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Abstract 
Traditional methods of latent variable modeling fix all non primary factor cross-loading 
values to zero, but the methods have evolved to allow non-zero cross-loading values. These 
new methods allow for improved modeling of latent constructs by enabling researchers to 
achieve better model fit while preserving the realistic relationship between items and 
factors. Exploratory structural equation modeling (ESEM) and Bayesian structural 
equation modeling (BSEM) both allow relaxing the restrictive assumption that force all 
minor cross-loading values to be constrained to zero. While some studies have compared 
BSEM and ESEM models to maximum likelihood confirmatory factor analysis models 
(Gucciardi & Zyphur, 2016; Guo et al., 2019; Wei et al., 2022), these comparisons have 
not been extended to include estimation across the different available software that have 
incorporated both methodologies. Considering the flexibility in specification of ESEM and 
BSEM in the presence of cross-loading, with the limited computational algorithms 
developed for estimating parameters of these models, a comparison of these models across 
different software packages is vital to understand the full potential that ESEM and BSEM 
methods provide to improve model fit. Using real data on mental ability test scores 
(Holzinger & Swineford, 1939), this study compares ESEM and BSEM estimation in 
Mplus and R. The results provide an appropriate application of these methods and an 
evaluation of the consistency of parameter estimates across software packages. 
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1. Background Literature 
 
Structural equation modeling (SEM) involves the estimation of latent variables in a model. 
While estimating latent variables is imperfect by nature, methodological advances in 
structural equation modeling have helped to improve model fit in models that would 
otherwise have been found unacceptable with traditional techniques. Confirmatory factor 
analysis (CFA) was first improved by the development of exploratory structural equation 
modeling (ESEM) which allowed for cross-loading values to be included in the models, 
rather than being forced to zero, as is done in traditional CFA (Asparouhov & Muthén, 
2009). ESEM allows statistically significant primary cross-loadings to be estimated, while 
non-primary cross-loadings can still be estimated with a restriction that they are close to 
zero rather than being fixed to zero. More recently, Bayesian structural equation modeling 
(BSEM) has sought to further improve model fit by allowing small, non-zero values for 
minor cross-loadings, rather than fixing them to zero (Muthén & Asparouhov, 2012). In 
other words, researchers can investigate non-primary factor-loadings without leading to 



model identification issues accompanied by estimating all minor cross-loadings in 
traditional estimation techniques (Muthén & Asparouhov, 2012; Steiger, 2002). ESEM and 
BSEM both offer significant advantages over traditional CFA by resulting in more realistic 
models that may have better model fit (Koizumi & In’nami, 2020; Muthén & Asparouhov, 
2012). While there are many software options for conducting CFA, few have been updated 
to include both ESEM and BSEM in their capabilities, and there has been little 
investigation into the accuracy and dependability of the software options that are capable 
of ESEM and BSEM. The purpose of this study is to compare the estimation of ESEM and 
BSEM across the software packages that have adopted both methodologies and learn more 
about the accuracy and precision of estimations provided by these software packages.  
 
The emerging field of structural equation modeling is valuable because it allows 
researchers to distinguish between observed and latent variables in their modes while also 
directly estimating latent variables (Guo et al., 2019). Structural Equation Models are 
commonly used in the social sciences to measure abstract concepts and variables that 
cannot be directly measured, and therefore typically require some prior domain knowledge 
to create successful models of latent concepts (Guo et al., 2019). In traditional structural 
equation models, non-significant factor loadings are fixed to zero and only hypothesized 
primary factor loadings have non-zero parameters that are freely estimated (Muthén & 
Asparouhov, 2012).  
 
ESEM, a technique developed over the past two decades, improved model fit and flexibility 
by allowing cross-loading factors into the models. More recently, BSEM started allowing 
all factors to have non-zero loading values, with non-significant factor loadings being near 
zero. BSEM models also specify informative prior distributions (Asparouhov & Muthén, 
2021; Muthén & Asparouhov, 2012). Since, it is unlikely that two variables in a model 
have no association of any kind, especially when measuring abstract concepts in the social 
sciences, BSEM may create models which better fit the data (Koizumi & In’nami, 2020).  
 
There have been studies, using both simulated and real-world data, that have demonstrated 
the ability of BSEM and ESEM methods to improve SEM/CFA (Craig, 2017; Gucciardi & 
Zyphur, 2016; Guo et al., 2019; Liang et al., 2020; Xiao et al., 2019). Most commonly, 
BSEM is compared to ICM-CFA and ESEM. Previous research comparing Bayesian and 
traditional SEM indicated that a Bayesian model with correctly specified informative priors 
outperforms frequentist models as well as naïve and non-informative Bayesian models 
(Smid et al., 2019). Although it is not surprising that the use of more accurate prior 
information outperforms less informative priors, the accessibility of known prior 
information in latent variable modeling is quite common. “Prior dependence” is a known 
issue in parameter estimate bias that practitioners need to consider when defining Bayesian 
priors (Asparouhov & Muthén, 2021; Muthén & Asparouhov, 2012). Bayesian models 
have performed better in estimating more complex models because they could incorporate 
model uncertainty more successfully than traditional SEM methods that involve no prior 
information (Smid et al., 2019). BSEM generally has better model fit compared to 
traditional CFA models, partly due to the Bayesian models being able to determine which 
covariates should vary and which covariates should remain fixed (Guo et al., 2019). 
Correctly specifying prior information is crucial to maximize the potential of BSEM in 
providing more realistic estimates of model parameters (Liang, 2020; Smid et al., 2019). It 
is known that correctly specifying target values is just as crucial to maximizing the 
potential of ESEM, but BSEM still provides additional model specifications over ESEM 
(Guo et al., 2019).  
 



There is a growing number of studies that support the notion that ESEM and Bayesian 
methods applied to SEM improve model fit by allowing for more flexible models. 
However, this is contingent on the prior information being correctly specified for factor 
loadings. The primary reason for improvement in model fit is allowing for major and 
minor, non-zero cross-loadings, rather than only allowing for major non-zero cross-
loadings and forcing non primary cross-loadings to be equal to zero, as is done in traditional 
SEM (Asparouhov & Muthén, 2009; Marsh et al., 2009; Muthén & Asparouhov, 2012). 
However, with increased model complexity and model fit may come increased estimation 
error. There is some concern that the more complex BSEM, especially those with poor 
prior specification or non-informative prior distributions, learn sample-specific aspects of 
the data, and as a result become noisier and less generalizable. Some studies have found 
that BSEM has better model fit, but also has higher estimation bias than ESEM (Guo et al., 
2019).  
 
