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Abstract 

 

It is particularly difficult to analyze digital observations due to the enormous amount of data per any given time 

period. The volume of data initially presents with the problem of interception followed by the issue of storage and 

analysis which all needs to fall within an appropriate infrastructure cost. The lack of pertinent information, extracted 

from big data, deprives both the evaluation of the use and the performance of the network and ultimately, the 

possibility of offering an effective service. This study looks to explore intercepted big data and how one may extract 

pertinent knowledge while minimizing the process cost. The process of analyzing big data is seen as an adaptive 

two-phase sampling design; the first-phase sample can be both stored within the available infrastructure and used 

as a sampling frame for each type of potential knowledge that can be extracted. Calibration of multiple sets of 

weights is completed to ensure the consistency of the estimates with constant quantities as well as between estimates 

using different or same sets of weights. We examine this proposed approach and the results of an illustrative 

example are presented. 

 

Key Words:  Adaptive two-phase sampling, Digital network, Job shop scheduling, Multiweights calibration, 

Poisson sampling, Sample size determination. 

 

1. Introduction 

 

The development of the Internet and the increased availability of digital data has elicited a need for data exploration 

and the extraction of pertinent knowledge through estimation. Digital data (known as big data) is complex and costly 

to intercept, store, and analyse. For example, suppose you have to store and process one petabyte of data per period 

of time such as a day or an hour, where a petabyte is E15 bytes of digital information and a byte is eight binary digits 

long. To depict big data, it is common to use the “5Vs”: (1) Velocity: the data is generated quickly in real time; (2) 

Volume: the amount of data per period of time; which complicates its manipulation using available infrastructure; (3) 

Variety: data sources and types are diverse; (4) Value: the potential knowledge that can be extracted from the data; 

and (5) Veracity: the level of inherent quality in big data and the likelihood of being error-prone.  

 

Analyses of a network usage and performance first require the interception of data transmitted between network 

computers and between others’ networks, possibly hidden from users’ population. Once intercepted, given that any 

relevant information present in the data is unknown to the analysts, the challenge consists therefore of (1) gaining 

insights into the intercepted data at low cost, and (2) defining the type of pertinent information that can be extracted 



 
 

(i.e., defining the parameter of interest 𝛉 among a set 𝛉 ଵ, . . . , 𝛉  of K potential parameters that can be estimated given 

the data at hand). Traditional sampling designs can be used under available computing infrastructure. However, there 

is no guideline on how to select the sample and how to choose the hidden though available, pertinent parameter. Unlike 

big data, in survey data situations, the parameter of interest  𝛉  is well defined prior to the questionnaire design and 

data collection and the sample size is derived with respect to the parameter of interest. 

 

In an attempt to analyse intercepted big data while minimizing costs, our workflow is organized as follows: in Section 

2, we first present an illustrative example, based on a simplified digital network, which is the basis of our motivation 

and to be used as a proxy in the simulation; in Section 3, we give a description of the proposed adaptive two-phase 

sampling design for exploring big data while minimizing costs and for estimating pertinent knowledge given the data 

currently available; in Section 4, we present two useful ingredients for data analysis, the first being the variance 

derivation and estimation used in this document, and the second being an example of the objective function when 

deriving the design parameter; in Section 5, we extend the notion of calibration to simultaneously adjust multiple sets 

of design weights in order to improve the precision of the estimates and to ensure the consistency of the estimates 

with constant quantities and between estimates using different or same sets of weights; finally, in Section 6, we use 

the simulated network to illustrate the proposed approach. 

 

2. Illustrative Study 

 

Digital data has augmented both the ways of understanding and the ways by which tasks are completed across an 

enormous array of disciplines. In this chapter, we present the context of a digital network that forms the setting for 

our simulation, the job shop problem, the scheduling method used in our simulation, and finally, the data generation.  

 

2.1 Digital Network 

 

Consider a simplified digital network which consists of two components: hosts and communication links. Each host 

has a unique internet protocol address allocated to it by the network. A digital network supports a number of services 

such as hired use of applications and data, storage servers, etc. Any given user from a population provides a service 

request which is sent over to the network to a certain set of hosts to perform a task on behalf of that user. Existing 

networks use thousands of hosts that serve hundreds of millions of users per day. The high number of requests impacts 

the performance of the network. The input information basically consists of the exact type of desired service and 

additional information including user identifiers and request times. Depending on the exact type of service required, 

requests can have different formats and layouts. The network analyzes the supplied information, processes it, and 

returns the results to the user, all the while generating a multitude of data during the process of requests. The data 

generated continuously over time constitutes big data.  

 



 
 

If the network only processes a single type of request, then this network can be represented diagrammatically by means 

of a directed graph 𝐆 = (𝐕, 𝐄), where 𝐕 is a set of vertices or nodes representing hosts with two special vertices, a 

source V and a sink V, representing the beginning and end of the graph; and 𝐄 is a set of edges or arrows representing 

distinct ordered pairs of vertices. This network can also be represented by an adjacency matrix, which is a matrix 

representation of exactly which nodes in the directed graph contains edges between them.  

 

2.2 Networks of Queues 

 

Any network is supplemented with a routing matrix which indicates the order of hosts to be visited by each service. 

Since each type of services has its own routing in terms of hosts, a network can be seen as a combination of S networks 

sharing the same hosts, where S denotes the number of available types of services. Each type s consists on a sequence 

of O(௦) operations or tasks, which must be performed in predetermined ordered sequence 𝐎(௦) = (o(ଵ), . . . , o((ೞ))) and 

each operation must be processed on a given host. Each single host can process only one operation at a time and once 

an operation starts on a given host it must be completed on the same host without interruption. In order to increase the 

execution capacity of the network, a host ℎ may represent a collection of H() hosts, with  H() ≥ 1. With this 

representation, a host ℎ can simultaneously perform H() requests simultaneously. When all the H() hosts are busy, 

any additional requests must wait in queue ℎ, say 𝑞(). Hence 𝑞()  represents the queue is where requests waited to be 

served in one of the to H() hosts. Since 𝑞() is attached to H() hosts, a digital network can also be seen as a network 

of queues, in which each 𝑞() controls access to H() hosts. When a single host becomes available; the first waiting 

request is assigned for service. If the queue processes requests in the order that they arrive; this management is termed 

as first come first serve. Each request 𝑘 arrives at queue 𝑞() at time  𝑎𝑘
(), so that the interarrival time is  ∆

()
= 𝑎

()
−

𝑎ିଵ
() , with  𝑎

()
= 0. Once a request arrives, it waits in the queue until all previous requests have been processed. The 

waiting time 𝑤𝑘
() spent in the queue 𝑞() is given by 𝑤

()
= max(𝑎

()
, 𝑏

()
) − 𝑎

() (Krivulin 1994), where  𝑔 =

𝑎𝑟𝑔𝑚𝑖𝑛  (𝑏ଵ
()

, … , 𝑏
ୌ()

()
)  and  𝑏ଵ

()
, … , 𝑏

ୌ()

()  is the vector of times where each component 𝑔  represents when single host 𝑔  

will next be available for request 𝑘. The response time 𝑟𝑘
() in queue 𝑞() for request 𝑘 is given by 𝑟𝑘

()
= 𝑤

()
+ 𝑠;𝑘

(), 

where 𝑠;𝑘
() denotes the service time in the singe host 𝑔 of queue 𝑞(). Once the service has been completed, the request 

leaves queue 𝑞(). The departure time of request 𝑘  is given by  𝑑
()

= 𝑎
()

+ 𝑟
() . 

 

2.3 Job Shop Scheduling  

 

Scheduling is the allocation of shared hosts over time to competing requests. This scheduling task is known in the 

literature as “Job Shop Scheduling” or “Job Shop Problem”. The objective of the Job Shop Problem is to schedule the 

requests on the hosts so as to minimize some objective function such as the makespan; the time to complete all requests 

under constraints such as: (1) no operation can be started until the previous operation for the same request is completed, 

(2) a single host can only process one operation, and (3) a single host must complete processing without interruption. 

