. Table 2 also provides the expected processing time for each operation.

In Table 2, service 1 requires an expected execution time of exp(.06 + .02u§f,)() time units of host 2. The requirement

of service 2 is exp(.05 + .02u§f,)<) time units in expectation on host 1 followed by exp(.02 + .02u§f,)<) time units in



expectation on host 3. The requirement of service 3 is exp(.02 + .02u§f,)<) time units in expectation on host 2 followed

by exp(.04 + .02u§f,)<) time units in expectation on host 3. The requirement of service 4 is exp(.02 + .02u§f,)() time

units in expectation on host 3 followed by exp(.02 + .02u§f,)<) time units in expectation on host 2 followed by

exp(.02 + .OZugi) time units in expectation on host 1.

Table 3 shows 4 requests as an example. The first column gives time periods, the second column gives the arrival
times, the third column gives the user identifiers, the fourth column gives the service types, and the fifth column gives

the request sequence. Table 6 displays the expected processing time and the hosts sequence for each request.

Table 1. Simulation Parameter

Parameter Value

Size N 500

P 5

S

H 3
heterogeneity [T 1

K2 -1

A 1

o, 1.5

p -4
Interarrival time B (-2,-1,1)
Service Type O) (-3,.4,.5)

2

ﬂgs) (-2,.3,.1)
) (-1,.3,,2)
4
Processing

y .02

2) .06

11

(¢ .05

21

3) .02

22

(2) .02

31

3) .04

32

3) .02

31

(2) .02

32

(€3] .02

33




Table 2. Expected Host Processing Time by Operation for Each Service

Hosts
Service  Operation Host 1 2 3

1 0521) 2 exp(.06 + .OZuif,)()
2 0511) exp(.05+ .OZuSI)()

(3)

022

exp(.02 +.02u))

1
3
2 exp(.02 +.02u)

0(3) 3 exp(.04 + .OZui;t,)c)
3
2
1

exp(.02 +.02u))
exp(.02 +.02u))
exp(.02 +.02u)

Table 3. Example of Requests

Period(unit) Request Time(unit)  Element Identifier Service Type Request Sequence
1 1 1 3 1
1 1 9 1 2
1 1 11 2 3
1 1 13 3 4
1 1 14 1 5
1 1 21 4 6

Table 4. Excepted Processing Time
Request Hosts Expected Processing Time Hosts Sequence
Sequence First Second Third Total First Second Third
1 1.27 1.29 2.56 2 3
2 1.32 1.32 2
3 95 92 1.82 1 3
4 1.32 135 2.67 2 3
5 1.13 1.13 2
6 1.36 1.36 1.36 4.07 3 2 1

3. The Proposed Design

To analyse big data in discrete intervals, we divided the continuous time of the analysis period into a sequence of
continuous time periods: 1, 2, etc. Suppose the limited length of duration of analysis is made up of P,,,, phases, the
p" being of size n, time periods, so that the limited duration of analysis is made up of Iyqy = ;’;"f‘np time periods.
This would mean that there would be a P,,,, of phases of analysis and a population total of N = ZZ;”‘;" N, during the

analysis period, where N, is the size of the finite population of interest during phase p.

Let x denote the prior information we have on the big data and ¢ the true hidden information in the intercepted data.
Under two random processes, we are primarily interested in the error-free random variable ¥, knowing its probability
function, the probability function of another random variable x, together with the joint probability function f(y, x; 1)

of (X7, $T)T with vector parameter denoted by 4. To choose a sample for estimation at each time period of analysis,



we primarily need to determine the design parameter @, such as the sample size and the probability of selection of
each element, the solution to some objective function O(®; s, &) that requires the target information ¢ (Demnati 2019).
Therefore, at each phase of data analysis, after receiving the information that the target random process has taken
specific values (i.e., a new sample is selected), we update the parameter A of the joint probability distribution

f(w,x;4) to revise the design parameter @ in the course of the data analysis progression.