Applied studies using real-world data have similarly found that BSEM and ESEM have 
improved model fit over traditional CFA models. Yet comparisons of analyses in Mplus 
provided varying degrees of model improvement for BSEM over ESEM (Koizumi & 
In’nami, 2020; Reis, 2017). Improved model fit of BSEM is often attributed to the strength 
of the known prior information available to researchers. Through all of this research, 
general software selection by researchers has been relegated to Mplus. There is a need to 
compare analysis results from Mplus to those from other software packages for traditional, 
ESEM, and BSEM latent construct estimation/validation methods. 
 
The only statistical analysis software that has incorporated both ESEM and BSEM are R 
and Mplus. BSEM methodology was introduced to Mplus around 2012 and R, through the 
blavaan package, around 2015 (Merkle & Rosseel, 2015; Muthén & Asparouhov, 2012). 
ESEM with minor cross-loadings methodology was introduced to Mplus around 2010 and 
to R, through various packages, around 2013 (Asparouhov & Muthén, 2009; De Beer & 
Van Zyl, 2019; Guàrdia-Olmos et al., 2013; Muthén & Asparouhov, 2012; Revelle, 2015).  
 
Since the adoption of both BSEM and ESEM methods in software, numerous applied and 
simulation studies have compared ESEM and BSEM performance, yet they have only 
utilized Mplus for the analysis (Gucciardi & Zyphur, 2016; Guo et al., 2019; Liang et al., 
2020; Morin, 2020; Wei et al., 2022; Xiao et al., 2019). Previous studies have compared 
parameter estimates for various types of analysis methods across software, but not within 
SEM framework, resulting in mixed conclusions regarding the consistency of parameter 
estimate. While some studies found consistent parameter estimates across software 
packages for non-SEM analyses, others found unexplainable differences in parameter 
estimates among different software for non-SEM analysis (Chang et al., 2020; Harper et 
al., 2011). While consistent parameter estimates across different software is expected, the 
only way to validate this is to estimate and evaluate models with multiple software. As the 
literature shows, the previous studies that compared BSEM and ESEM model parameter 
estimates used only Mplus for model validation and parameter estimation. None of the 
studies compared the results of model estimation in Mplus to parameter estimates obtained 
in R. An investigation of the available literature performed in August 2022 on blavaan R 
package, the only package available in R to estimate BSEM, and exploratory structural 
equation modeling returned only four relevant publications that discussed both analysis 
methods, yet none of the publications compared ESEM and BSEM estimates across 
software. To the best of our knowledge, no comparisons have been done across the 
software and methods. 
 



There is some documentation of model convergence issues and lengthy computation time 
when building Bayesian models using the blavaan package in R (Merkle & Jorgensen, 
2022). The blavaan package developers were made aware of a potential issue regarding 
lengthy estimation time and convergence issues in early 2022; however, no response to 
improve estimation time has been provided yet. While any individual can develop an R 
package, inherent issues are commonly recorded and must be updated by package 
authors/developers. Authors often become aware of issues through user reported issues and 
may attempt to fix them. 
 
Few studies have compared the parameter estimates of traditional SEM measurement 
across different software. No study to our knowledge has compared parameter estimates of 
BSEM and ESEM across different software. With the recent adoption of ESEM and BSEM 
techniques into statistical analysis software, research is needed to test the consistency of 
parameter estimates across different software. The primary purpose of this study was to 
explore parameter estimates and global fit indices across the different software that include 
both ESEM and BSEM techniques, thus allowing for estimation of all minimal cross-
loadings. To date, only Mplus and R include these features. We expect to find similar 
parameter estimates between Mplus and R, as well as similar improvements in model fit in 
ESEM and BSEM models with minimal cross-loadings, regardless of software choice. A 
secondary hypothesis of interest in this study was to explore whether estimation speed was 
improved with R, as previous Mplus simulations studies have been restricted by 
convergence times (Gittner, 2021). We hope this study provides continued support for 
alternatives to traditional measurement models and the practice of fixing non primary 
cross-loadings to zero. The results of this study will provide practitioners with knowledge 
regarding consistency of parameter estimates and global fit indices when using ESEM and 
BSEM methodology, as well as information on R and Mplus software specifications for 
these modeling techniques. 
 

2. Methods 
 
2.1 Data 
The data used for this methodological comparison was obtained from the 1939 Holzinger 
and Swineford study measuring mental abilities in 301 middle school aged children in 7th 
and 8th grades at two schools (Holzinger & Swineford, 1939). Their dataset has been used 
throughout the development of modern measurement techniques. Within their study, 26 
different tests were conducted to measure various mental abilities of these children. Each 
variable was measured on a continuous scale based on the outcome of the various tests 
conducted by Holzinger and Swineford, with the original hypothesized model measuring a 
general factor and five other primary factors (Holzinger & Swineford, 1939). Over time, 
the general factor indicators and two additional indicators have been dropped due to poor 
fit, leaving 19 of the original indicators to be used in different measurement models 
(Gustafsson, 2001; Harman, 1976). The same 19, out of the original 26, items, were used 
for analysis in our study, replicating the original development of BSEM techniques 
(Muthén & Asparouhov, 2012). Due to the known small sample size convergence issues 
and possible parameter estimate bias in SEM, all sample participants (n=301) were 
analyzed in this study. School variable was not necessary in providing substantive context 
to provide evidence of improved model fit with ESEM and BSEM for this methodological 
study, so unlike the original analysis by Muthén and Asparouhov, the school that a 
participant attended was not of interest in this study. The small sample size, while 
estimating independent models through simulation studies, have been shown to increase 
bias in parameter estimates (Gittner, 2021; Ma, 2020; Muthén & Asparouhov, 2012).  