This optimization problem is found to be NP-hard (Muth and Thompson 1963, Garey and Johnson 1979). For our 



 
 

illustration, requests are sorted in each queue 𝑞() by first arrival time and then by ascending order of their expected 

processing time. Let 𝑎𝑘 denote the arrival time to the network, then the response time 𝑟𝑘 and the departure time 𝑑𝑘 from 

the network are respectively given by  

 𝑟𝑘 = ∑୭∈𝐎(ೞ)∑ 𝐼୭
( )

𝑟𝑘
(), 

and 𝑑𝑘 = 𝑎𝑘+𝑟𝑘, 

where the indicator variable 𝐼୭
( ) is defined as  𝐼୭

( )
= 1 if the single host 𝑔 processed operation o, and is 𝐼୭

( )
= 0 if not. 

 

2.4 Data Generation 

 

To create heterogeneity in our synthetic population of size N, we first generate two explanatory variables 𝒖 =

(𝑢ଵ; , 𝑢ଶ;)் for each element 𝑘 of the population independently from 𝒖~𝑁(𝛍, 𝚺)், with  𝛍 = (μଵ, μଶ), and 𝚺 =

ቂ
𝜎ଵଵ 𝜌𝜎ଵ𝜎ଶ

𝜌𝜎ଵ𝜎ଶ 𝜎ଶଶ
ቃ. We maintained the population values 𝒖 fixed for 𝑘 = 1, . . . , N , and then we generated the interarrival 

time between requests sent by user 𝑘 from an exponential distribution with parameter 𝛼  satisfying 𝑙𝑜𝑔(𝛼 ) = 𝒖; 
் 𝜷(), 

𝒖; = (1, 𝑢ଵ; , 𝑢ଶ; )
், and 𝜷() = (𝛽ଵ

()
, 𝛽ଶ

()
, 𝛽ଷ

()
)். For each request 𝑟 

(௧), a service type 𝐬 
(௧) is generated from a 

multinomial distribution with values {1, ,2, . . . , S},  and probability 𝒑 
(௧)

= (𝑝ଵ; 
(௧)

, . . . , 𝑝ୗ; 
(௧)

)், where 𝐬 
(௧)

= (sଵ; 
(௧)

, . . . , sୗ; 
(௧)

)், 

𝑝ଵ; 
(௧)

= (1 + ∑ୀଶ
ୗ 𝑒𝑥𝑝( 𝒖௦; 

் 𝜷
(௦)

)ିଵ, 𝑝; = 𝑝ଵ; × 𝑒𝑥𝑝( 𝒖௦; 
் 𝜷

(௦)
) for 𝑙 = 2, . . . , S, and 𝒖௦; = (1, 𝑢ଵ; , 𝑢ଶ; )

். Value of 

simulation parameter is provided in Table 1.  

 

The processing time of a host is generated based on host’s clock speed. A computer’s clock speed, also referred to as 

clock rate or computer frequency, is an indicator of its performance and how rapidly a computer can process data. A 

higher frequency suggests better performance in common tasks. Usually, the clock speed is expressed in gigahertz 

(GHz) and reveals the number of instructions cycles the processor can run in a second, where one GHz is equals to E9 

Hz = 1 000 000 000 Hz. For example, a 4.2GHz processor is capable of running 4.2 billion cycles per second, and a 

clock speed of 3.2 GHz processor executes 3.2 billion cycles per second. Sometimes, multiple instructions are 

completed in a single clock cycle, while in other cases, one instruction might be handled over multiple clock cycles.  

 

Processing time of an operation 𝑖 of service s  in host ℎ is generated from an exponential distribution with parameter 

Θୱ୧;
(ℎ) , with  

 𝑙𝑜𝑔(Θୱ୧;
(ℎ)

) = 𝛽ୱ୧
(ℎ)

+ 𝛾 𝑢ଷ;
(௧) , 

where  𝛾 is a specified parameter to account for time variation, 𝑢ଷ;
(𝑡)   is a random variable generated from a 𝑁(0,1). The 

ordered operations sequence for each service type as well as values of the processing parameters are given in Tables 

1 and 2. Table 2 also provides the expected processing time for each operation. 

 

In Table 2, service 1 requires an expected execution time of 𝑒𝑥𝑝( . 06 + .02𝑢ଷ;
(௧)

) time units of host 2. The requirement 

of service 2 is 𝑒𝑥𝑝( . 05 + .02𝑢ଷ;
(௧)

) time units in expectation on host 1 followed by 𝑒𝑥𝑝( . 02 + .02𝑢ଶ;
(௧)

) time units in 



 
 

expectation on host 3. The requirement of service 3 is 𝑒𝑥𝑝( . 02 + .02𝑢ଷ;
(௧)

) time units in expectation on host 2 followed 

by 𝑒𝑥𝑝( . 04 + .02𝑢ଷ;
(௧)

) time units in expectation on host 3. The requirement of service 4 is 𝑒𝑥𝑝( . 02 + .02𝑢ଷ;
(௧)

) time 

units in expectation on host 3 followed by 𝑒𝑥𝑝( . 02 + .02𝑢ଷ;
(௧)

) time units in expectation on host 2 followed by 

𝑒𝑥𝑝( . 02 + .02𝑢ଷ;
(௧)

) time units in expectation on host 1.  

 

Table 3 shows 4 requests as an example. The first column gives time periods, the second column gives the arrival 

times, the third column gives the user identifiers, the fourth column gives the service types, and the fifth column gives 

the request sequence. Table 6 displays the expected processing time and the hosts sequence for each request. 

 

Table 1. Simulation Parameter 
 Parameter Value 
Size N 500 

P 5 

S 4 

H 3 

heterogeneity μଵ 1 
μଶ -1 
𝜎ଵ 1 
𝜎ଶ 1.5 
𝜌 -.4 

Interarrival time 𝜷() (-.2, -.1 ,1) 
Service Type 𝜷

ଶ
(௦)

 (-.3, .4, .5) 

𝜷
ଷ
(௦)

 (-.2, .3, .1) 

𝜷
ସ
(௦)

 (-.1, .3, , 2) 

Processing   

𝛾 .02 

𝛽ଵଵ
(ଶ) .06 

𝛽ଶଵ
(ଵ) .05 

𝛽ଶଶ
(ଷ) .02 

𝛽ଷଵ
(ଶ) .02 

𝛽ଷଶ
(ଷ) .04 

𝛽ଷଵ
(ଷ) .02 

𝛽ଷଶ
(ଶ) .02 

𝛽ଷଷ
(ଵ) .02 

 

  



 
 

 

Table 2. Expected Host Processing Time by Operation for Each Service 
 

Service 
 

Operation 
 Hosts 

Host 1 2 3 
1 

𝑜ଵଵ
(ଶ)

 2  𝑒𝑥𝑝( . 06 + .02𝑢
ସ;𝑘
(௧)

)  

2 
𝑜ଶଵ

(ଵ)
 1 𝑒𝑥𝑝( . 05 + .02𝑢

ସ;𝑘
(௧)

)   

𝑜ଶଶ
(ଷ)

 3   𝑒𝑥𝑝( . 02 + .02𝑢
ସ;𝑘
(௧)

) 

3 
𝑜ଷଵ

(ଶ)
 2  𝑒𝑥𝑝( . 02 + .02𝑢

ସ;𝑘
(௧)

)  

𝑜ଷଶ
(ଷ)

 3   𝑒𝑥𝑝( . 04 + .02𝑢
ସ;𝑘
(௧)

) 

4 
𝑜ସଵ

(ଷ)
 3   𝑒𝑥𝑝( . 02 + .02𝑢

ସ;𝑘
(௧)

) 

𝑜ସଶ
(ଶ)

 2  𝑒𝑥𝑝( . 02 + .02𝑢
ସ;𝑘
(௧)

)  

𝑜ସଷ
(ଵ)

 1 𝑒𝑥𝑝( . 02 + .02𝑢
ସ;𝑘
(௧)

)   

 

 

Table 3. Example of Requests 
Period(unit) Request Time(unit) Element Identifier Service Type Request Sequence 

1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 

1  
9 

11 
13 
14 
21      

3 
1 
2 
3 
1 
4 

1  
2 
3 
4 
5 
6       

  

  

Table 4. Excepted Processing Time 

Request 

Sequence 

Hosts Expected Processing Time Hosts Sequence 

First Second Third Total First Second Third 

1  
2 
3 
4 
5 
6       

1.27 
1.32 

.95 
1.32 
1.13 
1.36 

1.29 
 

.92 
1.35 

 
1.36 

 
 
 
 
 

1.36 

2.56 
1.32 
1.82 
2.67 
1.13 
4.07 

2 
2 
1 
2 
2 
3 

3 
 

3 
3 
 

2 

 
 
 
 
 

1 

 

 

3. The Proposed Design 

 

To analyse big data in discrete intervals, we divided the continuous time of the analysis period into a sequence of 

continuous time periods: 1, 2, etc. Suppose the limited length of duration of analysis is made up of P௫ phases, the 

𝑝௧ being of size 𝑛 time periods, so that the limited duration of analysis is made up of I௫ =  ∑ୀଵ
ೌೣ𝑛 time periods. 

