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Abstract 

 
Quenouille (1956) introduced the idea that Jackknifing can be used to reduce bias 
resulting from using the ratio estimator due to Cochran (1940). Singh and Sedory (2017a) 
proposed the Tuned Ratio Unbiased Mean Predictor (TRUMP) where they introduced the 
idea of TRUMP Cuts.  In this paper, we introduce the Bias Interrupters Developed 
Estimators’ Network (BIDEN) which utilises the help of TRUMP Cuts and Jackknifing.  
We show that proper use of what we call BIDEN Care Coefficients could reduce the bias 
when using the ratio estimator even more than that obtained when using Quenouille’s 
method.  It could also be made more efficient than the sample mean estimator with an 
appropriated choice of TRUMP Care Coefficient.  These new findings are supported with 
exact numerical computations using a well known set of data available in Horvitz and 
Thompson (1952). 
 
Keywords: Ratio estimator, Bias, Quenouille’s method, Relative efficiency, TRUMP 
Cuts, Jackknifing. 
 

1. Introduction 
 
Suppose a population   consisting of N units has a study variable y  and auxiliary 

variable x . Let Nixy ii ,...,2,1),,(  be the ordered pairs of values of the study variable and 

the auxiliary variable. Consider a sample s of n  units taken from the population   of N

units by using SRSWOR design.  Let nixy ii ,...,2,1),,(   be the values of the study 
variable and the auxiliary variable associated with the ith unit in the sample. Select a sub-
sample 1s  of 1n  units from the given sample s  of n  units by SRSWOR design.  In other 

words, randomly divide the sample s  of n  into two sub-samples 1s  and 2s  of sizes 1n  

and 2n  where .21 nnn     
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be the sample covariance estimator, based on sample s , 

of the population covariance xyS . 
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x be 

the sample mean estimator, based on the sub-sample 2s ,  of the population mean X . 
 
In 1940, Cochran first introduced the ratio estimator into the field of survey sampling. 
 

 
Fig. 1.1. Professor W.G. Cochran (1909-1980) 
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be the ratio estimator of the population mean Y  based on the full sample s  of n  units. 
 
In 1965, Quenouille considered the estimator of the population mean Y  given by 
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Fig. 1.2. A scientist smiling on a success 

 
We imagine a smile crossing his face as he showed the ratio estimator is unbiased, to the 
second order of approximation, if 
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In particular, for the case of nnn  21 , the value of a   becomes 
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which is called the pioneer Quenouille (1956) bias adjusting constant.     
       



 

In the next section, we introduce the new idea of Bias Interrupters Developed Estimators’ 
Network (BIDEN) which, with the right choice of TRUMP Care Coefficient, helps to 
reduce bias in the ratio estimator and minimize the variance. 
 

2. The BIDEN 
 
We define the Bias Interrupters Developed Estimators’ Network (BIDEN) as: 
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where  0b , 1b and 2b  are what we refer to as the three  BIDEN Care Coefficients, which 
respect the natural constraint of unity: 
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The network of associated ratio estimators consists of: 
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Following Singh and Sedory (2017a), we define a very special kind of TRUMP Cuts as: 
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where  0g  is called the TRUMP Care Coefficient. 
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.that is, jackknifing is a special case of TRUMP Cuts. 
 
We also define a jackknifed mean as: 
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Clearly JyRAT(TC)  is a mixture of TRUMP Cuts and Jackknifing, and POWERy  is a type of 

power transformation estimator introduced by Srivastava (1967). 
 



 

 
Fig. 2.1. TRUMP Cuts, Jackknifing and assembling workshops. 

 
Following Singh, Sedory, Rueda, Arcos and Arnab (2016, p. 283-4), we also imagine that 
TRUMP Cuts and Jackknifing of a sample can make precise cogs for an estimator. The 
cogs assembled together with a proper choice of TRUMP Care Coefficient helps the 
BIDEN to reduce bias from the ratio estimator, and also provides a Jury of Estimators 
(JOE) where BIDEN is more efficient than the sample mean estimator. In business food 
companies similarly cut long vegetables (radish, carrots, etc.) on the bias to expose more 
surface area to increase interaction between food and tongue by choosing a good-flavour 
( g ) .    