 
2.2 Software 
Analyses were completed in Mplus version 8.6 (Muthén & Muthén, 2017) and R version 
4.1.0 (R Core Team, 2022). Within R, the model estimations were completed using the 
lavaan package version 0.6.12 and the blavaan package version 0.4.3, along with each 
package’s various dependencies (Merkle et al., 2021; Rosseel, 2012). As there are various 
Markov chain Monte Carlo (MCMC) algorithms in Bayesian estimation, all BSEM 
estimations in blavaan were completed using the package default MCMC algorithm, Stan, 
through rstan version 2.21.5 (Stan Development Team, 2022). Recent advances in ESEM 
literature have provided tools to assist practitioners in coding ESEM options in both R and 
Mplus. For ease of specifying models with target values for ESEM in R, the esemComp 
package version 0.2 was used (Silverstrin & De Beer, 2022). For ease of specifying models 
with target values for ESEM in Mplus, researchers developed the ESEM Mplus code 
generator (De Beer & Van Zyl, 2019). These are some tools researchers could benefit from 
to reduce the coding burden required to specify ESEM models.  
 
2.3 Analysis 
A new analysis was completed of the Holzinger-Swineford mental abilities dataset, where 
a simple structure with non primary factor loadings constrained to zero does not fit well. 
(Muthén & Asparouhov, 2012). The original measurement model was modified and 
proposed to compose four primary factor domains (Gustafsson, 2002; Harman, 1976). 
Factors/latent constructs measuring spatial ability, verbal ability, speed, and memory were 
composed of the 19 items in Table 1. The model outlined in Table 1 provides a traditional 
measurement model that will be used as the baseline estimation method for this study. All 
non primary factor loadings “NP” were constrained by being fixed to 0, while primary 
factor loadings “X” were freely estimated. This model has been found to provide 
unacceptable model fit and require post hoc modifications (Muthén & Asparouhov, 2012). 
For models that provide flexible approaches to handling minor cross-loadings, the “NP” 
factor loadings were restricted to small factor loadings with an expectation of being close 
to zero. Details of this restriction are explained below. 
 
For clarity purposes, packages in R and estimators in Mplus are outlined. All four models 
in both software were estimated with a standardized latent variable by fixing the latent 
variable variance to 1.0 (Brown, 2015; Kline, 2015). Because all indicators were measured 
on different scales, all observations were standardized before model estimation (Brown, 
2015; Kline, 2015). All models were estimated using a local hard drive on a computer with 
an Intel i7-9850H processor and 16 GB of RAM. 
 
  



Table 1: Primary Factor Loading Pattern w/ Minor Cross-Loadings Fixed to 
Zero 
  Spatial  Verbal  Speed  Memory 
visual  X  NP NP NP 
cubes  X  NP NP NP 
paper  X  NP NP NP 
flags X  NP NP NP 
general  NP X NP NP 
paragrap  NP X NP NP 
sentence  NP X NP NP 
wordc  NP X NP NP 
wordm  NP X NP NP 
addition  NP NP X NP 
code NP NP X NP 
counting NP NP X NP 
straight NP NP X NP 
wordr NP NP NP X 
numberr NP NP NP X 
figurer NP NP NP X 
object NP NP NP X 
numberf NP NP NP X 
figurew NP NP NP X 
 
 
This study considered the previous hypothesized model to be a baseline for comparison 
purposes, to provide readers with an understanding of potential improvement in model fit 
of using ESEM and BSEM methodology. Four different measurement models were 
estimated using both Mplus and R.  
 
Model 1, maximum likelihood (ML), estimated the traditional measurement model with 
fixed non-primary loadings “NP” constrained to zero with a maximum likelihood 
estimator. Model 1 utilized the previous simple structure model which fixed all non 
primary cross-loadings to zero as outlined in Table 1. No further estimation of non-primary 
cross loadings with ML techniques was completed due to model identification issues. 
Model 1 in R was estimated using the lavaan package cfa() function with the maximum 
likelihood estimator, and all other package arguments set to the default settings. Model 1 
in Mplus used the ML estimator with all other software arguments set to the default 
settings.  
 
Model 2, Bayesian structural equation modeling with non primary cross-loadings fixed to 
zero (BSEM-NOCL), estimated the traditional measurement model with fixed non primary 
loadings of zero with a Bayesian estimator using the software’s default and non-
informative prior specifications. Model 2 utilized the previous simple structure model 
outline in Table 1 with no modifications. Model 2 in R used the blavaan package using the 
bcfa() function with the Stan MCMC sampling method, while Mplus utilized the Bayes 
estimator with Mplus’ default MCMC sampling method. All other package arguments were 
set to the default settings, including the blavaan, rstan and Mplus default’s non-informative 
priors. In R, an additional null model was estimated with the same specification to allow 



for the estimation of additional Bayesian-adjusted specific global fit indices using the 
blavFitIndices() function.  
 
Model 3, Bayesian structural equation modeling with non primary cross-loadings being 
estimated (BSEM-CL), adapted the traditional measurement model outlined in Table 1 by 
eliminating the restriction of fixing the minimal cross-loadings to zero. Instead, informative 
priors for non-primary factor loadings were defined with a normal distribution with mean 
of 0 and variance of 0.01. This model is a more realistic approach compared to the 
estimated models 1 and 2 because it provides an expectation of a minimal relationship, 
even if close to zero, for non-primary factors with a 95% credibility interval of (-.2, .2). All 
other prior information were specified by the software default settings for BSEM-CL 
model 3. Model 3 in R was estimated using the same specifications outlined for model 2, 
with additional informative priors specified for all non-primary loadings defined to be 
normally distributed with mean 0 and standard deviation 0.1. All other package options 
were set to the default settings including additional non-informative priors for other various 
model parameters. The same null model used for model 2 was used in model 3 to estimate 
the additional Bayesian-adjusted global fit indices. Model 3 was estimated in Mplus using 
the same specifications outlined for model 2, with additional informative priors specified 
for all non-primary loadings defined to be normally distributed with mean 0 and variance 
deviation 0.01. All other Mplus options including additional non-informative priors for 
other various model parameters were kept at the default settings. It is worth noting that 
Stan requires prior specification to be defined as a mean-standard deviation relationship 
while Mplus requires prior specification to be defined as a mean-variance relationship. 
 