This section is organized as follows. Subsection 3.1 presents a straightforward description of the proposed adaptive
analysis approach, while subsection 3.2 presents the proposed sampling design. Finally in subsection 3.3, we will

discuss cost reduction throught the use of multiple samples.
3.1 The Steps

Our simple adaptation of the Demnati (2019)’ approach for the purposes of big data analysis in discrete intervals is as

follows:

a. Specify the: (1) set of possible potential parameters to be estimated, (2) population of interest for each parameter,
(3) sampling frame and the sampling schemes, (4) estimator to be used for each parameter, (5) precision function
for each estimator, (6) cost function of the analysis, and (7) desired precision for each estimator or the global cost

of the analysis.

b. First set ., = x;., then for b=1, 2, ... repeat continuously the following four steps until the end of data

analysis

b.1 Optimization Step.
Optimize the objective function O(®;yr,,A,) — that involves both the precision and cost functions

parameter, i.e., determine the optimal design parameter @ conditional on s, .

b.2 Observation Step
(1) Obtain the next phase p of observations (i.e., select a new sample), and form the cumulative sample by
combining all selected samples.
(2) Estimate 8@ and V(8®) to get 8®) and 90, where V(@®) denotes the variance of the estimator

8(®) based on the cumulated sample

b.3 Revision Step.
Update the vector parameter A and the missing values of § using all available information i.e., (a) Update
Ap to get 4,4 using D,.,; and (b) Impute missing values of each component s of Y to get Eyy (Wi |Dy,p, 4,),

where D,,, denotes all observed information until the end of phase p of data analysis, and Ey, denotes



expectation with respect to the random process governing the component . Note that (.1, =y, when

item Y j, is observed.

b.4 Decision Step. Decide if the data analysis should stop (e.g.., p = P,4). If not (e.g., p < P,..,), revise the
specification of the design parameter as necessary and repeat the four steps (b.1 to b.4) continuously after

observing some realizations of the target process.

We refer to the above four steps as the Optimization-Observation-Revision- Decision (O-O-R- D) steps. The revision

step incorporates learning and prediction, while the decision step incorporates actioning.
3.2 The Sampling Design

Continuous analysis in discrete intervals may require sample rotation, samples coordination, and combination of
samples through time. Using Poisson sampling in combination with a permanent random number permits the
satisfaction of the above requirements and simplifies the derivation of the second-order selection probabilities ﬂ,(jt),
ultimately making it simpler when computing variance estimates for complex statistics such as measures of change.
Here, the joint inclusion probabilities n,(flt) denotes the inclusion probability of element k at time period s and element

[ at time period t. Under Poisson sampling, we have 7\” = 7{* ") for k # L. From here, we must consider 7_" =

(st) _ _(s

7" If the samples selection is independent from one time period to another then 79 = 7'z for s # ¢ and n{*® =

n,ff). Let I,Ef) C (0,1) denote the selection interval of element k at time ¢, for example I,Ef) = (O,n,ff)), where nlgt) is the
selection probability for element k at time t. We have n,({t) =1( I,(f)) where [(.) denote the length of the selection
interval. The probability for an element to be selected in at least one sample over time is given by [(U, I,Ef)) and the
probability of selection for an element in every sample over time is given by I(Nn; I,(f)), where (U,N) denote respectively

the union and the intersection of sets. The combination of samples is just as straightforward under Poisson sampling.

We propose the use of two-phase Poisson sampling which consists here of the selection of two or more dependent
Poisson samples: selection of a first large Poisson sample §, from a cross-sectional part of big data, where elements

are consulted and selection of several second small Poisson samples ¢, g =1,..,G from g,, which will be used for
exploration at low cost. The design weights associated with the two-phase sample = (§€,, £1,..., §£¢) are w;, =
(Woue» Wasges -+ W) 7> Where wo.e = wyi (00) = ag, /oy i the first-phase design weight, ag, = 1;(#0) is the first-
phase sample membership indicator variable for element k, i.e. ag; = 1if k € 0, and agy = 0 if not, 1, (p,) = 1(k €
$0), 10 1is the truth function, mo,; = E(ao,) the first sample selection probabilities, wg = wi($,), wi(@,) =

wk(goo)w,(czll)(gog), wD (g o) = Wi(§o4lk € 00) = ag}(n /n;;z,':) is the conditional second-phase design weight, aé?,l{l) =

1k (§o41k € o) is the conditional second-phase sample £, membership indicator variable for element k, and n;;zlil) =

E(aé?,Ll)|a0;k = 1) is the subsample g selection probabilities.