Fig. 2.2. Office work      
 
Theorem 1. The Bias Interrupters’ Developed Estimators’ Network (BIDEN) given by: 
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is unbiased, to the second order of approximation, for the three BIDEN Care Coefficients 
given by: 
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Proof. See Singh and Sedory (2017b). 



 

In the next section, we consider finding those values of the TRUMP Care Coefficients 
which help the proposed BIDEN reducing the bias. 
 

3. Reproducible Exact Numerical Evidences for the BIDEN 
 
For our numerical illustration, we have selected all possible SRSWOR samples s  of size 

6n   from the well known Horvitz and Thompson (1952) population of size 20N .    
 

 
Fig. 3.1. Hardworking for crunching numbers. 

 
We split the sample of size  6n  into two sub-samples 1s  and 2s  each of size 
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Then we computed the exact biases in the sample mean and the ratio estimators, 
respectively, as:  
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We also computed the exact values of the biases in the Quenouille’s and the BIDEN 
estimators, respectively, as: 
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for a given value of .g  
 



 

 
Further, we also computed the exact percent relative efficiencies of the ratio, the 
Quenouille’s and the BIDEN estimators with respect to the sample mean estimator, 
respectively, as: 
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for a given value of .g  
 
We investigated two different situations by using the same Horvitz and Thompson (1952) 
population but reversing the roles of the variables. This we did to investigate more 
situations while using the same data set available in the public domains.   
 
Situation-I. We treated number of households on the ith block estimated by eye as he 
study variable y  and the actual number of households on the ith block (known from past 

records) as the auxiliary variable x .  The value of ,0)0( B  (Sample mean) 

,08926778.0)1( B  (Ratio estimator), ,01959317.0)2( B  (Quenouille’s estimator) are 

free from the value of g . The value of %31.345)1( RE  (Ratio estimator) and  

%09.303)2( RE  (Quenouille’s estimator) are also free from the value of g . The values 

of the three BIDEN Care Coefficients 0b , 1b  and 2b , )3(RE  and )3(B  are functions of the 

TRUMP Care Coefficient g . The results obtained for the BIDEN are given in Table 1. 
 

Table 1. Results for the new BIDEN under Situation-I. 

g  0b  1b  2b   ib  )3(RE  )3(B  RRB 

1.6 1.18768 0.09136 -0.27904 1 170.83 0.01785232 8.88 
1.7 1.14720 0.10390 -0.25110 1 159.25 0.01725104 11.95 
1.8 1.11170 0.11597 -0.22767 1 148.99 0.01651546 15.71 
1.9 1.08013 0.12764 -0.20777 1 139.91 0.01563670 20.19 
2.0 1.05175 0.13891 -0.19066 1 131.88 0.01460708 25.45 

 
The optimal choice of the TRUMP Care Coefficient is now the BIDEN’s choice while 
compromising between bias and relative efficiency. 



 

 
Fig. 3.2. Optimal TRUMP Care Coefficient. 

 
The value of the percent relative reduction in bias (RRB) is computed as: 
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If the value of the TRUMP Care Coefficient g  is 2.0 then the BIDEN *

BIDENy  has the 
minimum bias value of 0.01460708, which is a relative reduction in bias of 25.45%, and 
the exact relative efficiency is 131.88%.  This is minimum optimal bias in the *