Model 4, Exploratory structural equation model with non-primary cross-loadings being 
estimated (ESEM), is comprised of the two-part estimation ESEM-within-CFA approach 
(Asparouhov & Muthén, 2009; Marsh et al., 2009). Part one utilized the traditional 
measurement model from model 1 as the target model for primary factors versus non-
primary factors that were expected to have small factor loadings close to zero. A target 
rotation, within exploratory factor analysis (EFA) was used to estimate factor loadings for 
items across all factors “X” and “NP” (Table 1) (Zhang et al., 2019). Part 2 of this model 
consisted of using the EFA estimates for all primary and non-primary loadings as starting 
values to estimate the CFA model (Asparouhov & Muthén, 2009; Marsh et al., 2009). 
Model 4 in R was estimated using the esemComp package, which has a lavaan dependency. 
The esemComp package provided a user-friendly method for defining the target rotation 
matrix from part 1 of the ESEM-within-CFA analysis method, for use in the part 2 CFA 
analysis. For model 4, Part 1 was specified the same in both R and Mplus by using the 
loading matrix outlined in Table 1. The ML estimator was used for part 1 and part 2 in both 
R and Mplus. This included ensuring that fixed starting values of some non-primary factor 
loadings in model identification for part 2 were the same across software. The authors 
confirmed results in the esemComp package with simply estimating the models in the 
lavaan package for the model estimated in R to ensure consistency. 
 
Models 3 and 4 estimated all parameters outlined in Table 1, including providing estimates 
for all non-primary “NP” loadings that were fixed to zero in models 1 and 2. All four 
proceeding model estimations were estimated in both Mplus and R, resulting in eight total 
models estimated in this study. 
  



2.3.1 Bayesian estimation considerations 
Default non-informative priors are specified slightly differently in Mplus compared to 
blavaan’s Stan estimator. Because the purpose of this study was to compare software, 
software defaults were utilized unless otherwise noted. The default MCMC technique used 
for estimation in the blavaan package used Stan, thus the Stan MCMC sampling technique 
was used for BSEM estimation in R as opposed to Just Another Gibbs Sampler (JAGS). It 
has been indicated that the Stan MCMC is more efficient and the optimal option for model 
estimation in the blavaan package (Bølstad, 2019; Hecht et al., 2021; Merkle et al., 2021; 
Smeets & van de Schoot, 2019). The number of MCMC iterations was set to 10,000 for 
both software for the BSEM estimations. The first half of the iterations (n=5,000) were 
designated as burn-in iterations and the last half of the samples (n=5,000) were used for 
estimation. Two MCMC chains were used for the BSEM models. 
 
While a more appropriate technique may have used the potential scale reduction (PSR) 
value to provide evidence of convergence towards equilibrium of Bayesian chains, using 
this method would likely result in different iterations being completed across software. 
Instead, the PSR values of each Bayesian model were inspected after the 10,000 total 
iterations and confirmed for values below 0.05, suggesting that all chains converged for 
BSEM (Gelman, 2013).  
 
Using Stan’s default starting values for the BSEM estimates presented an issue with model 
convergence in R for the BSEM-CL models. Therefore, the starting values in the estimation 
algorithm were specified as similar starting values that Mplus uses in its estimation 
algorithm. The initial starting values in both blavaan’s Stan and Mplus were chosen based 
on the ML estimated starting values (Jöreskog & Sörbom, 1982; Muthén & Muthén, 2017). 
As this study was focusing on comparisons of default options, the starting values were only 
adjusted if the attempted analysis had a non-convergence issue. 
 

3. Results 
 
The results of this study are presented as a comparison of the standardized factor loading 
estimates between Mplus and R for each of the four models explained above, and results 
can be found in Tables 2 through 5. Global fit indices were estimated next and compared 
between these two software for each of the four models (see Table 6). Additional global fit 
indices, which are only available for BSEM in R, and required estimation of the additional 
null model discussed above were reported in Table 7. Finally, the estimation times were 
reported in Table 8 for all four models in both R and Mplus. 
 
3.1 Standardized Factor Loadings 
The standardized factor loadings and their associated parameter estimate standard errors 
for ML estimation, as well as the parameter estimate posterior standard deviations, are 
compared in Tables 2 through 5. The primary expected factor loadings based on the original 
hypothesized model are highlighted for each of the four factors to assist readers in 
comparing the results to Table 1. Generally, only the trivial differences in parameter 
estimates were found when comparing estimates between the two software. 
 
3.1.1 Model 1 ML standardized factor loadings 
The standardized factor loadings were similar across the two software packages when ML 
estimation was used in model 1. Only trivial differences were noted between software for 
model 1, as is shown in Table 2. Standardized factor loadings were within .001 of the 
corresponding factor/item relationship parameter estimates for both software. Standardized 



standard error estimates were within .002 of their corresponding parameter estimates for 
the specific factor/item relationship across both software. 
 
3.1.2 Model 2 BSEM-NOCL standardized factor loadings 
The standardized factor loadings for the BSEM-NOCL model 2, were similar for both 
software. The standardized factor loading parameter estimates were found to be within .003 
of their corresponding estimates between the two software. Standardized posterior standard 
deviations were found to be within .002 of their corresponding estimates between the two 
software. While the differences between software were slightly larger for the BSEM-
NOCL model compared to ML model, the difference is likely due to the differences in the 
specification of non-informative priors between these two software, as well as variations 
in the random seeds that each MCMC started with and default starting values within each 
software. The trivial differences in standardized parameter estimates would still result in 
the same conclusions about primary loadings for the specified model. 
 
3.1.3 Model 3 BSEM-CL standardized factor loadings 
The standardized factor loadings were similar across the two packages for the BSEM-CL 
model 3. The standardized factor loading parameter estimates were within .008 of their 
corresponding estimates between these software. The standardized posterior standard 
deviations were within .005 of their corresponding estimates between the two software. 
These differences are larger than what we observed for models 1 and 2, yet they are still 
considered trivial differences, and are likely due to variations in the random seed and slight 
differences in the other default non-informative priors between the software. The largest 
differences in the standardized factor loadings and the posterior standard deviations in the 
BSEM-CL model still did not change the practical interpretations of the models. 
 
3.1.4 Model 4 ESEM standardized factor loadings 
The standardized factor loadings were similar across the two software for the ESEM model 
4. The standardized factor loadings were within .001 of each parameter estimate for both 
packages. The standardized standard error estimates were within .005 of their 
corresponding parameter estimates between the two software packages. The difference in 
parameter estimates between the two software is seen as trivial round differences. The 
ESEM model primary factor standardized loadings were on average smaller than the 
BSEM model estimates in both software, with the difference in standardized loadings 
between ESEM and BSEM being visually noticeable. These smaller estimates did not 
change any contextual interpretation of the measurement models.  