Consider the general linear form given by
U = 3, Ugwy, (3.1)
where Uy, is a (G + 1) x M matrix of constants and Y, denotes the sum over the cross-sectional population elements.

Under Poisson sampling at both stages, the variance of the general form (3.1) is given by

V(U) = 3, UT Cov(wy, wy)Uy. (3.2)
A —mox)/moe (X —To) /Mo =+ (1 — o)/ Mok
with Cov(wy, wy) = - ”ofk)/”o;k (1 —my) /7150 (1 = m1gr) /TaGik ’
K(l - T[O;.kl)/ﬂo;k (1 — me1;00) /To1:k (1 — 7g;1) /Tgik /

: 2|1 2|1 2|11) (211
with mgg. = Mgk, Tgnp = ﬂo;kﬂ;hl;k) and ﬂ;hl;k) = E(aé;ll )a,(l;k| )|a0;k =1)=Pr(k € py N Pplagy = 1),

A variance estimator of the general linear form U is given by

9(U) = X, UL cov(wy, w)U. (3.3)
with cov(wy, wy) = diag(wy)Crdiag(wy),
A-mop) (@A-—mop) - (1—mox)
and C, = a _.T[O;k) (1 —my5) (1 — m1G;%)
A=) (=m) (-7

3.3 Why Not Just a Unique Sample

The answer to this question is derived from the motivation behind the traditional two-phase sampling. The traditional
two-phase sampling consists of the selection of two dependent samples: selection of a first large sample §, in which
the auxiliary variable x is measured and selection of a second small sample g from g, in which the variable of interest
y is measured. Two-phase sampling is appropriate when the x -values are less costly to collect than the expensive y -
values. The goal of the first sample is to obtain a precise estimate related to the auxiliary variable x which can be used
for sub-sampling and for estimation. For example, the two-phase ratio estimator, Y = X,¥/X, is often used as an
estimator of the population total Y = Xy, where Y = ¥ wiyi, X = XeWiXi, Xo = SxWo:Xk> Wo, denotes the first-
phase design weight attached to the k™ element, w;, denotes the design weight attached to the k" element of the
second-phase sample g, and Y, denotes summation over the population elements. Two-phase sampling was first
termed “double sampling” and studied by Neyman (1938) to answer the question: which sizes of the initial sample
and the subsequent sample yield the most accurate estimate of the variable of interest under cost constraint. Cochran
(1977, pages 327-332) and Sérndal et al. (1992, pages 478-480) discussed the samples size determination in the case
of two-phase sampling with simple random sampling at the first-phase and stratified simple random sampling at the

second phase.



The double expansion estimator (Kott and Stukel, 1997), also known as “the 7~ estimator” in Sirndal et al. (1992,
page 347) is the two-phase Horvitz-Thompson-type estimator of the population total. This estimator relies only on
sampling design, ignoring the auxiliary information in the estimation step as the result the two-phase ratio or regression
estimator, is used more as an estimator of the population total. Cochran (1977, pages 338-344) discussed the use of
the ratio and regression estimators and their associated estimated variances in the case of two-phase sampling with
simple random sampling in the first-phase and stratified random sampling in the second phase. Sérndal ef al. (1992,
pages 343-366) extended this work for arbitrary sample designs at each phase, using the linear regression estimator to
incorporate the auxiliary information. Rao and Sitter (1995) derived linearization variance estimators under the two-
phase simple random sampling that takes better advantage of the available first-phase auxiliary information than the
standard estimator. Demnati and Rao (2009) considered two-phase sampling in which values of the variable of interest
are observed in the second-phase subsample. Values for the first-phase sample elements are mass imputed using values
from an administrative file when they are available and generalized regression imputation when administrative files
are not available. They studied both naive and design-consistent estimators for a population total under the above set-
up and obtained associated variance estimators. In the next chapter, we illustrate variance derivation and estimation

for a calibrated estimator under the traditional two-phase sampling.
4. Two Useful Ingredients