This would mean that there would be a P௫ of phases of analysis and a population total of N = ∑ N
ೌೣ
ୀଵ  during the 

analysis period, where N is the size of the finite population of interest during phase 𝑝.  

 

Let  𝛘  denote the prior information we have on the big data and 𝛙  the true hidden information in the intercepted data. 

Under two random processes, we are primarily interested in the error-free random variable 𝛙, knowing its probability 

function, the probability function of another random variable 𝛘, together with the joint probability function 𝑓(𝛙, 𝛘; 𝛌)  

of (𝛘் , 𝛙்)் with vector parameter denoted by 𝝀. To choose a sample for estimation at each time period of analysis, 



 
 

we primarily need to determine the design parameter 𝚽, such as the sample size and the probability of selection of 

each element, the solution to some objective function O(𝚽; 𝛙, 𝛌) that requires the target information 𝛙 (Demnati 2019). 

Therefore, at each phase of data analysis, after receiving the information that the target random process has taken 

specific values (i.e., a new sample is selected), we update the parameter λ  of the joint probability distribution 

);,( λχψf  to revise the design parameter 𝚽 in the course of the data analysis progression.  

 

This section is organized as follows. Subsection 3.1 presents a straightforward description of the proposed adaptive 

analysis approach, while subsection 3.2 presents the proposed sampling design. Finally in subsection 3.3, we will 

discuss cost reduction throught the use of multiple samples. 

 

3.1 The Steps 

 

Our simple adaptation of the Demnati (2019)’ approach for the purposes of big data analysis in discrete intervals is as 

follows: 

a. Specify the: (1) set of possible potential parameters to be estimated, (2) population of interest for each parameter, 

(3) sampling frame and the sampling schemes, (4) estimator to be used for each parameter, (5) precision function 

for each estimator, (6) cost function of the analysis, and (7) desired precision for each estimator or the global cost 

of the analysis. 

 

b. First set 𝛙ଵ; = 𝛘, then for b=1, 2, … repeat continuously the following four steps until the end of data 

analysis 

 

b.1 Optimization Step.  

Optimize the objective function O(𝚽; 𝛙, 𝛌) – that involves both the precision and cost functions 

parameter, i.e., determine the optimal design parameter 𝚽 conditional on 𝛙 . 

 

b.2  Observation Step 

(1) Obtain the next phase 𝑝 of observations (i.e., select a new sample), and form the cumulative sample by 

combining all selected samples. 

(2) Estimate 𝛉() and V(𝛉()) to get 𝛉() and 𝜗(𝛉
(𝑝)

), where V(𝛉())  denotes the variance of the estimator 

𝛉() based on the cumulated sample 

 

b.3 Revision Step.  

Update the vector parameter 𝛌 and the missing values of 𝛙 using all available information i.e., (a) Update 

𝝀 to get  𝝀ାଵ using 𝐃;; and (b) Impute missing values of each component ψ of 𝛙 to get 𝐸ந(ψ|𝐃;, 𝝀),  

where  𝐃;  denotes all observed information until the end of phase 𝑝 of data analysis, and 𝐸ந denotes 



 
 

expectation with respect to the random process governing the component ψ. Note that ψାଵ; = ψ  when 

item ψ  is observed.  

 

b.4 Decision Step. Decide if the data analysis should stop (e.g.., 𝑝 = P𝑚𝑎𝑥). If not (e.g., 𝑝 < P𝑚𝑎𝑥), revise the 

specification of the design parameter as necessary and repeat the four steps (b.1 to b.4) continuously after 

observing some realizations of the target process. 

 

We refer to the above four steps as the Optimization-Observation-Revision- Decision (O-O-R- D) steps. The revision 

step incorporates learning and prediction, while the decision step incorporates actioning.  

 

3.2 The Sampling Design 

 

Continuous analysis in discrete intervals may require sample rotation, samples coordination, and combination of 

samples through time. Using Poisson sampling in combination with a permanent random number permits the 

satisfaction of the above requirements and simplifies the derivation of the second-order selection probabilities 𝜋
(௦௧), 

ultimately making it simpler when computing variance estimates for complex statistics such as measures of change. 

Here, the joint inclusion probabilities 𝜋
(௦௧) denotes the inclusion probability of element 𝑘 at time period 𝑠 and element 

𝑙 at time period  𝑡. Under Poisson sampling, we have 𝜋
(௦௧)

= 𝜋
(௦ )

𝜋
(௧) for 𝑘 ≠ 𝑙. From here, we must consider 𝜋

(௦௧)
=

𝜋
(௦௧). If the samples selection is independent from one time period to another then 𝜋

(௦௧)
= 𝜋

(௦ )
𝜋

(௧) for 𝑠 ≠ 𝑡 and 𝜋
(௧௧)

=

𝜋
(௧). Let I

(௧)
⊑ (0,1) denote the selection interval of element 𝑘 at time 𝑡, for example I

(௧)
= (0, 𝜋

(௧)
), where 𝜋

(௧) is the 

selection probability for element 𝑘 at time 𝑡. We have 𝜋
(௧)

= 𝑙( I
(௧)

) where 𝑙(. ) denote the length of the selection 

interval. The probability for an element to be selected in at least one sample over time is given by 𝑙(∪௧ I
(௧)

) and the 

probability of selection for an element in every sample over time is given by 𝑙(∩௧ I
(௧)

), where (∪,∩) denote respectively 

the union and the intersection of sets. The combination of samples is just as straightforward under Poisson sampling. 

 

We propose the use of two-phase Poisson sampling which consists here of the selection of two or more dependent 

Poisson samples: selection of a first large Poisson sample ℘ from a cross-sectional part of big data, where elements 

are consulted and selection of several second small Poisson samples ℘  𝑔 = 1, . . , G  from ℘, which will be used for 

exploration at low cost. The design weights associated with the two-phase sample ℘ = (℘0, ℘1, . . . , ℘G) are 𝐰 =

(w; , wଵ; , . . . , wୋ;)், where w; = w(℘) = 𝑎;/𝜋; is the first-phase design weight, 𝑎; = 1(℘) is the first-

phase sample membership indicator variable for element 𝑘, i.e. 𝑎; = 1 if 𝑘 ∈ ℘, and 𝑎; = 0 if not, 1(℘) = 1(𝑘 ∈

℘), 1() is the truth function, 𝜋; = 𝐸(𝑎;) the first sample selection probabilities, w; = w(℘), w(℘) =

w(℘)w


൫2ห1൯
(℘), w

(2|1)
(℘) = w(℘|𝑘 ∈ ℘) = 𝑎;

(ଶ|ଵ)
/𝜋;

(ଶ|ଵ) is the conditional second-phase design weight, 𝑎;
(ଶ|ଵ)

=

1(℘|𝑘 ∈ ℘) is the conditional second-phase sample ℘ membership indicator variable for element 𝑘, and  𝜋;
(ଶ|ଵ)

=

𝐸(𝑎;
(ଶ|ଵ)

|𝑎; = 1)  is the subsample 𝑔  selection probabilities.  