Table 2: Model 1 factor loading parameter estimates with ML approach 
 Mplus ML estimation  R ML estimation (lavaan) 
  Spatial  Verbal  Speed  Memory   Spatial  Verbal  Speed  Memory 
visual  0.750 (0.046) 0 0 0  0.749 (0.045) 0 0 0 
cubes  0.434 (0.058) 0 0 0  0.434 (0.057) 0 0 0 
paper  0.491 (0.055) 0 0 0  0.491 (0.055) 0 0 0 
flags 0.605 (0.051) 0 0 0  0.605 (0.050) 0 0 0 
general  0 0.836 (0.021) 0 0  0 0.836 (0.021) 0 0 
paragrap  0 0.821 (0.022) 0 0  0 0.821 (0.022) 0 0 
sentence  0 0.867 (0.018) 0 0  0 0.867 (0.018) 0 0 
wordc  0 0.741 (0.029) 0 0  0 0.741 (0.029) 0 0 
wordm  0 0.847 (0.020) 0 0  0 0.847 (0.020) 0 0 
addition  0 0 0.585 (0.049) 0  0 0 0.585 (0.047) 0 
code 0 0 0.718 (0.042) 0  0 0 0.718 (0.040) 0 
counting 0 0 0.626 (0.047) 0  0 0 0.626 (0.045) 0 
straight 0 0 0.678 (0.044) 0  0 0 0.678 (0.042) 0 
wordr 0 0 0 0.578 (0.051)  0 0 0 0.578 (0.050) 
numberr 0 0 0 0.517 (0.054)  0 0 0 0.517 (0.053) 
figurer 0 0 0 0.604 (0.050)  0 0 0 0.604 (0.048) 
object 0 0 0 0.556 (0.052)  0 0 0 0.556 (0.051) 
numberf 0 0 0 0.548 (0.053)  0 0 0 0.548 (0.051) 
figurew 0 0 0 0.454 (0.057)   0 0 0 0.454 (0.056) 
 Note. Standardized factor loadings (SE) 

 
 
  



Table 3: Model 2 factor loading parameter estimates with BSEM-NOCL approach 
 Mplus BSEM-NOCL estimation  R BSEM-NOCL estimation (Stan) 
  Spatial  Verbal  Speed  Memory   Spatial  Verbal  Speed  Memory 
visual  0.746 (0.047) 0 0 0  0.749 (0.047) 0 0 0 
cubes  0.436 (0.060) 0 0 0  0.436 (0.058) 0 0 0 
paper  0.492 (0.056) 0 0 0  0.492 (0.056) 0 0 0 
flags 0.608 (0.052) 0 0 0  0.607 (0.052) 0 0 0 
general  0 0.837 (0.021) 0 0  0 0.838 (0.021) 0 0 
paragrap  0 0.822 (0.022) 0 0  0 0.823 (0.022) 0 0 
sentence  0 0.868 (0.019) 0 0  0 0.869 (0.018) 0 0 
wordc  0 0.743 (0.029) 0 0  0 0.743 (0.030) 0 0 
wordm  0 0.848 (0.020) 0 0  0 0.849 (0.020) 0 0 
addition  0 0 0.586 (0.050) 0  0 0 0.587 (0.050) 0 
code 0 0 0.715 (0.042) 0  0 0 0.718 (0.043) 0 
counting 0 0 0.626 (0.048) 0  0 0 0.628 (0.048) 0 
straight 0 0 0.679 (0.044) 0  0 0 0.679 (0.044) 0 
wordr 0 0 0 0.580 (0.052)  0 0 0 0.581 (0.052) 
numberr 0 0 0 0.519 (0.054)  0 0 0 0.521 (0.055) 
figurer 0 0 0 0.606 (0.050)  0 0 0 0.606 (0.051) 
object 0 0 0 0.558 (0.054)  0 0 0 0.559 (0.054) 
numberf 0 0 0 0.551 (0.053)  0 0 0 0.549 (0.053) 
figurew 0 0 0 0.459 (0.057)   0 0 0 0.456 (0.057) 
 Note. Standardized factor loadings (posterior SD) 

 
 
  



Table 4: Model 3 factor loading parameter estimates with BSEM-CL approach 
 Mplus BSEM-CL estimation  R BSEM-CL estimation (Stan) 
  Spatial  Verbal  Speed  Memory   Spatial  Verbal  Speed  Memory 
visual  0.637 (0.074) 0.089 (0.066) 0.050 (0.070) 0.038 (0.071)  0.631 (0.070) 0.097 (0.066) 0.055 (0.069) 0.045 (0.070) 
cubes  0.510 (0.076) 0.011 (0.063) -0.052 (0.066) -0.023 (0.068)  0.505 (0.073) 0.017 (0.063) -0.049 (0.067) -0.021 (0.068) 
paper  0.483 (0.074) 0.049 (0.063) 0.025 (0.066) -0.055 (0.067)  0.480 (0.073) 0.054 (0.062) 0.029 (0.066) -0.050 (0.068) 
flags 0.639 (0.073) -0.109 (0.066) 0.036 (0.069) 0.077 (0.072)  0.635 (0.070) -0.103 (0.067) 0.041 (0.070) 0.084 (0.070) 
general  -0.030 (0.060) 0.860 (0.041) 0.040 (0.058) -0.074 (0.061)  -0.026 (0.060) 0.858 (0.040) 0.039 (0.058) -0.073 (0.058) 
paragrap   0.001 (0.059) 0.809 (0.041) -0.014 (0.058) 0.057 (0.059)  0.005 (0.058) 0.808 (0.040) -0.016 (0.058) 0.058 (0.059) 
sentence  -0.068 (0.061) 0.925 (0.042) -0.006 (0.060) -0.056 (0.062)  -0.063 (0.060) 0.922 (0.038) -0.007 (0.059) -0.055 (0.060) 
wordc  0.041 (0.059) 0.708 (0.045) 0.021 (0.058) 0.041 (0.059)  0.044 (0.058) 0.707 (0.044) 0.018 (0.058) 0.045 (0.058) 
wordm  0.046 (0.059) 0.831 (0.040) -0.036 (0.057) 0.029 (0.058)  0.048 (0.058) 0.830 (0.039) -0.038 (0.057) 0.031 (0.058) 
addition  -0.192 (0.073) -0.020 (0.071)  0.756 (0.071) 0.014 (0.075)  -0.190 (0.072) -0.023 (0.070) 0.755 (0.069) 0.011 (0.073) 
code -0.005 (0.065) 0.114 (0.063) 0.585 (0.067) 0.113 (0.067)  -0.003 (0.064) 0.115 (0.061) 0.584 (0.065) 0.113 (0.067) 
counting 0.041 (0.071) -0.052 (0.066) 0.716 (0.068) -0.072 (0.070)  0.044 (0.071) -0.055 (0.067) 0.720 (0.067) -0.075 (0.071) 
straight 0.226 (0.066) -0.013 (0.063)  0.581 (0.073) -0.027 (0.069)  0.228 (0.067) -0.012 (0.063) 0.585 (0.071) -0.029 (0.068) 
wordr -0.082 (0.072)  0.040 (0.067) -0.105 (0.071) 0.697 (0.074)  -0.078 (0.070) 0.038 (0.067) -0.109 (0.069) 0.698 (0.072) 
numberr 0.015 (0.070) -0.110 (0.064) -0.081 (0.070) 0.628 (0.073)  0.015 (0.070) -0.111 (0.065) -0.085 (0.068) 0.634 (0.071) 
figurer 0.186 (0.067) 0.026 (0.059) -0.018 (0.066)  0.519 (0.072)  0.188 (0.065) 0.027 (0.060) -0.019 (0.065) 0.522 (0.071) 
object -0.138 (0.068)  -0.049 (0.065) 0.160 (0.069) 0.588 (0.077)  -0.136 (0.067) -0.050 (0.063) 0.158 (0.068) 0.589 (0.072) 
numberf 0.036 (0.066) -0.002 (0.060) 0.078 (0.066) 0.472 (0.075)  0.036 (0.065) -0.003 (0.060) 0.078 (0.066) 0.475 (0.074) 
figurew 0.030 (0.065) 0.118 (0.058) 0.018 (0.065) 0.367 (0.077)   0.032 (0.064) 0.120 (0.058) 0.017 (0.064) 0.369 (0.076) 