In this section, we present the method used in this document for variance derivation and estimation. We illustrate the
method with an example useful for the present work. Then, we explore an objective function used when deriving the

design parameter. Finally, results of an illustration study using independent calibration estimators are presented.
4.1 Variance Derivation and Estimation Approach

We use the linearization approach of Demnati and Rao (2004, 2010) to derive variances and variance estimators. We
first give a brief account of the Demnati—Rao (DR) approach. Let dy = (dy;k, dy;i,-- -, dp;i)" be a pX 1 vector of random
weights and u, = (uyk,..., upx)" be a p X 1 vector of constants for k = 1,...,N, where N denotes the size of the
population. Let U = ¥, Ufd, be a linear combination and, using an operator notation, let V(u) and 9(u) denote
respectively the variance of U and its variance estimator. DR expressed an estimator 8 and its induced parameter 8 =
E(®) as 8 = f(A,) and 8 = f(A,), where A, is a p x N matrix with k** column d,, A, is a p x N matrix with k*"
column n, = E(dy) and E denotes expectation under random processes involved. The DR linearization variance and
variance estimator of ® = f(A,) are simply given by Vyz(®) = V(2) and 9,z(0) = 9(z) respectively, where V(%) is
obtained from V(u) by replacing u, by z, = df(A;,)/dbL| Ap=a,> and 9(z) is obtained from 9(u) by replacing u, by
7 = 0f (Ap)/0b}|a,=a,, Where A, is a pxN matrix of arbitrary real numbers with kt" column b, =

G L



To illustrate the DR approach, we considered the population parameter 8y defined as solution to “census” estimating

equation of the form

S(On) = Xk Sk (8n) —u(8y) = 0. (4.1)
where S;(0y) is a p x M dimensional matrix-valued function of the known parameter @ and others characteristics, and
the function u(0y) allows for explicitly defined parameters. For the univariate linear and logistic regression models,
$1(®) = x; (i — ur (x£0)), and u(By) = 0. For the special case of the finite population total Y = ¥y, Sk(0) = v,

u(0y) = 0y and Oy = Y . A design-based estimator ® of Oy is the solution to following weighted estimating equation

S(8) = X, SE(B)w, —u(8) =0. (4.2)

Following DR approach, we write 8 as f(Ag), where A, is a N X p vector with kt" element d;, = wy, andp = G + 1.
The DR variance of 8 is given by Varpe(8) = V(Z), with Z, = 0f(A,)/dby|a,=a,- Taking the derivatives of f(A;)
and evaluating it at A, = A, , we get

Zj; = (J(8n)} 'Sk (8N). (4.3)
where J(8y) = —3ST(8y)/d0y. The DR variance of 8 is given by (3.2) with UY replaced by Z% given by (4.3).

Similarly, taking the derivatives of f(A,) and evaluating it at A, = A4, we get
zZi = {j®)'si(®, (4.4)

where j(@) = —a §7(8)/08. The DR variance estimator of the estimator 8 is given by (3.3) with UT replaced by Z7%
given by (4.4).

4.2 Specification of the Objective Function

At phase p, the design consists on the selection of a first large Poisson sample gogp) from the cross-sectional population

of size N,, and selection of G second samples ng) from pgp). We decompose the cost for each period of analysis as
CP =c+C +C,

where ¢ is a fixed cost. The second component C; is associated with the sampling selection and it is given by C; =

Zkao;kcé;s,l + Zkao;kzgzlag,lcl)cgi, where cé;slz is the first-phase sampling cost for unit k and c¢**)

gk 18 the second-phase

sampling cost for unit k. The third component C, is associated with the process cost and it is given by C,, = Zkao;kcéf; +

©

o 18 the first-phase process cost for unit k and )

TkoxX=1aC el where ¢ ©

ok Coleo is the second-phase process cost for

unit k in subsample g.

