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Abstract

Small area models have gained increased attention by statistical agencies. They can “borrow strength” from related

areas across space and/or time or through auxiliary information and they can provide “indirect” but reliable estimates

for small areas with small or even zero sample sizes while also increasing the precision. The United States Department

of Agriculture’s (USDA’s) National Agricultural Statistics Service (NASS) conducts the Cash Rents Survey (CRS) to

provide the basis for county estimates of the cash rent paid for irrigated cropland, non-irrigated cropland, and pasture

land. Estimates of cash rental rates are useful to farmers, economists, and policy makers. However, realized sample

sizes at the county level are often too small to support reliable direct estimates. To improve the less reliable direct

estimates, model-based estimates have been extensively discussed in the literature. We propose a hierarchical Bayesian

(HB) area-level two-component mixture model to account for outliers that incorporates two years of data with a

discounting factor for the first year. When compared to the standard HB method based on normality assumptions, the

proposed method to handle outliers is robust. In addition, it is a general model that puts the two years of data together

and it avoids correlations by using a power prior that partly discounts past data. A 2016 and 2017 case study illustrates

the improvement of the direct survey estimates for areas with small sample sizes by using auxiliary information and

by borrowing information across areas.
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1. Introduction

The United States Department of Agriculture’s (USDA’s) National Agricultural Statistics Service (NASS),

one of thirteen US Federal Statistical Agencies, provides official statistics of the county-level cash rental

rates for irrigated cropland, non-irrigated cropland, and pasture land. Estimates of cash rental rates are

useful to farmers, economists, and policy makers. However, realized sample sizes at the county level are

often too small to support reliable direct estimates. Traditionally, the NASS Agricultural Statistics Board

has relied on expert opinion to produce official statistics using the survey estimates as a foundation in-

formed by other auxiliary information, including historical data, reliable administrative data, and other non-

survey data. Although external reviews have consistently found that NASS estimates are the gold standard

for the agricultural industry, the process lacked transparency and reproducibility and did not lead to valid

measures of uncertainty. In 2014, NASS entered into a cooperative agreement with the Committee on

National Statistics (CNSTAT) to review the NASS county estimates programs, crops county estimates and

cash rents county estimates. In its consensus report, the CNSTAT panel recommended that NASS transition

to model-based estimates.

Small area models have gained increased attention by statistical agencies and offices around the world.

Model-based approaches in small area estimation have been shown to be useful in producing reliable small

area estimates. Small area models can “borrow strength” from related areas or through auxiliary informa-

tion to provide “indirect” but reliable estimates for areas with small or even zero sample sizes while also

increasing the precision. Two major types of small area models, area-level and unit-level models, have been

developed based on both frequentist and Bayesian methods. Rao and Molina (2015) provides a compre-

hensive overview of the development, methods and applications of small area estimation, including various

types of area-level and unit-level models. The most common model in small area estimation is the Fay-

Herriot (FH) model by Fay and Herriot (1979). It is an area-level model based on the normality assumption;

that is, the direct estimates and area-level random effects are each assumed to follow a normal distribution.

Battese et al. (1988) proposed the unit-level model, nested-error regression (NER) model, when data are

available on the individual sampled units. It is developed under the assumption of normality of the small

area random effects and unit-level random errors.

USDA’s NASS has explored different model-based approaches for county-level cash rental rate esti-

mates. In a frequentist framework, Berg et al. (2014) propose a univariate area-level model that involves



fitting two sets of survey-based direct estimates. Berg et al. (2014) assume that the variances for the two

years are the same. The model can be characterized as an extension of the FH model. Erciulescu et al.

(2019) propose a HB bivariate unit-level model under the normality assumptions. The model is flexible to

allow the variances to differ between the two time-points. However, it is computationally intensive to fit the

models in production. Both models use information from two survey years to gain in efficiency due to the

fact that the rental rates from the current and previous year are often highly correlated despite differences

between the sets of respondents in both years.

Because the interest for NASS programs is in constructing summaries for different levels of geography

(county, state, regional, and U.S. levels), the Bayesian approach to model fitting and estimation is preferable.

Recent studies and papers related to NASS small area estimation research on county estimates of crops and

farm labor program have shown that the HB small area models can incorporate auxiliary sources of data

with survey estimates to improve the precision and increase the accuracy of related NASS official estimates.

Nandram et al. (2022) and Chen et al. (2022b) proposed and implemented HB subarea-level models with

inequality constraints to produce county-level estimates that satisfy important relationships between the

estimates and administrative data, along with the associated measures of uncertainty. Chen et al. (2022a)

discussed several HB subarea-level models in support of estimates of interest in the Farm Labor Survey. The

resulting framework provided a complete set of coherent estimates for all required geographic levels and the

modeling process was incorporated into the official Farm Labor publication for the first time in 2020.