 Note. Standardized factor loadings (posterior SD) 
 
  



Table 5: Model 4 factor loading parameter estimates with ESEM approach 
 Mplus ESEM  R ESEM 
  Spatial  Verbal  Speed  Memory   Spatial  Verbal  Speed  Memory 
visual  0.587 (0.063) 0.147 (0.071) 0.089 (0.080) 0.082 (0.084)  0.587 (0.062) 0.146 (0.071) 0.089 (0.080) 0.082 (0.084) 
cubes  0.499 (0.068) 0.046 (0.071) -0.052 (0.082) 0.000 (0.084)  0.499 (0.068) 0.046 (0.072) -0.052 (0.083) 0.001 (0.084) 
paper  0.449 (0.069) 0.096 (0.071) 0.073 (0.081) -0.058 (0.085)  0.449 (0.069) 0.096 (0.071) 0.073 (0.081) -0.058 (0.085) 
flags 0.599 (0.051) -0.105 (0.004) 0.081 (0.003) 0.147 (0.006)  0.598 (0.051) -0.105 (0.004) 0.081 (0.003) 0.147 (0.006) 
general  -0.017 (0.057) 0.847 (0.033) 0.058 (0.056) -0.083 (0.059)  -0.017 (0.055) 0.847 (0.032) 0.059 (0.054) -0.083 (0.057) 
paragrap  -0.001 (0.056) 0.801 (0.033) -0.013 (0.056) 0.084 (0.057)  -0.001 (0.056) 0.801 (0.033) -0.013 (0.056) 0.083 (0.057) 
sentence  -0.055 (0.002) 0.911 (0.019) 0.000 (0.000) -0.057 (0.002)  -0.055 (0.002) 0.911 (0.018) 0.000 (0.000) -0.057 (0.002) 
wordc  0.067 (0.059) 0.695 (0.040) 0.029 (0.060) 0.052 (0.062)  0.067 (0.059) 0.695 (0.040) 0.029 (0.060) 0.052 (0.062) 
wordm  0.059 (0.056) 0.819 (0.032) -0.028 (0.056) 0.040 (0.058)  0.059 (0.054) 0.819 (0.031) -0.027 (0.055) 0.040 (0.056) 
addition  -0.241 (0.010) -0.004 (0.000) 0.746 (0.051) 0.046 (0.002)  -0.241 (0.010) -0.004 (0.000) 0.746 (0.049) 0.046 (0.002) 
code 0.000 (0.073) 0.158 (0.062) 0.530 (0.061) 0.169 (0.073)  0.000 (0.072) 0.158 (0.062) 0.530 (0.060) 0.169 (0.071) 
counting 0.091 (0.079) -0.052 (0.069) 0.716 (0.063) -0.087 (0.084)  0.090 (0.078) -0.053 (0.069) 0.716 (0.063) -0.087 (0.083) 
straight 0.327 (0.077) -0.008 (0.072) 0.555 (0.072) -0.029 (0.089)  0.327 (0.073) -0.008 (0.071) 0.555 (0.067) -0.028 (0.085) 
wordr -0.084 (0.003) 0.069 (0.003) -0.144 (0.006) 0.702 (0.050)  -0.084 (0.003) 0.069 (0.003) -0.144 (0.006) 0.702 (0.050) 
numberr 0.047 (0.082) -0.135 (0.071) -0.095 (0.083) 0.634 (0.070)  0.047 (0.082) -0.135 (0.071) -0.095 (0.083) 0.634 (0.070) 
figurer 0.275 (0.073) 0.035 (0.067) -0.024 (0.077) 0.497 (0.069)  0.275 (0.073) 0.035 (0.067) -0.024 (0.077) 0.497 (0.069) 
object -0.184 (0.083) -0.054 (0.069) 0.238 (0.080) 0.565 (0.072)  -0.185 (0.081) -0.054 (0.069) 0.238 (0.079) 0.565 (0.070) 
numberf 0.057 (0.080) -0.002 (0.068) 0.137 (0.078) 0.432 (0.074)  0.057 (0.077) -0.002 (0.067) 0.137 (0.075) 0.433 (0.070) 
figurew 0.057 (0.077) 0.168 (0.065) 0.022 (0.076) 0.332 (0.074)   0.057 (0.075) 0.168 (0.065) 0.022 (0.075) 0.332 (0.072) 

 Note. Standardized factor loadings (SE) 



 
3.2 Global Fit Indices 
Evaluation of the global fit indices included comparisons between the two software and 
different methods, which are included in Table 6. Mplus and R both estimate the root mean 
square error of approximation (RMSEA), the comparative fit index (CFI), the Tucker-
Lewis index (TLI), and the standardized root mean squared residual (SRMR) values. Both 
Mplus and the blavaan package in R have adopted several Bayesian adjusted fit indices 
along with the posterior predictive p-value (PPP) (Hoofs et al., 2018). The blavaan package 
in R provides additional Bayesian adjusted global fit indices. Currently, the only way to 
estimate these additional Bayesian adjusted global fit indices is in R. Additionally, the 
information criteria and log-likelihood tests were computed by both software for each of 
the various models but were not reported in this study.  
 