The conditional probability that element £ will be selected in in the first-phase sample is constructed as
lOg{TL’O;k/(l - 7TO;R)} = vg;kq)09

where vy, is the vector of explanatory variable and ®, is the unknown vector parameter to be determined.



Similarly, the conditional probability that element £ will be selected in the second phase sample, given that the
element is selected in the first-phase sample, is constructed as
log{ n(zm/(l n(zll))} = v Py

where v, is the vector of explanatory variable and ® is the unknown vector parameter to be determined.

To create a design at phase p i.e., to derive the design parameter ®®) = (@, ®7, ..., ®L), we minimize the conditional

expected cost

min C (p)

»®)

subject to constraints on A variances:

Varpr(@P) < VvP, k=1,...,A
where V, are specified tolerances, and Varpr(8,) is the DR variance of the estimator 6, for the xt" parameter of
interest x = 1,..., A. For example, one could specify an upper limit, S, on the coefficient of variation of 8, so that
Ve = {3,E(6,0)}?. One may repeat the optimization process with different value of 5., k = 1,..., A, to obtain the desired

minimum cost.

The expected cost is given by C® = ¢ + C, + C,., where the sampling component (fs is given by C; = ano;kcg_s,z +
Yo 1Yk, kCq The process component C, is given by C, = ¥, kCO 7 )+ Y1 Xk, kc - We do not have an explicit

solution, but nonlinear programming can be used to get a constrained minimum &.
4.3 INlustration using Independent Calibration

The two-phase ratio estimator, defined in subsection 3.3, can be viewed as a calibration estimator, Yz = 3 Wy yy, with
explicit weight W, = wy(X,/X) and satisfying the calibration constraint ¥, W,x; = X,. We consider first calibrated
estimator Y = ¥ Wy, of the population total Y = ¥y, with explicit weights W, = wyF(xk4,) and satisfying the
calibration constraint S(4) = X, wy i F(x52)x, — Xy = 0, where x4 = (Xp,..., Xp)". We write Y = f(A,,), where A,

is a 2 x N matrix with k*" column w, = (wg,, wg.)T. Taking the derivatives of f(A,) with respect to the weight, we

get

af (A dA(A

L) = Q. (A) T2, (4.4.2)
and L) — F(x[A(Ap))Yi + Quy(A b)‘”“”), (4.4.2)

where Q,, (Ap) = bk F(XEA(Ap)) Xk Vs F(a) = 0F(a)/da, and A is a 2 x N matrix of constants. To get the derivatives
of A(Ap), we take the derivatives of the calibration constraint.
We have 0S(A(Ap))/0box = Qux(Ap)(0A(Ap)/dboy) = Xi = 0, OF

23(Ap)

opy — L Qex(Ap)}” 1x (4.5.2)

where Q. (Ap) = Yibi F(xFA(Ap)) ) XF.



Similarly, dS(A(Ap))/dby = F(x5A(Ap))xx + Qux(Ap)(3A(Ap)/8by) = 0, OF

B0 — —{ Que(A)}F(ALA(A) s (4.5b)

Replacing (4.5) into (4.4) we get
L = Quy (Ap){ Qur(Ap)} s (4.6.2)
af(Ab) F(xp(Ab))Yk Quy (Ap){ Qux (Ap)} 'F(x; A(Ap)) X (3.6.b)

Evaluating (4.6) at A, = A, we get
T
_ x;.B
Z, =
‘ {(yk ~ xB)

where B = {3 x, XL} 1Y 2 V. The DR variance of the calibrated estimator Y = ¥, Wy, is given by V(u) with u; =

(4.7)

(uo.x, ug )" replaced by Z, given by (4,7). Using (3.2), we get
V() = =Y (o + we)? + Xutudse/Tow + Tl oy + we)? — U}/ mgyr. (3.8)

While the variance of the double expansion estimator Y = Y w, v is equal to V(Y) = =Y vZ + YiyE/mgkc-

Similarly, the DR variance estimator of the calibrated ¥ = ¥, i,y is simply given by 9(u) with u,, replaced by z,

where z, = df (Ap)/0by|a,=a, - Evaluating (4.6) at A, = A,, , we get respectively

B x'B
= {F(xii) i — xLB) 49

where B = {Tw, F(xf )2, %7} 1wy F(xf ) X .