 
 

 

 

Consider the general linear form given by 

 𝐔 = ∑𝐔
்𝐰, (3.1) 

where 𝐔 is a (𝐺 + 1) × 𝑀 matrix of constants and ∑ denotes the sum over the cross-sectional population elements. 

Under Poisson sampling at both stages, the variance of the general form (3.1) is given by  

 V(𝐔) = ∑𝐔
்𝐶𝑜𝑣(𝐰 , 𝐰)𝐔. (3.2) 

with 𝐶𝑜𝑣(𝐰 , 𝐰) =

⎝

⎜
⎛

(1 − 𝜋;)/𝜋; (1 − 𝜋;)/𝜋; ⋯ (1 − 𝜋;)/𝜋;

(1 − 𝜋;)/𝜋; (1 − 𝜋ଵ;)/𝜋ଵ; (1 − 𝜋ଵୋ;)/𝜋ଵୋ;

⋮
(1 − 𝜋;)/𝜋; (1 − 𝜋ୋଵ;)/𝜋ୋଵ; (1 − 𝜋ୋ;)/𝜋ୋ; ⎠

⎟
⎞

, 

with 𝜋; = 𝜋;,  𝜋; = 𝜋;𝜋;
(ଶ|ଵ) and 𝜋;

(ଶ|ଵ)
= 𝐸(𝑎;

൫2ห1൯
𝑎;

൫2ห1൯
|𝑎; = 1) = 𝑃𝑟(𝑘 ∈ ℘ ∩ ℘|𝑎; = 1), 

 

A variance estimator of the general linear form 𝐔ෝ is given by  

 𝜗(𝐔) = ∑𝐔
் 𝑐𝑜𝑣( 𝐰 , 𝐰)𝐔. (3.3) 

with 𝑐𝑜𝑣( 𝐰 , 𝐰) = 𝑑𝑖𝑎𝑔(𝐰)𝐂𝑑𝑖𝑎𝑔(𝐰), 

and 𝐂 =  

⎝

⎜
⎛

(1 − 𝜋;) (1 − 𝜋;) ⋯ (1 − 𝜋;)

(1 − 𝜋;) (1 − 𝜋ଵ;) (1 − 𝜋ଵୋ;)

⋮
(1 − 𝜋;) (1 − 𝜋ୋଵ;) (1 − 𝜋ୋ;)

⎠

⎟
⎞

. 

 

3.3 Why Not Just a Unique Sample 

 

The answer to this question is derived  from the motivation behind the traditional two-phase sampling. The traditional 

two-phase sampling consists of the selection of two dependent samples: selection of a first large sample ℘ in which 

the auxiliary variable 𝒙 is measured and selection of a second small sample ℘ from ℘  in which the variable of interest 

𝑦 is measured. Two-phase sampling is appropriate when the 𝒙 -values are less costly to collect than the expensive 𝑦 -

values.  The goal of the first sample is to obtain a precise estimate related to the auxiliary variable 𝑥 which can be used 

for sub-sampling and for estimation. For example, the two-phase ratio estimator, Yோ = X𝑌/X, is often used as an 

estimator of the population total Y = ∑𝑦, where Y = ∑w𝑦, X = ∑w𝑥, X = ∑w;𝑥, w;  denotes the first-

phase design weight attached to the 𝑘௧ℎ element, w denotes the design weight attached to the 𝑘௧ℎ element of the 

second-phase sample ℘, and ∑ denotes summation over the population elements. Two-phase sampling was first 

termed “double sampling” and studied by Neyman (1938) to answer the question: which sizes of the initial sample 

and the subsequent sample yield the most accurate estimate of the variable of interest under cost constraint. Cochran 

(1977, pages 327-332) and Särndal et al. (1992, pages 478-480) discussed the samples size determination in the case 

of two-phase sampling with simple random sampling at the first-phase and stratified simple random sampling at the 

second phase. 

 



 
 

The double expansion estimator (Kott and Stukel, 1997), also known as “the *  estimator” in Särndal et al.  (1992, 

page 347) is the two-phase Horvitz-Thompson-type estimator of the population total. This estimator relies only on 

sampling design, ignoring the auxiliary information in the estimation step as the result the two-phase ratio or regression 

estimator, is used more as an estimator of the population total. Cochran (1977, pages 338-344) discussed the use of 

the ratio and regression estimators and their associated estimated variances in the case of two-phase sampling with 

simple random sampling in the first-phase and stratified random sampling in the second phase. Särndal et al.  (1992, 

pages 343-366) extended this work for arbitrary sample designs at each phase, using the linear regression estimator to 

incorporate the auxiliary information. Rao and Sitter (1995) derived linearization variance estimators under the two-

phase simple random sampling that takes better advantage of the available first-phase auxiliary information than the 

standard estimator. Demnati and Rao (2009) considered two-phase sampling in which values of the variable of interest 

are observed in the second-phase subsample. Values for the first-phase sample elements are mass imputed using values 

from an administrative file when they are available and generalized regression imputation when administrative files 

are not available. They studied both naïve and design-consistent estimators for a population total under the above set-

up and obtained associated variance estimators. In the next chapter, we illustrate variance derivation and estimation 

for a calibrated estimator under the traditional two-phase sampling. 

 

4. Two Useful Ingredients 

 

In this section, we present the method used in this document for variance derivation and estimation. We illustrate the 

method with an example useful for the present work. Then, we explore an objective function used when deriving the 

design parameter. Finally, results of an illustration study using independent calibration estimators are presented. 

 

4.1 Variance Derivation and Estimation Approach 

 

We use the linearization approach of Demnati and Rao (2004, 2010) to derive variances and variance estimators. We 

first give a brief account of the Demnati‒Rao (DR) approach. Let 𝒅 = ( 𝑑ଵ; , 𝑑ଶ; , . . . , 𝑑𝑝;)்
 be a p× 1 vector of random 

weights and 𝒖 = (𝑢ଵ; , . . . , 𝑢;)் be a 𝑝 × 1 vector of constants for 𝑘 = 1, . . . , N, where N denotes the size of the 

population. Let 𝐔 = ∑𝐔
்𝒅 be a linear combination and, using an operator notation, let V(𝒖) and 𝜗(𝒖) denote 

respectively the variance of 𝐔 and its variance estimator. DR expressed an estimator 𝛉 and its induced parameter 𝛉 =

𝐸(𝛉) as 𝛉 = 𝑓(𝐀ௗ) and 𝛉 = 𝑓(𝐀𝜼), where 𝐀ௗ is a 𝑝 × N matrix with 𝑘௧ column 𝒅, 𝐀𝜼 is a 𝑝 × N matrix with 𝑘௧ 

column  𝜼 = 𝐸(𝒅) and 𝐸 denotes expectation under random processes involved. The DR linearization variance and 

variance estimator of 𝛉 = 𝑓(𝐀ௗ) are simply given by Vோ(𝛉) = V(𝒛) and 𝜗ோ(𝛉) = 𝜗(𝒛) respectively, where V(𝒛) is 

obtained from V(𝑢) by replacing 𝒖 by 𝒛 = 𝜕𝑓(𝐀)/𝜕𝒃
்|𝐀್ୀ𝐀𝜼

, and 𝜗(𝒛) is obtained from 𝜗(𝒖) by replacing 𝒖 by 

𝑧 = 𝜕𝑓(𝐀)/𝜕𝒃
்|𝐀್ୀ𝐀

, where 𝐀 is a 𝑝 × N matrix of arbitrary real numbers with 𝑘௧ column 𝒃 =

(𝑏ଵ; , 𝑏ଶ; , . . . , 𝑏 ;)்.  