Models 1 and 4, were both developed using ML estimators, which provided consistent 
values for RMSEA, CFI, and TLI global fit indices between the two software. The default 
settings of R and Mplus differ in how the number of freely estimated parameters are 
specified, but this only impacted the number of degrees of freedom during model 
estimation. The difference in degrees of freedom did not impact the conclusions drawn 
from the two software. Still, practitioners should be aware of the potential impact of that 
varying degrees of freedom may have when using default model specifications. There were 
trivial differences in the SRMR estimates, which is a direct result of the impact degrees of 
freedom has on estimating absolute measures of fit like SRMR between the estimated 
models (Bentler, 1995; Taasoobshirazi & Wang, 2016). Both ML and ESEM models 
provided consistent global fit estimates across the two software. 
 
The BSEM-NOCL model 2, provided consistent Bayesian adjusted global fit indices across 
the two software. Both the PPP and Bayesian CFI (BCFI) estimates were similar across the 
two software and the Bayesian adjusted RMSEA (BRMSEA) and TLI (BTLI) differed by 
only .002. The highest PSR value for each software was within the acceptable values, and 
the values differed by only .003 between the two software. This slight difference between 
software results is likely attributed to the sampling seeds and different non-informative 
prior specification. The conclusions drawn from model 2 were consistent across R and 
Mplus, despite the trivial model differences.  
 
The BSEM-CL model 3, provided consistent BRMSEA, BCFI, and BTLI values as seen 
in the model 2 comparison. However, the PPP values were considerably different between 
the two software, with the R blavaan estimate being .025 larger than the Mplus estimate. 
Both BSEM-CL models met the criteria for acceptable model fit, but seeing such a large 
discrepancy between estimates of PPP is concerning. Additionally, the highest PSR value 
for the model was .011 larger in Mplus than in R. Some of the difference is likely attributed 
to the difference in prior specifications between software for other parameters in the model. 
Regardless, with heavy reliance being placed on the PPP value in Mplus, this could lead to 
differing conclusions being drawn from the PPP value. While rejection of model’s 
goodness of fit should not rely on one global fit index, this discrepancy could result in a 
borderline model meeting the model fit criteria in one software while having poor fit in 
another software. While the other default non-informative prior information is different 
between software, further research should explore and address the root of this discrepancy 
between software.  
 
  



3.2.1 Flexible approaches allowing cross-loading 
The results of this study support both previously published research and the hypothesis of 
this study; allowing minor cross-loadings for more flexible and realistic models improves 
the model fit. Both BSEM-CL and ESEM with minor cross-loading improved model fit 
with acceptable global fit indices compared to their BSEM-NOCL and ML counterparts, 
respectively. The improvement in model fit was consistent across software.  
 
By removing the restriction that forces minor cross-loadings to zero in the BSEM-CL and 
ESEM models, indicators can share variance with the non-primary factors. This allowance 
had considerable impact on the standardized factor loading estimates. Differences in the 
standardized factor loadings of primary loadings of up to .170 were seen when estimating 
with BSEM-NOCL compared to BSEM-CL. Differences in the standardized factor loading 
of primary loadings of up to .188 were seen when estimating with ESEM compared to ML. 
With these considerable differences in the standardized factor loadings, contextual 
interpretation of the entire measurement model changed when including estimation of 
minor minor-cross loadings. The overall model fit was acceptable when allowing minor 
cross-loading within ESEM and BSEM-CL. Some indicators that were highly related to 
primary factors using the traditional approach, were then found to be only moderately 
related when non-primary cross-loadings were allowed to be estimated instead of being 
fixed to zero. To see this shift in standardized factor loading estimates, review the items 
‘code’ and ‘addition’ across estimation methods for the ‘Speed’ factor.  There is an overall 
improvement in model fit when allowing non-primary loadings to be estimated, yet the 
standardized factor loading will shift from a high loading seen in traditional fixed zero 
cross-loading ML and BSEM-NOCL to a moderate loading in ESEM and BSEM-CL. This 
supports the ESEM and BSEM-CL approach’s benefit which is providing a more realistic 
model of shared variance with non-primary factors. 
 
3.2.2 blavaan additional Bayesian adjusted global fit indices 
R’s blavaan package provided additional Bayesian adjusted global fit indices, including 
the Bayesian normed fit index (BNFI), Bayesian McDonald’s centrality index (BMc), 
Bayesian gamma-hat, and Bayesian adjusted gamma-hat (Garnier-Villarreal & Jorgensen, 
2020). These added Bayesian adjusted global fit indices provide information for 
researchers seeking additional evidence regarding model fit. These adjusted global fit 
indices may be of interest to practitioner and more appropriate given certain applications, 
such as gamma hat’s appropriate use in studies with smaller sample sizes.  
 
  



Table 6: Software default global fit indices for each model 

  

Number of 
freely 

estimated 
parameters 

Chi-square 
(d.f.) [p-value] RMSEA CFI TLI SRMR 

Highest 
PSR PPP BRMSEA BCFI BTLI 

Mplus ML estimation 63 
314 (171) 
[<0.0001] 0.062 0.915 0.900 0.064      

R ML estimation 
(lavaan) 44 

314 (146) 
[<0.0001] 0.062 0.915 0.900 0.067      

Mplus BSEM-NOCL 
estimation 63      1.004 <0.001 0.062 0.914 0.899 
R BSEM-NOCL 
estimation (Stan)** 0      1.001 <0.001 0.064 0.914 0.897 
Mplus BSEM-CL 
estimation 120      1.012 0.093 0.033 0.982 0.972 
R BSEM-CL 
estimation (Stan)** 0      1.001 0.118 0.032 0.982 0.972 

Mplus ESEM 101 
130 (101) 
[0.0251] 0.031 0.985 0.975 0.023      

R ESEM 101 
130 (101) 
[0.0251] 0.031 0.985 0.975 0.024           

 **Default starting values adjusted in R 



Table 7: Additional global fit indices available in R blavaan 
 Additional global fit indices 