We first generate two explanatory variables w;, = (uy.x, u,)” for each element k of the population independently from

O11 p0o102

T 1 — —
we~N(w, D, with 1= (i), and 2= [0 7

] We set p = (1,-1), 0; = g, =5, and p = .4. We maintained
the population values u,, fixed for k = 1,...,N, and then we generated y, ., from the Bernoulli distribution with success
probability satisfying logit(p,) = vk B, with By = (-.3,.4,.6) and vj, = (1, %14, %24)7, and y,; from the normal
distribution with mean g, = v{ 8, with B, = (20,2,5) and variance equals to 25. Two parameters are of interest, GS) =
YrVir € {1,2} Three scenarios are considered for the estimation of SS): 1) @gi) = Y xWo.xVix using the first-phase
sample only; 2) ég ) = = YkWgk Y1k, and 6( ) = = YxWhiY2x using the double expansion estimator and the two-phase
sample g and h with g # h; and, 3) ég ) = YkWgk Y1k and 63 = YWy With explicit weight Wy, = wy F(xk4,)
and Wy = wy, F(xk4y), respectively and satisfying the calibration constraint S(4,) ) = Xy wy . F(x54,) )x, —Xo =0
and S(A3)) = X wii F(x54n) )x — X = 0, where x;, = (1, 1,4, X2,)" and g # h. We first write each estimator as
f(Ay), where A, is a 2 X N matrix with k™" column wj, = (wo,,, wgx)", then we take the derivatives of f(A,) with
respect to the weight, and we evaluate it at A, = A, to get,

for scenario 1, Zig = {yl‘k

. 5 0
for scenario 2, Zik = {



r N

. ~ X B; Zio;k

for scenario 3, 7 = {(y k xlTB )= {Zl .
i;k — AkDPi ig;

where B; = (S XX} i X Vi
Under scenario 1, the optimization problem consists on the determination ® = (CD(D,CD((]Z),(D((]3))T such that the
expected cost C = Y7ok, 1S minimized subject to constraints on the variance

—YkVik + TkVik/ Mo < Vi,

and —YkVix + TkVar/Tox < Vo

Under scenario 2, the optimization problem consists on the determination P =
(CD(()D,CD(()Z),CD((]”,cDS),cD;Z), <D§3), <D§11),<D,(12),cbfl3))T such that the expected cost € = ¥y (T Cox + Mgk Cqik + ThikChike)s
with co + ¢g;k + Cpi = ¢, and g # h, is minimized subject to constraints on the variance

—YiVik + ZiVia/Tgx < Vi,

and —YiVak + XkVar/Thx < Va.

Under scenario 3, the optimization problem consists on the determination P =
(CD(()D,CD(()Z),CD((]”,cDS),cD;Z), <D§3), <D§11),<D,(12),cbfl3))T such that the expected cost C = ¥y (ToxCox + Mgk Cqik + ThikChik)s
with co + ¢4k + Cpi = ¢, and g # h, is minimized subject to constraints on the variance

~Yk Grok + Z1gk)? + T Grope + Z1g)? — Zga}/ Mok + ZkZi g/ Mg < Vis

and —Yk a0 + Zong)? + Tl Gaopke + Zani)® = Zonr}/ Mo + TieZanae/ Tnse < Vo

Here V; = (cv X Yxyix)? with cv = .05, and g = no;kn(zll)

ok - The derivatives of mo and 7y are respectively 7ry;, =

. 2|1
XoTo (1 — o) and 7oy = X Mg (1 — o) + Xg g (1 — TQ(,;;L )

). These derivatives are useful for the
optimization procedure. We set (co.x, C1,4 C21) = (1,10,20). Table 5, displays results of the illustration. It is clear from
Table 5 that when the costs and characteristics differ from one variable to another, the use of different sub-samples

makes it possible to reduce the total cost.