 

 



 
 

 

To illustrate the DR approach, we considered the population parameter 𝛉 defined as solution to “census” estimating 

equation of the form 

  𝐒( 𝛉) = ∑𝐒
்(𝛉) − 𝒖(𝛉) = 𝟎. (4.1) 

where 𝐒(𝛉) is a 𝑝 × M dimensional matrix-valued function of the known parameter 𝛉 and others characteristics, and 

the function 𝒖(𝛉) allows for explicitly defined parameters. For the univariate linear and logistic regression models, 

𝐒(𝛉) = 𝒙(𝑦 − 𝜇(𝒙
்𝛉)), and 𝒖(𝛉) = 𝟎. For the special case of the finite population total Y = ∑𝑦, 𝐒(𝛉) = 𝑦, 

𝒖(𝛉) = 𝛉 and 𝛉 = Y . A design-based estimator 𝛉  of  𝛉 is the solution to following weighted estimating equation 

  𝐒( 𝛉) = ∑𝐒
்( 𝛉)𝐰 − 𝒖( 𝛉) = 𝟎. (4.2) 

 

Following DR approach, we write  𝛉  as 𝑓(𝐀ௗ), where 𝐀ௗ is a N ×  𝑝 vector with 𝑘௧ element  𝒅 = 𝐰 and 𝑝 = G + 1. 

The DR variance of   𝛉  is given by 𝑉𝑎𝑟ோ൫ 𝛉൯ = V൫𝒁෩൯,  with 𝒁෩ = 𝜕𝑓(𝐀)/𝜕𝑏|𝐀್ୀ𝐀𝜼
. Taking the derivatives of 𝑓(𝐀) 

and evaluating it at 𝐀 = 𝐀𝜼 , we get 

 𝒁෩
் = {𝐉(𝛉)}ିଵ𝐒

்(𝛉). (4.3) 

where 𝐉(𝛉) = −𝜕𝐒்( 𝛉)/𝜕𝛉. The DR variance of  𝛉   is given by (3.2) with 𝐔
் replaced by  𝒁෩

் given by (4.3). 

 

Similarly, taking the derivatives of 𝑓(𝐀) and evaluating it at 𝐀 = 𝐀ௗ, we get  

 𝒁
் = {𝐉መ(𝛉)}ିଵ𝐒

்(𝛉) , (4.4) 

where 𝐉መ(𝛉) = −𝜕 𝐒்(𝛉)/𝜕𝛉. The DR variance estimator of the estimator  𝛉 is given by (3.3) with 𝐔
் replaced by 𝒁

் 
given by (4.4). 

 

4.2 Specification of the Objective Function 

 

At phase 𝑝, the design consists on the selection of a first large Poisson sample ℘
() from the cross-sectional population 

of size 𝑁,  and selection of G second samples ℘𝑔
() from ℘

(). We decompose the cost for each period of analysis as 

 𝐶() = 𝑐 + 𝐶𝑠 + 𝐶𝑐, 

where 𝑐  is a fixed cost. The second component 𝐶௦ is associated with the sampling selection and it is given by 𝐶௦ =

∑𝑎;𝑐;
(௦)

+ ∑𝑎;∑ୀଵ
ீ 𝑎;

(ଶ|ଵ)
𝑐;

(௦) , where 𝑐;
(௦)  is the first-phase sampling cost for unit 𝑘 and 𝑐;

(௦)   is the second-phase 

sampling cost for unit 𝑘. The third component 𝐶 is associated with the process cost and it is given by 𝐶 , = ∑𝑎;𝑐;
()

+

∑𝑎;∑ୀଵ
ீ 𝑎;

(ଶ|ଵ)
𝑐;

() , where 𝑐;
()  is the first-phase process cost for unit 𝑘 and 𝑐;

()  is the second-phase process cost for 

unit 𝑘 in subsample 𝑔.  

 

The conditional probability that element k  will be selected in in the first-phase sample is constructed as 

 𝑙𝑜𝑔{ 𝜋;/(1 − 𝜋;)} = 𝒗;
் 𝚽, 

where 𝒗; is the vector of explanatory variable and 𝚽 is the unknown vector parameter to be determined.  



 
 

 

Similarly, the conditional probability that element k  will be selected in the second phase sample, given that the 

element is selected in the first-phase sample, is constructed as 

 𝑙𝑜𝑔{ 𝜋;
(ଶ|ଵ)

/(1 − 𝜋;
(ଶ|ଵ)

)} = 𝒗;
் 𝚽, 

where 𝒗; is the vector of explanatory variable and 𝚽 is the unknown vector parameter to be determined.  

 

To create a design at phase 𝑝 i.e., to derive the design parameter 𝚽(𝑝) = (𝚽
் , 𝚽ଵ

் , … , 𝚽ୋ
்), we minimize the conditional 

expected cost 

 𝑚𝑖𝑛
𝚽(𝑝)

 𝐶ഥ
(𝑝)

,  

subject to constraints on Λ variances:  

 𝑉𝑎𝑟ோ(θ
(𝑝)

) ≤ V
(𝑝),  𝜅 = 1, . . . , Λ 

where  V are specified tolerances, and 𝑉𝑎𝑟ோ(θ  ) is the DR variance of the estimator θ    for the 𝜅௧ parameter of 

interest 𝜅 = 1, . . . , Λ. For example, one could specify an upper limit, ℑ, on the coefficient of variation of θ   so that 

V = {ℑ𝐸(θ  )}ଶ. One may repeat the optimization process with different value of ℑ, 𝜅 = 1, . . . , Λ, to obtain the desired 

minimum cost.  

 

The expected cost is given by 𝐶̅() = 𝑐 + 𝐶ത𝑠 + 𝐶ത𝑐., where the sampling component 𝐶௦̅ is given by 𝐶௦̅ = ∑𝜋;𝑐;
(௦)

+

∑ୀଵ
ீ ∑𝜋;𝑐;

(௦) . The process component 𝐶̅ is given by 𝐶̅ = ∑𝜋;𝑐;
()

+ ∑ୀଵ
ீ ∑𝜋;𝑐;

() . We do not have an explicit 

solution, but nonlinear programming can be used to get a constrained minimum 𝚽.  

 

4.3 Illustration using Independent Calibration 

 

The two-phase ratio estimator, defined in subsection 3.3, can be viewed as a calibration estimator, Yோ = ∑𝑤𝑦, with 

explicit weight 𝑤 = 𝑤(X/X) and satisfying the calibration constraint ∑𝑤𝑥 = X. We consider first calibrated 

estimator Y෩ = ∑𝑤;𝑦 of the population total Y = ∑𝑦 with explicit weights  𝑤; = 𝑤;F(𝒙
்𝝀 ) and satisfying the 

calibration constraint 𝐒(𝝀) = ∑ 𝑤;F൫𝒙
்𝝀൯𝒙 − 𝐗 = 𝟎, where  𝒙 = (𝑥ଵ; , . . . , 𝑥;)். We write Y෩ = 𝑓(𝐀𝐰), where 𝐀𝐰 

is a 2 × N matrix with 𝑘௧ column  𝒘 = (𝑤; , 𝑤;)். Taking the derivatives of 𝑓(𝐀𝒃)  with respect to the weight, we 

get 

 డ(𝐀𝒃)

డబ;ೖ
= 𝐐௫௬(𝐀𝒃)

డ𝝀(𝐀𝒃)

డబ;ೖ
, (4.4.a) 

and డ(𝐀𝒃)

డೖ
= F൫𝒙

்𝝀(𝐀𝒃)൯𝑦 + 𝐐௫௬(𝐀𝒃)
డ𝝀(𝐀𝒃)

డೖ
, (4.4.a) 

where 𝐐௫௬(𝐀𝒃) = ∑𝑏Fሖ (𝒙
்𝝀(𝐀𝒃))𝒙𝑦, Fሖ (𝑎) = 𝜕𝐹(𝑎)/𝜕𝑎, and 𝐀𝒃 is a 2 × N matrix of constants. To get the derivatives 

of  𝝀(𝐀𝒃), we take the derivatives of the calibration constraint.  

We have 𝜕𝐒(𝝀(𝐀𝒃))/𝜕𝑏; =  𝐐௫௫(𝐀𝒃)(𝜕𝝀(𝐀𝒃)/𝜕𝑏;) − 𝒙 = 𝟎, or 

 డ𝝀(𝐀𝒃)

డబ;ೖ
= { 𝐐௫௫(𝐀𝒃)}ିଵ𝒙 (4.5.a) 

where 𝐐௫௫(𝐀𝒃) = ∑𝑏Fሖ (𝒙
்𝝀(𝐀𝒃))𝒙𝒙

் . 