 BNFI BMc 

B 
Gamma 

Hat 

Adjusted 
B 

Gamma 
Hat 

R BSEM-NOCL estimation (Stan)** 0.857 0.755 0.944 0.916 
R BSEM-CL estimation (Stan)** 0.933 0.943 0.988 0.976 
**Default starting values adjusted in R  
 
3.3 Comparison of Software Estimation Time 
Also compared in this study were the computational times that each software took to 
estimate each model. Table 8 outlines the estimation time required to complete models 1 
through 4 in both software. All time estimates were collected from the same computer used 
to complete all the analyses. All four models in Mplus as well as estimation of ML and 
ESEM with R blavaan package required very little computational time to complete 
estimations. However, the Bayesian estimation in R blavaan had considerably longer 
computation times, taking up to fifteen minutes depending on model complexity. The 
additional global fit indices available in R blavaan come with an additional computational 
cost when estimating the null models. The known dependency of Stan to estimate Bayesian 
models is the likely cause of this issue but will surely impact a researcher’s decision to use 
blavaan to estimate BSEM models.  
 
Table 8: Estimation times for model convergence in R and Mplus 

Model & Software 
Estimation of primary 

analysis 

Estimation of null 
model for additional 

global fit indices 
Mplus ML estimation 1 second  
R ML estimation (lavaan) 1.9 second  
Mplus BSEM-NOCL estimation 4 seconds  
R BSEM-NOCL (Stan) 10.1 minutes 6.3 minutes 
Mplus BSEM-CL estimation 9 seconds  
R BSEM-CL estimation (Stan) 14.5 minutes 6.5 minutes 
Mplus ESEM 7 seconds  
R ESEM 5 seconds   
Note: Time estimates using Intel i7-9850H processor with 16 GB of RAM 

 
4. Discussion 

 
The result of this methodological study provide evidence for practitioners that both ESEM 
and BSEM-CL techniques in R and Mplus provide consistent estimates across software. 
Researcher should feel comfortable in selecting R or Mplus to estimate ESEM or BSEM 
models. ML and ESEM approaches across the two software, resulted in only trivial 
differences in parameter estimates. BSEM approaches across the two software, resulted in 
observing slightly more variation in estimates. However, these variations were not 
surprising since there were differences in the software default settings, including default 
non-informative priors as well as variations in sampling seeds and starting points. The only 



concerning discrepancies between software were the PPP and PSR value estimated for the 
BSEM-CL model. These two measures, PPP and PSR, differed between the software by 
up to .025 and 0.011 respectively. While the differences did not change the contextual 
interpretation of the models, further research is needed to determine the root cause and 
potential solutions of the problem. Further methodological studies could define all non-
informative prior information to be consistent across different software, and test to 
determine if this resolves the discrepancies.  
 
This study utilized data from a commonly known study with 301 subjects, but there are 
known parameter estimate bias issues when using sample sizes less than 400. While 
parameter bias was outside the scope of this study, future simulation studies could explore 
the general smaller standardized factor loadings of ESEM estimates when compared to 
BSEM-CL estimates. This would help determine if the difference is due to sample size, 
other unexplored software defaults, or is attributed to software algorithm differences. 
While there was some variation between model estimates, ESEM and BSEM-CL provide 
an improved model fit that mirror realistic measurement models across both software. 
 
As the true population parameters are unknown, the deviation from the true population 
parameters for ESEM varied in comparison to BSEM with dependence on data conditions 
(Wei et al., 2022; Xiao et al., 2019). Thus, the deviation in parameter estimates between 
ESEM and BSEM in this analysis is not surprising. Ultimately, the smaller ESEM estimates 
did not change any contextual interpretation of the measurement models and would 
corroborate the study findings with BSEM as previously suggested (Xiao et al., 2019). Yet 
continued simulation research can explore the measurable difference of bias between 
ESEM and BSEM under varying conditions. 
 
ESEM techniques have been adopted in other various packages including psych and sem 
(Guàrdia-Olmos et al., 2013; Revelle, 2015). Given that anyone can develop a package, 
and that there is a documented method to reporting package bugs to authors, comparing 
parameter estimates across packages is necessary. While this study utilized lavaan for 
model estimation, future research could confirm consistency of parameter estimates across 
the various R packages for ESEM. Additionally, further exploration of consistency of 
parameter estimates across other packages that have only adopted ESEM methods 
including AMOS, STATA, SAS, EQS, etc. 
 
An unsatisfactory conclusion in this study was the observed substantial increase in the 
computational time when estimating the BSEM model using R’s blavaan. The package 
authors are aware of the computational issues but may not be aware of the considerably 
higher computation time compared to Mplus (Merkle & Jorgensen, 2022). Future studies 
could explore parallel computing in R to see if computational time is reduced. This study 
also estimated the BSEM-NOCL model using the Just Another Gibbs Sampler (JAGS) non-
default option in blavaan but found the computation time to be even longer and as a result, 
authors terminated the analyses. Based on this issue and suggestions provided by the 
package authors to use Stan for optimum efficiency, the authors did not continue using 
JAGS. Further research may be able to confirm whether Stan is more efficient, by 
estimating increased computational time if using JAGS, and document if Stan provides 
consistent parameter estimates compared with JAGS when using blavaan. Based on 
estimation times alone, the results of this study suggest avoiding estimating BSEM models 
with blavaan until the computational times are reduced. The additional Bayesian adjusted 
global fit indices may be of importance to some researchers, but the additional 
computational time for more complex models to estimate the null model may outweigh the 



benefit. While Mplus has adopted some Bayesian adjusted fit indices, there is hope that 
Mplus will consider adopting the additional Bayesian adjusted fit indices. 
 

5. Conclusions 
 

Both BSEM-CL and ESEM provided an improved approach to measurement model fit with 
similar parameter estimates in both R and Mplus. These methods support a more flexible 
and realistic model generation and provide similar contextual conclusions regarding the 
measurement models across the two software, R and Mplus. For researchers looking to 
estimate BSEM models, they will need to weigh the potential estimation time due to higher 
computation times, with the cost of an Mplus license. The package dependencies required 
to estimate a BSEM model in R might seem excessive or challenging when compared to 
the clear documentation of analyses provided by Mplus. As software continue to adopt 
ESEM and BSEM, comparison of model estimates in R and Mplus should be completed. 
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