Our study addresses the issues of constant variances assumption in two years and the issues of compu-

tation by proposing a general HB model that puts the two years of data together and avoids the two-year

correlations by using a power prior (Chen and Ibrahim (2000)) that partly discounts past data. In addi-

tion, outliers issues are taken into account to increase robustness for the standard HB area-level model with

the normality assumptions. One way to accommodate outliers is to use a two-component mixture model

(e.g., Gershunskaya and Lahiri (2017)). They use an Empirical Bayes approach assisted by the expectation-

maximization (EM) algorithm. Chakraborty et al. (2019) and Goyal et al. (2021) have provided a full

Bayesian approach for the unit-level nested error regression model. By using a two-component mixture

of normal distributions, this model accommodates populations where a small portion of unit-level errors

come from a secondary distribution with a larger variance than the primary distribution. In practice, because

unit-level models generally require substantially more computational time, area-level models are more ap-

plicable for the production of official statistics that are published on tight timelines. Therefore, we focus on



the area-level two-component mixture model in this paper.

The paper is structured as follows. Section 2 describes the survey procedures and background. The

proposed HB two-component mixture model with technical details is presented in Section 3. In Section 4, a

case study using 2016 and 2017 cash rent data illustrates the performance of the model. Section 5 provides

a summary and some discussion of possible future research for cash rental rates and small area estimation

more generally.

2. Data Sources and Requirements

2.1 Survey Data

The Cash Rents Survey is conducted on an annual basis. The survey obtains acres rented and cash rental rates

from a statistically representative sample of farmers and ranchers in the United States, excluding Alaska.

This survey provides the basis for estimates of the current year’s cash rents paid for irrigated cropland, non-

irrigated cropland, and permanent pastureland. From 1950 to 1974, a list survey of real estate appraisers

was used to estimate state-level cash rents. Beginning in 1974, producers provided information about their

rental agreements by responding to questions on the June Area Survey. In the 2008 farm bill, NASS was

mandated to provide mean rental rates for all counties (not just states) with at least 20,000 acres of crop

land.

The target population for the cash rents estimate program is all farms and ranches with $1,000 or more in

agricultural sales (or potential sales) who rent land from others on a cash rent basis. The Cash Rent Survey

sample is selected from a list frame of farm and ranch operators maintained by NASS. NASS is constantly

seeking qualifying farming operations from outside sources to be added to the list. A profile, known as

control data, of each operation is maintained which indicates what the farm has historically produced and a

general indication of size. This information allows NASS to define sampling populations that are specific to

each survey and employ advanced and more efficient sample designs. Samples for the Cash Rents Survey

are drawn with a county level stratified design to produce state and county level estimates. Large operations

in each county are stratified into the census strata, where all are included in the sample. The national sample

size for the Cash Rents Survey is approximately 260,000. The sample is stratified by state and county within

state to produce state and county-level estimates. Data collection occurs from late February until the end of

June. Variances for cash rental rate estimates are constructed using a second-order Taylor series expansion



for the ratio.

From the Cash Rents Survey, county, state, and national rental rates (dollars/acre) for each land-use

category (irrigated, non-irrigated, and pasture) are published (see Figure 1 for the 2020 county-level pub-

lished cash rental rate estimates for pasture land). Although total value of cash rents and acres rented on

a cash basis are computed, these values have not been published. Historically, the direct survey estimates

were reviewed and, if deemed appropriate, adjusted by NASS staff or the Agricultural Statistics Board. The

primary reason for adjustment was a large difference between the previous year’s published cash rental rate

and the current year’s survey estimate. The adjusted estimate was restricted to being between, or on, the cur-

rent survey estimate and the previous year’s published estimate so that the direction of change was honored.

If the number of responses within a county was substantial, then the survey estimate received the greatest

weight. If only a small number of responses were received, then the previous year’s published value and

the estimates from surrounding counties or the agricultural statistics district were given more weight. Any

model to replace the expert opinion needs to follow the guidelines used in the review process.

Figure 1: County-level published cash rental rate estimates for pasture land



3. Model

In this section, we describe a two-component mixture model that accounts directly for outliers and it uses

the power prior to input how much of the past data one wants to use. One way to accommodate outlier

operations is to use a two-component mixture model. In addition, if research interest is only in the second

year (i.e., the year of the survey), we can use the data in the prior year(s) to obtain a power prior (Ibrahim

and Chen, 2000; Ibrahim, Chen, Gwon and Chen, 2015) for the parameters of the current year. In this

way, the correlation between survey data from the two consecutive years can be avoided, which reduces the

computational time to a manageable scale.

3.1 A Hierarchical Bayesian Two-Component Mixture Model

For modeling, the subscript 1 will denote year 1 (e.g., previous year), and the subscript 2 will denote year 2

(e.g., the current year). Let the counties 1, . . . , ℓ1, . . . , ℓ1+ℓc on the first year and ℓ1+1, . . . , ℓ1+ℓc+ℓ2 on

the second year. That is, there are ℓ1 counties sampled only on the first year, ℓc sampled on both years and ℓ2

sampled only on the second year; ℓ1 and ℓ2 are usually very small relative to ℓc. Let x
˜
tij denote the vector of

covariates; let ytij denote the direct estimates and σ̂2
ti denote the corresponding sampling variances, where

i = 1, . . . , ℓ1 + ℓc for t = 1 and i = ℓ1 + 1, . . . , ℓ1 + ℓc, . . . , ℓ1 + ℓc + ℓ2 for t = 2.