 
 

 

Similarly, 𝜕𝐒(𝝀(𝐀𝒃))/𝜕𝑏 = F൫𝒙
்𝝀(𝐀𝒃)൯𝒙 + 𝐐௫௫(𝐀𝒃)(𝜕𝝀(𝐀𝒃)/𝜕𝑏) = 𝟎, or 

 డ𝝀(𝐀𝒃)

డೖ
= −{ 𝐐௫௫(𝐀𝒃)}ିଵF൫𝒙

்𝝀(𝐀𝒃)൯𝒙 (4.5.b) 

Replacing (4.5) into (4.4) we get 

 డ(𝐀𝒃)

డబ;ೖ
= 𝐐௫௬(𝐀𝒃){ 𝐐௫௫(𝐀𝒃)}ିଵ𝒙 (4.6.a) 

 డ(𝐀𝒃)

డೖ
= F൫𝒙

்𝝀(𝐀𝒃)൯𝑦 − 𝐐௫௬(𝐀𝒃){ 𝐐௫௫(𝐀𝒃)}ିଵF൫𝒙
்𝝀(𝐀𝒃)൯𝒙 (3.6.b) 

Evaluating (4.6) at 𝐀 = 𝐀ఓ, we get 

 𝒛 = ቊ
𝒙

்𝐁

(𝑦 − 𝒙
்𝐁)

 (4.7) 

where 𝐁 = {∑𝒙𝒙
்}ିଵ∑𝒙𝑦. The DR variance of the calibrated estimator Y෩ = ∑𝑤𝑦  is given by V(𝒖) with 𝒖 =

(𝑢; , 𝑢)் replaced by 𝒛 given by (4,7). Using (3.2), we get 

 V(𝒖) = −∑(𝑢; + 𝑢)ଶ + ∑𝑢;
ଶ /𝜋; + ∑{(𝑢; + 𝑢)ଶ − 𝑢

ଶ}/𝜋;. (3.8) 

While the variance of the double expansion estimator Y = ∑𝑤;𝑦  is equal to V(Y) = −∑𝑦
ଶ + ∑𝑦

ଶ/𝜋;. 

 

Similarly, the DR variance estimator of the calibrated Y෩ = ∑𝑤𝑦 is simply given by 𝜗(𝒖) with 𝒖 replaced by 𝒛, 

where 𝒛 = 𝜕𝑓(𝐀)/𝜕𝒃|𝐀್ୀ𝐀𝐰 . Evaluating (4.6) at 𝐀 = 𝐀𝐰 , we get respectively 

 𝒛 = ቊ
𝒙

்𝐁

F(𝒙
்𝝀) (𝑦 − 𝒙

்𝐁)
 (4.9) 

where 𝐁 = {∑𝑤Fሖ (𝒙
்𝝀)𝒙𝒙

்}ିଵ∑𝑤Fሖ (𝒙
்𝝀)𝒙𝑦. 

 

We first generate two explanatory variables 𝒖 = (𝑢ଵ; , 𝑢ଶ;)் for each element 𝑘 of the population independently from 

𝒖~𝑁(𝛍, 𝚺)், with  𝛍 = (μଵ, μଶ), and 𝚺 = ቂ
𝜎ଵଵ 𝜌𝜎ଵ𝜎ଶ

𝜌𝜎ଵ𝜎ଶ 𝜎ଶଶ
ቃ. We set 𝛍 = (1, −1), 𝜎ଵ = 𝜎ଶ = 5, and 𝜌 = .4. We maintained 

the population values 𝒖 fixed for 𝑘 = 1, . . . , N, and then we generated 𝑦ଵ; from the Bernoulli distribution with success 

probability satisfying logit(𝑝) = 𝒗 
் 𝜷ଵ with 𝜷ଵ = (−.3, .4, .6) and 𝒗 = (1, 𝑥ଵ; , 𝑥ଶ;)், and 𝑦ଶ; from the normal 

distribution with mean 𝜇 = 𝒗 
் 𝜷ଶ with 𝜷ଶ = (20,2,5) and variance equals to 25. Two parameters are of interest, θ

()
=

∑𝑦;  𝑖 ∈ {1,2} Three scenarios are considered for the estimation of θ
(): 1) θଵ

()
= ∑𝑤;𝑦; using the first-phase 

sample only; 2) θଶ
(ଵ)

= ∑𝑤;𝑦ଵ;, and θଶ
(2)

= ∑𝑤ℎ;𝑦2;  using the double expansion estimator and the two-phase 

sample 𝑔 and ℎ  with 𝑔 ≠ ℎ; and, 3) θ෨ଷ
(ଵ)

= ∑𝑤;𝑦ଵ; and θ෨ଷ
(2)

= ∑𝑤ℎ;𝑦ଶ; with explicit weight 𝑤; = 𝑤;F(𝒙
்𝝀 ) 

and 𝑤ℎ; = 𝑤ℎ;F(𝒙
்𝝀ℎ ), respectively and satisfying the calibration constraint 𝐒(𝝀 ) ) = ∑ 𝑤;F൫𝒙

்𝝀 ) ൯𝒙 − 𝐗 = 𝟎 

and 𝐒(𝝀ℎ ) ) = ∑ 𝑤ℎ;F൫𝒙
்𝝀ℎ ) ൯𝒙 − 𝐗 = 𝟎, where 𝒙 = (1, 𝑥ଵ; , 𝑥ଶ;)் and 𝑔 ≠ ℎ. We first write each estimator as 

𝑓(𝐀𝐰), where 𝐀𝐰 is a 2 × N matrix with 𝑘௧ column  𝒘 = (𝑤; , 𝑤;)், then we take the derivatives of 𝑓(𝐀𝒃)  with 

respect to the weight, and we evaluate it at 𝐀 = 𝐀ఓ, to get, 

for scenario 1, 𝒛; = ቄ
𝑦;

0
 

for scenario 2, 𝒛; = ൜
0

𝑦;
 



 
 

for scenario 3, 𝒛 = ቊ
𝒙

்𝐁

(𝑦; − 𝒙
்𝐁)

≡ ൜
�̃�;

�̃�;
 

where 𝐁 = {∑𝒙𝒙
்}ିଵ∑𝒙𝑦;. 

Under scenario 1, the optimization problem consists on the determination 𝚽 = (Φ
(ଵ)

, Φ
(ଶ)

, Φ
(ଷ)

)்  such that the 

expected cost 𝐶̅ = ∑𝜋;𝑐,  is minimized subject to constraints on the variance 

 −∑𝑦ଵ;
ଶ + ∑𝑦ଵ;

ଶ /𝜋; ≤ Vଵ,  

and −∑𝑦ଶ;
ଶ + ∑𝑦ଶ;

ଶ /𝜋; ≤ Vଶ. 

 

Under scenario 2, the optimization problem consists on the determination 𝚽 =

(Φ
(ଵ)

, Φ
(ଶ)

, Φ
(ଷ)

, Φ
(ଵ)

, Φ
(ଶ)

, Φ
(ଷ)

, Φ
(ଵ)

, Φ
(ଶ)

, Φ
(ଷ)

)்  such that the expected cost  𝐶̅ = ∑(𝜋;𝑐; + 𝜋;𝑐;; + 𝜋;𝑐;), 

with 𝑐; + 𝑐;; + 𝑐; = 𝑐 and 𝑔 ≠ ℎ,  is minimized  subject to constraints on the variance 

 −∑𝑦ଵ;
ଶ + ∑𝑦ଵ;

ଶ /𝜋; ≤ Vଵ,  

and −∑𝑦ଶ;
ଶ + ∑𝑦ଶ;

ଶ /𝜋; ≤ Vଶ. 