Table 5: Result of the Sample Size Determination Using (co.;, €1.4 €2) = (1,10,20)
Strategy Calibration Expected Total Cost Expected Sample Size
9 01 2
#o No 7281 108
£0, 81,82 No 2381 176 77 72
£0, 81,82 Yes 1589 160 53 45

5. Multiple Weights Calibration

Poisson sampling, an easy sampling scheme, simplifies samples combination and variance computation. It is also a
flexible way to incorporate auxiliary information into the design at the sampling stage. However, Poisson sampling

presents a drawback because the sample size is random which causes a very large variance of any Horvitz-Thompson



(HT) estimator of a population total. For example, the HT estimator of the total under Bernoulli sampling has a much
greater variance than under simple random sampling. Fortunately, the use of calibrated estimators eliminates this
drawback almost entirely. Calibration is also used to incorporate auxiliary information into the design at the estimation
step, and to ensure consistency with fixed quantities such as finite population known totals. In the context of this work
of multiple sets of weights, it is desirable to maintain consistency between estimates from multiple sets of weights

coming from different samples selected from the same population.
5.1 A General Class of Regression Calibration Weights

Let d;, be the p x 1 vector of random weights, n, = E(d;), Y, be a p x M design matrix related to the statistics of
interest, X4, be a p X q design matrix related to the auxiliary variables, and X, be a p X g design matrix related to
the expected values. Let the estimator be ® = ¥, ¥{ d; and zero-mean linear equation be X, = ¥ (XFdi — X 1)
For example consider the traditional two-phase sampling design with dj, = (wq,, wy)T. If Y denotes the estimator Y =
(Yo, V)T of the population total Y = ¥y, with ;e = (Vo., Vic)7, then © = ¥, Y ., and 8 = ¥, Y7 d,., with Y, = diag (yy),
where 1, = E(d,) = (1,1)7, G=1, and any zero-mean linear equation can be represented by X, = ¥ (X5, di —
Xg;knk). For the zero-mean linear equation X, — X, q¢ = 1, Xg, = %, (1,—1)T and Xy = (0,0)7, while for the zero-mean
linear equation (Xo —X,X —X)7, q =2, Xgx = x,I, and X, = x,I,, where I, is the identity matrix. Here, Y, =

YkWo:k Yok Y = Y wi i and wy are the design weights of the two-phase sample.

We define the regression calibrated estimator of the M X 1 linear quantity 8 = ¥, Y/ 0, as

6=0-B"X,, (5.1
with B = Qxlx, Qxd;}',
where 8 = ¥, Y/ dy, Quw = Xk 2uAL cov(dy, d)W,, and cov(dy,d,) = diag(d,)Cydiag(d;). We may write the ijt"
element of Cy; as ¢ = Cov(d;y, dj,)/E (di;xd;j,) With Cov(dyy, d;) = E(dyd;y) — E(dyy)E(dy,). The regression calibrated
estimator (5.1) can also be written in term of the g-factors

6= Y Yidiag(di)Gy,

with G = 1, — ¥,Crdiag(d)X 4, Qxix X, (5.2)
where 1,, is the p x 1 vector of ones. Note that the generalized regression (Sirndal et al. 1989) and the optimal linear

regression (Montanari 1998) are special cases of (5.1).
Ilustrations under Traditional Two-phase sampling

For the zero-mean linear equation X® — X, we have q = 1, Xgx = x(1,0)7, X, = x(1,0)7, and

G, = (1) _ (leo;lxl(l — Wo;k1)
T\ Yiwo, X (1 — woir)

If y, = (x4,0)7 then 6§ =X, the population total. If y, = (0,x,)T then § =X —9(XD, (XD — X)/9(XD), the

) B = 30752,

“optimal” estimator from the subsample given the first-phase sample estimate.



For the zero-mean linear equation XV — X, we have q = 1, Xq; = x;(1, —1)7, Xy« = (0,0)7, and

G, = (1) _ ( Yiwo —wx (1 — woa)
1 Yuiwo, (1 — woya) — wida (1 — wi)}x

If yj, = (x4, 0)7 then § = £0 — (H(XD) = 9XD, HY(XD = £)/9(FD = £). If y, = (0,%)7 then, &= — (9() -
IEAW, DD — £) /9D - 2.