BIDENy  
with the help of appropriate TRUMP Care Coefficient. We also claim that when the 
TRUMP Care Coefficient g  with a value of 2.0 is in power )( POWERy  then the BIDEN is 
quite successful at reducing the bias from the ratio estimator and has almost has 31.88% 
gain in efficiency over the sample mean estimator.  The choice of TRUMP Care 
Coefficients ]0.2,6.1[g  , with a skip of 0.1, which we call the First Basic Information 
(FBI), forms a Jury of Estimators (JOE) of five members where the proposed BIDEN has 
less bias in magnitude than Quenouille’s estimator with relative reduction in the range of 
8.88% to 25.45%; and each member of the JOE has relative efficiency more than the 
sample mean estimator in the range 131.88% and 170.83%. Thus, the TRUMP Care 
Coefficient helps BIDEN more flexible for the investigator who must compromise 
between bias and relative efficiency. Further note that the value of RE(3) is less than the 
RE(2) and RE(1) which illustrated the cost of reducing the bias of the ratio estimator due 
to Cochran (1940).   
 
Situation-II.  Here we treat the actual number of households on the ith block as the study 
variable ,y  and the estimated (by eye) number of households as the auxiliary variable x . 

The value of ,0)0( B  ,01917783.0)1( B , ,00411917.0)2( B   are free from the value 

of g . The value of %52.404)1( RE  and  %23.369)2( RE   are again free from the 

value of g . The values of the three BIDEN Care Coefficients 0b , 1b  and 2b , )3(RE  and 

)3(B  are functions of the TRUMP Care Coefficient g .  The results obtained for the 
BIDEN are given in Table 2. 
 



 

Table 2. Results for the new BIDEN under Situation II. 

g  0b  1b  2b   ib  )3(RE  )3(B  RRB 

0.86 2.04459 -0.03211 -1.01248 1 135.92 0.00205136 50.20 

0.88 1.98001 -0.02682 -0.95319 1 152.11 0.00242816 41.05 

0.90 1.92186 -0.02183 -0.90003 1 168.10 0.00277229 32.70 

0.92 1.86920 -0.01708 -0.85212 1 183.55 0.00308773 25.04 

0.94 1.82126 -0.01255 -0.80871 1 198.14 0.00337770 18.00 
 
Again the optimal choice of TRUMP Care Coefficient depends on the relative importance 
of  bias and the relative efficiency. If the value of the TRUMP Care Coefficient g  is 0.86  

then the BIDEN *
BIDENy  has minimum bias value of 0.00205136, which is a relative 

reduction in bias of 50.20%, and the value of the exact relative efficiency is 135.92%.  
This is minimum bias in the *

BIDENy  with the help of appropriate TRUMP Care 

Coefficient. We also observe that when the TRUMP Care Coefficient g  with a value of 

0.86 is in power )( POWERy  then the BIDEN is quite successful in reducing the bias from 
the ratio estimator and almost 35.92% gain in efficiency over the sample mean estimator.  
The choice of TRUMP Care Coefficients ]94.0,86.0[g , with a skip of 0.02, which we 
say the First Basic Information (FBI), forms a Jury of Estimators (JOE) of five members 
where the proposed BIDEN has less bias in magnitude than Quenouille’s estimator with 
relative reduction in bias in the range of 18.00% to 50.20% and each member of the JOE 
has relative efficiency more than the sample mean estimator, in the range 135.92% and 
198.14%.  Again the TRUMP Care Coefficient helps BIDEN be flexible when one must 
make a compromise between bias and relative efficiency. Further note that the value of 
RE(3) is again less than the RE(2) and RE(1) which reveals the cost of reducing the bias 
from the ratio estimator.    
 

4. Conclusion 
 

 
Fig. 4.1. Opening a door 

 
In situation-I the ratio of population mean of the study variable to that of the auxiliary 
variable is less than one, and in situation-II it is greater than one. That may be one reason 
that FBI has different range of the TRUMP Care Coefficient for both situations. The 
proposed BIDEN with a mixture of TRUMP Cuts and Jackknifing opens a big-door to 
future research for those who are interested in reducing the bias in the ratio type 
estimators.  The Internet is full of such ratio type estimators.  Refer to Singh and Sedory 
(2017b) for more interesting relevant work.  R-codes used in producing these results and 
detailed acknowledgements are also given in Singh and Sedory (2017b). 
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