 

Under scenario 3, the optimization problem consists on the determination 𝚽 =

(Φ
(ଵ)

, Φ
(ଶ)

, Φ
(ଷ)

, Φ
(ଵ)

, Φ
(ଶ)

, Φ
(ଷ)

, Φ
(ଵ)

, Φ
(ଶ)

, Φ
(ଷ)

)் such that the expected cost  𝐶̅ = ∑(𝜋;𝑐; + 𝜋;𝑐;; + 𝜋;𝑐;), 

with 𝑐; + 𝑐;; + 𝑐; = 𝑐 and 𝑔 ≠ ℎ, is minimized  subject to constraints on the variance 

 −∑(�̃�ଵ; + �̃�ଵ;)ଶ + ∑{(�̃�ଵ; + �̃�ଵ;)ଶ − �̃�ଵ;
ଶ }/𝜋; + ∑ �̃�ଵ;

ଶ /𝜋; ≤ Vଵ,  

and  −∑(�̃�ଶ; + �̃�ଶ;)ଶ + ∑{(�̃�ଶ; + �̃�ଶ;)ଶ − �̃�ଶ;
ଶ }/𝜋; + ∑ �̃�ଶ;

ଶ /𝜋; ≤ Vଶ. 

 

Here V = (cv × ∑𝑦;)ଶ with 𝑐𝑣 = .05,  and 𝜋; = 𝜋;𝜋;
(ଶ|ଵ). The derivatives of 𝜋; and 𝜋; are respectively �̇�; =

𝒙;𝜋;(1 − 𝜋;) and  �̇�; = 𝒙;𝜋;(1 − 𝜋;) + 𝒙;;𝜋;(1 − 𝜋;
(ଶ|ଵ)

). These derivatives are useful for the 

optimization procedure. We set (𝑐0;𝑘, 𝑐1;;𝑘, 𝑐2;𝑘) = (1,10,20). Table 5, displays results of the illustration. It is clear from 

Table 5 that when the costs and characteristics differ from one variable to another, the use of different sub-samples 

makes it possible to reduce the total cost. 

 

Table 5: Result of the Sample Size Determination Using (𝑐0;𝑘, 𝑐1;;𝑘, 𝑐2;𝑘) = (1,10,20) 
Strategy Calibration Expected Total Cost Expected Sample Size 

℘𝟎 ℘𝟏  ℘𝟐 
℘𝟎 No 7 281 108   

℘𝟎, ℘𝟏, ℘𝟐 No 2 381 176 77 72 
℘𝟎, ℘𝟏, ℘𝟐 Yes 1 589 160 53 45 

 
 

5. Multiple Weights Calibration 

 

Poisson sampling, an easy sampling scheme, simplifies samples combination and variance computation. It is also a 

flexible way to incorporate auxiliary information into the design at the sampling stage. However, Poisson sampling 

presents a drawback because the sample size is random which causes a very large variance of any Horvitz-Thompson 



 
 

(HT) estimator of a population total. For example, the HT estimator of the total under Bernoulli sampling has a much 

greater variance than under simple random sampling. Fortunately, the use of calibrated estimators eliminates this 

drawback almost entirely. Calibration is also used to incorporate auxiliary information into the design at the estimation 

step, and to ensure consistency with fixed quantities such as finite population known totals. In the context of this work 

of multiple sets of weights, it is desirable to maintain consistency between estimates from multiple sets of weights 

coming from different samples selected from the same population.   

 

5.1 A General Class of Regression Calibration Weights 

 

Let 𝒅 be the 𝑝 × 1 vector of random weights, 𝜼 = 𝐸(𝒅), 𝐘 be a 𝑝 × M design matrix related to the statistics of 

interest, 𝐗ௗ; be a 𝑝 × 𝑞 design matrix related to the auxiliary variables, and 𝐗ఎ; be a 𝑝 × 𝑞 design matrix related to 

the expected values. Let the estimator be 𝛉 = ∑𝐘
்𝒅 and zero-mean linear equation be 𝐗∘ = ∑(𝐗ௗ;

் 𝒅 − 𝐗ఎ;
் 𝜼).  

For example consider the traditional two-phase sampling design with 𝒅 = (w; , w)். If 𝐘 denotes the estimator 𝐘 =

(Y, Y)் of the population total 𝐘 = ∑𝒚 with 𝒚 = (𝑦; , 𝑦)், then 𝛉 = ∑𝐘
்𝜼, and 𝛉 = ∑𝐘

்𝒅, with 𝐘 = 𝑑𝑖𝑎𝑔(𝒚), 

where 𝜼 = 𝐸(𝒅) = (1,1)், G = 1, and any zero-mean linear equation can be represented by 𝐗∘ = ∑(𝐗ௗ;
் 𝒅 −

𝐗ఎ;
் 𝜼). For the zero-mean linear equation 𝑋 − 𝑋 , 𝑞 = 1, 𝐗ௗ; = 𝑥(1, −1)் and 𝐗ఎ; = (0,0)், while for the zero-mean 

linear equation (𝑋 − 𝑋, 𝑋 − 𝑋)், 𝑞 = 2, 𝐗ௗ; = 𝑥𝐈ଶ and 𝐗ఎ; = 𝑥𝐈ଶ, where 𝐈ଶ is the identity matrix. Here, Y =

∑𝑤;𝑦;,  Y = ∑𝑤𝑦 and 𝑤 are the design weights of the two-phase sample. 

 

We define the regression calibrated estimator of the M × 1 linear quantity 𝛉 = ∑𝐘
்𝛈 as 

 𝛉෩ = 𝛉 − 𝐁்𝐗∘, (5.1) 

with 𝐁 = 𝐐

ିଵ 𝐐;, 

where 𝛉 = ∑𝐘
்𝒅, 𝐐ௐ = ∑∑𝐀

் 𝑐𝑜𝑣( 𝒅 , 𝒅)𝐖, and 𝑐𝑜𝑣( 𝒅 , 𝒅) = 𝑑𝑖𝑎𝑔(𝒅)𝐂𝑑𝑖𝑎𝑔(𝒅). We may write the 𝑖𝑗௧ℎ 

element of 𝐂 as 𝑐; = 𝐶𝑜𝑣(𝑑; , 𝑑;)/𝐸(𝑑;𝑑;) with 𝐶𝑜𝑣(𝑑; , 𝑑;) = 𝐸(𝑑;𝑑;) − 𝐸(𝑑;)𝐸(𝑑;). The regression calibrated 

estimator (5.1) can also be written in term of the g-factors 

 𝛉෩ = ∑𝐘
்𝑑𝑖𝑎𝑔(𝒅)𝐆, 

with 𝐆 = 𝟏 − ∑𝐂𝑑𝑖𝑎𝑔(𝒅)𝐗ௗ;𝐐

ିଵ 𝐗∘, (5.2) 

where 𝟏 is the 𝑝 × 1 vector of ones. Note that the generalized regression (Särndal et al. 1989) and the optimal linear 

regression (Montanari 1998) are special cases of (5.1). 

 

Illustrations under Traditional Two-phase sampling 

 

For the zero-mean linear equation 𝑋(ଵ) − 𝑋, we have 𝑞 = 1, 𝐗ௗ; = 𝑥(1,0)், 𝐗ఎ; = 𝑥(1,0)், and 

 𝐆 = ቀ
1
1

ቁ − ൬
∑𝑤;𝑥(1 − 𝜔;)

∑𝑤;𝑥(1 − 𝜔;)
൰ (𝑋(ଵ) − 𝑋)/𝜗(𝑋(ଵ)). 

If 𝒚 = (𝑥 , 0)் then θ෨ = X, the population total. If 𝒚 = (0, 𝑥)் then θ෨ = 𝑋 − 𝜗(𝑋(ଵ), 𝑋)(𝑋(ଵ) − 𝑋)/𝜗(𝑋(ଵ)), the 

“optimal” estimator from the subsample given the first-phase sample estimate.  



 
 

 

For the zero-mean linear equation  𝑋ଵ
(ଵ)

− 𝑋,  we have 𝑞 = 1, 𝐗ௗ; = 𝑥(1, −1)், 𝐗ఎ; = (0,0)், and 

 𝐆 = ቀ
1
1

ቁ − ൬
∑(𝑤; − 𝑤)𝑥(1 − 𝜔;)

∑{𝑤;(1 − 𝑤;) − 𝑤𝑑ଶ;(1 − 𝜔)}𝑥
൰ (𝑋(ଵ) − 𝑋)/𝜗(𝑋(ଵ) − 𝑋). 