)@m—mm@m—m.

Finally, for example for the zero-mean linear equation X — X, we have g = 1, X4, = %, (0,1)", X, = (0,1)", and

1 Swix;(1 — wr)\ Lo -
6 = (1) = (Sowiay(1 - ) &~ 0790

If y, = (x,0)7 then 8 = XMW —9( XM, X)(X — X)/9(X), the “optimal” estimator from the first-phase sample given the

subsample estimate. If y,, = (0, x;)" then 8 = X, the population total.

5.2 A General Class of Calibrated Estimators

The calibration weights associated with the g-factors (5.2) may not be always nonnegative. To get around this
difficulty in the univariate weight case, generalized raking ratio weights are often used. These weights are always
nonnegative, but the method can lead to some extreme weights. The univariate generalized raking weights can also be
extended under multiple design weights. We modify the regression calibrated estimator (5.1) as follows

0 = Y, Yl diag(d,)F(Xyxd), (5.3.2)
with FXgxd) = FX1g;ed), .. FX paxd)),
where X7, is the i rows of the matrix X, the ¢ x 1 vector estimator 4 is the solution to the calibration equation

S@) = Tk (X diag(di)F(Xazd) — X)) = 0. (5.3.b)
5.3 Variance Estimation for the General Calibrated Estimators

We used the general calibrated weights given by (5.3). We have
3 (b i F(XT 43 A(AL))/0b e = F(XTq A(Ap) + b s F(XTy . A(A5)) (0A(Ap)/0b 1), (5.4.2)
andforj #gorl#k
9 (b juF(X[3x A(Ap))/by s = b j F(X[3, A(Ap)) (OA(A)/0b ), (5.4.b)
where F(.) = 9F(.) /9T

To evaluate (0A(Ap)/db;) we take the derivatives of the calibration EE (5.3.b) with respect to b;.;. This gives
X0 F(X]aA(AD)) + Yk (X diag (bi)F(XG A(Ap))0A(A) /by = 0,
or 0A(Ap)/0b s = Q1 (Ap)X,ak FXT4k A(A)), (5.5)

where Q;(Ap) = Y (X xdiag(b)F(X] 1 A(Ap)).

Replacing (5.5) into (5.4), we get



9 (b ik F(XGxA(Ap)))/0b 5 = F(X]k A(Ap) = b 1 F (X[ 41 A(AL)) Q1" (Ap)X s F(X g,k A(Ap)), (5.6.2)
and forj #gorl #k
9 (b juF (X4, A(Ap)) /b k= —b 1 F(X] 1 A(Ap)) Q5 (Ap)X gtk F(X] 41 A(AD)), (5.6.b)

For the linear calibrated estimator (3.1), f(Ag) = Xk Ui Wi = Ti XYy Wy, We get
df (Ap)/0b i = FXT 1 A(AR) (¥, — Ba(Ap)X a0} (5.7
where B3 (Ap) = 21 Zg¥y ielb i F(X)q,1A(A)) Q3 (Ap).

The DR variance estimator of f(A,) is given by 9( z), where z,, = 0f(A,)/0b k|4, =4, Evaluating (5.6) at A, =
A,4, we get

Zy = FXD0 AW — BaXyanl,
where By = Y13, Vg d u FXigiDQ; ' and Qi = Bk (X diag (i) F(XG 1. 2).

Concluding Remarks

We formulated an adaptive approach for digital data exploration and pertinent knowledge extraction. We also
proposed a simple sampling design that permits desirable properties such as samples combination and coordination
over time periods, as well as variance estimation for complex estimators. The adaptive aspect of the proposed approach
and the use of several sub-samples makes it possible to both adequately target the parameters of interest over time and
reduce total costs, while all sampled elements are used by easily combining them. Calibration of multiple sets of
weights is also completed to ensure the consistency of the estimates with constant quantities as well as between

estimates using different or same sets of weights. Further simulations will be completed at a later time.
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