If 𝒚 = (𝑥 , 0)் then θ෨ = 𝑋(ଵ) − {𝜗(𝑋(ଵ)) − 𝜗(𝑋(ଵ), 𝑋)(𝑋(ଵ) − 𝑋)/𝜗(𝑋(ଵ) − 𝑋). If 𝒚 = (0, 𝑥)் then, θ෨ = 𝑋 − {𝜗(𝑋) −

𝜗(𝑋(ଵ), 𝑋)(𝑋(ଵ) − 𝑋)/𝜗(𝑋(ଵ) − 𝑋).  

 

Finally, for example for the zero-mean linear equation X − X, we have 𝑞 = 1, 𝐗ௗ; = 𝑥(0,1)், 𝐗ఎ; = (0,1)், and 

 𝐆 = ቀ
1
1

ቁ − ൬
∑𝑤𝑥(1 − 𝜔)
∑𝑤𝑥(1 − 𝜔)

൰ (𝑋 − 𝑋)/𝜗(𝑋). 

If 𝒚 = (𝑥 , 0)் then θ෨ = 𝑋(ଵ) − 𝜗(𝑋(ଵ), 𝑋)(𝑋 − 𝑋)/𝜗(𝑋), the “optimal” estimator from the first-phase sample given the 

subsample estimate. If 𝒚 = (0, 𝑥)் then θ෨ = X, the population total. 

 

5.2 A General Class of Calibrated Estimators 

 

The calibration weights associated with the g-factors (5.2) may not be always nonnegative. To get around this 

difficulty in the univariate weight case, generalized raking ratio weights are often used. These weights are always 

nonnegative, but the method can lead to some extreme weights. The univariate generalized raking weights can also be 

extended under multiple design weights. We modify the regression calibrated estimator (5.1) as follows 

 𝛉෩ = ∑𝐘
்𝑑𝑖𝑎𝑔(𝒅)𝐅(𝐗ௗ;𝝀), (5.3.a) 

with 𝐅(𝐗ௗ;𝝀) = (F(𝐗ଵௗ;𝝀), . . . , F(𝐗 ௗ;𝝀)),  

where 𝐗 𝑖ௗ;
்  is the 𝑖௧ rows of the matrix 𝐗ௗ;, the 𝑞 × 1 vector estimator 𝝀 is the solution to the calibration equation 

 𝐒(𝝀) = ∑(𝐗ௗ;
் 𝑑𝑖𝑎𝑔(𝒅)𝐅(𝐗ௗ;𝝀) − 𝐗ఎ;

் 𝜼) = 𝟎. (5.3.b) 

 

5.3 Variance Estimation for the General Calibrated Estimators 

 

We used the general calibrated weights given by (5.3). We have 

 𝜕 (𝑏 𝑔;F(𝐗𝑔ௗ;
் 𝝀(𝐀)))/𝜕𝒃 𝑔; = F(𝐗𝑔ௗ;

் 𝝀(𝐀) + 𝑏 𝑔;�̇�(𝐗𝑔ௗ;
் 𝝀(𝐀))(𝜕𝝀(𝐀)/𝜕𝒃 𝑔;), (5.4.a) 

and for 𝑗 ≠ 𝑔 or 𝑙 ≠ 𝑘 

 𝜕 (𝑏 𝑗;F(𝐗𝑗ௗ;
் 𝝀(𝐀))/𝜕𝒃𝑔 ; = 𝑏 𝑗;�̇�(𝐗𝑗ௗ;

் 𝝀(𝐀))(𝜕𝝀(𝐀)/𝜕𝒃𝑔;), (5.4.b) 

where �̇�(. ) = 𝜕𝐅(. ) /𝜕𝝀் 

 

To evaluate (𝜕𝝀(𝐀)/𝜕𝑏𝑖;𝑘) we take the derivatives of the calibration EE (5.3.b) with respect to 𝑏;. This gives 

 𝐗𝑔ௗ;
் F(𝐗𝑔ௗ;

் 𝝀(𝐀)) + ∑(𝐗ௗ;
் 𝑑𝑖𝑎𝑔(𝒃𝑘)𝐅ሖ (𝐗ௗ;

் 𝝀(𝐀))𝜕𝝀(𝐀)/𝜕𝑏𝑔;𝑘 = 𝟎, 

or 𝜕𝝀(𝐀)/𝜕𝑏𝑔;𝑘 = −𝐐 ఒ
ିଵ(𝐀)𝐗𝑔ௗ;F(𝐗𝑔ௗ;

் 𝝀(𝐀)), (5.5) 

where 𝐐 ఒ(𝐀) = ∑(𝐗ௗ;
் 𝑑𝑖𝑎𝑔(𝒃𝑘)𝐅(ሖ 𝐗ௗ;

் 𝝀(𝐀)). 

 

Replacing (5.5) into (5.4), we get 



 
 

 𝜕 (𝑏 𝑔;F(𝐗ௗ;
் 𝝀(𝐀)))/𝜕𝒃 𝑔; = F(𝐗𝑔ௗ;

் 𝝀(𝐀) − 𝑏 𝑔;�̇�(𝐗𝑔ௗ;
் 𝝀(𝐀))𝐐ఒ

ିଵ(𝐀)𝐗𝑔ௗ;F(𝐗𝑔ௗ;
் 𝝀(𝐀)), (5.6.a) 

and for 𝑗 ≠ 𝑔 or 𝑙 ≠ 𝑘 

 𝜕 (𝑏 𝑗;F(𝐗𝑗ௗ;
் 𝝀(𝐀))/𝜕𝒃𝑔 ; = −𝑏 𝑗;�̇�(𝐗𝑗ௗ;

் 𝝀(𝐀))𝐐ఒ
ିଵ(𝐀)𝐗𝑔ௗ;F(𝐗𝑔ௗ;

் 𝝀(𝐀)), (5.6.b) 

  

For the linear calibrated estimator (3.1), 𝑓(𝐀ௗ) = ∑𝐔
்𝐰 = ∑∑𝑔𝑦𝑔;w 𝑔;, we get 

 𝜕𝑓(𝐀)/𝜕𝒃𝑔; = F(𝐗𝑔ௗ;
் 𝝀(𝐀)(𝑦𝑔 ; − 𝐁𝝀(𝐀)𝐗𝑔ௗ;}, (5.7) 

where 𝐁𝝀(𝐀) = ∑∑𝑔𝑦𝑔 ;{𝑏 𝑔;�̇�(𝐗𝑔ௗ;
் 𝝀(𝐀))𝐐ఒ

ିଵ(𝐀). 

 

The DR variance estimator of 𝑓(𝐀ௗ) is given by 𝜗( 𝐳), where 𝐳𝑔; = 𝜕𝑓(𝐀)/𝜕𝒃𝑔;|್ୀ
.  Evaluating (5.6) at 𝐀 =

𝐀𝒅, we get 

 𝒛𝑔; = F(𝐗𝑔ௗ;
் 𝝀(𝑦𝑔; − 𝐁𝝀𝐗𝑔ௗ;}, 

where 𝐁ఒ = ∑∑𝑔𝑦𝑔;𝑑 𝑔;�̇�(𝐗ௗ;
் 𝝀)𝐐 ఒ

ିଵ and 𝐐ఒ = ∑(𝐗ௗ;
் 𝑑𝑖𝑎𝑔(𝒅)𝐅(ሖ 𝐗ௗ;

் 𝝀). 

 

Concluding Remarks 

 

We formulated an adaptive approach for digital data exploration and pertinent knowledge extraction. We also 

proposed a simple sampling design that permits desirable properties such as samples combination and coordination 

over time periods, as well as variance estimation for complex estimators. The adaptive aspect of the proposed approach 

and the use of several sub-samples makes it possible to both adequately target the parameters of interest over time and 

reduce total costs, while all sampled elements are used by easily combining them. Calibration of multiple sets of 

weights is also completed to ensure the consistency of the estimates with constant quantities as well as between 

estimates using different or same sets of weights. Further simulations will be completed at a later time. 
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