For the first year, letting c = ℓ1 + ℓc,

θ̂1i | θ1i, a, p, ρ
ind∼ (1− p)Normal{θ1i,

ρσ̂2
1i

a
}+ pNormal{θ1i,

σ̂2
1i

a
}, i = 1, . . . , c,

and for the second year, letting ℓ = ℓ1 + ℓc + ℓ2,

θ̂2i | θ2i, a, p, ρ
ind∼ (1− p)Normal{θ2i, ρσ̂2

2i}+ pNormal{θ2i, σ̂2
2i}, i = ℓ1 + 1, . . . , ℓ,

where 0 < a, 2p, ρ < 1. Here, the number of outliers is assumed to be fewer than the number of non-outliers.

Note that there are a set of common counties with subscripts, ℓ1 + 1, . . . , c. Then, the positivity constraints,

with the covariates, are included as

θ1i | β
˜
, δ2

ind∼ Normal(x
˜
′
1iβ

˜
, δ2), θ1i > 0, i = 1, . . . , c,



and

θ2i | β
˜
, δ2

ind∼ Normal(x
˜
′
2iβ

˜
, δ2), θ2i > 0, i = ℓ1 + 1, . . . , ℓ.

Finally, a priori, we assume

π(β
˜
, δ2) ∝ 1

(1 + δ2)2
, β

˜
∈ Rp, δ2 > 0.

The prior distributions for the θ1i and the θ2i can be written as follows,

π(θ1i | β
˜
, δ2) =

1√
2πδ2

e−
1

2δ2
(θ1i−x

˜
′
1iβ

˜
)2/Φ(

x
˜
′
1iβ

˜√
δ2

), θ1i > 0, i = 1, . . . , c,

and

π(θ2i | β
˜
, δ2) =

1√
2πδ2

e−
1

2δ2
(θ2i−x

˜
′
2iβ

˜
)2/Φ(

x
˜
′
2iβ

˜√
δ2

), θ2i > 0, i = ℓ1 + 1, . . . , ℓ.

For (p, a, ρ), we assume

π(p, a, ρ) ∝ 1, 0 < a, 2p, ρ < 1

with independent priors on these components.

Let D denote the set of data values, D = {θ̂
˜
1, θ̂

˜
2, σ̂

˜
2
1, σ̂

˜
2
2}. Using Bayes’ theorem, the joint posterior

density is

π(θ
˜
1, θ

˜
2, β

˜
, δ2, p, a, ρ | D) ∝ π(β

˜
, δ2)π(θ

˜
1, θ

˜
2|β

˜
, δ2)

×
c∏

i=1

{
(1− p)Normal(x

˜
′
1iβ

˜
+ νi, ρ

σ̂2
1i

a
) + pNormal(x

˜
′
1iβ

˜
+ νi,

σ̂2
1i

a
)

}

×
ℓ∏

i=ℓ1+1

{
(1− p)Normal(x

˜
′
2iβ

˜
+ νi, ρσ̂

2
2i) + pNormal(x

˜
′
2iβ

˜
+ νi, σ̂

2
2i)

}
.

It is computationally advantageous to augment the joint posterior density using the latent binary vari-

ables, zti, where zti = 1 if a county is an outlier and zti = 0 otherwise. Then,

π(θ
˜
1, θ

˜
2, β

˜
, δ2, p, a, ρ, z

˜
| D) ∝ π(β

˜
, δ2)π(θ

˜
1, θ

˜
2|β

˜
, δ2)

×
c∏

i=1

{
[(1− p)Normal(x

˜
′
1iβ

˜
+ νi, ρ

σ̂2
1i

a
)]1−z1i [pNormal(x

˜
′
1iβ

˜
+ νi,

σ̂2
1i

a
)]z1i

}

×
ℓ∏

i=ℓ1+1

{
[(1− p)Normal(x

˜
′
2iβ

˜
+ νi, ρσ̂

2
2i)]

1−z2i [pNormal(x
˜
′
2iβ

˜
+ νi, σ̂

2
2i)]

z2i
}



Denote the set of parameters as Ω = (Ω1,Ω2, θ
˜
), with Ω1 = {a, p, ρ, z

˜
}, Ω2 = {β

˜
, δ2}, and θ

˜
=

{θ
˜
1, θ

˜
2}. For θ1i > 0, i = 1, . . . , c, θ2i > 0, i = ℓ1 + 1, . . . , ℓ, the joint posterior density is

π(Ω | D) ∝ 1

(1 + δ2)2

c∏
i=1

{
(1− p)

√
a

2πρσ̂2
1i

e
− a

2ρσ̂2
1i

(θ1i−θ̂1i)
2
}1−z1i {

p

√
a

2πσ̂2
1i

e
− a

2σ̂2
1i

(θ1i−θ̂1i)
2
}z1i

×
ℓ∏

i=ℓ1+1

{
(1− p)

√
1

2πρσ̂2
2i

e
− 1

2ρσ̂2
2i

(θ2i−θ̂2i)
2
}1−z2i {

p

√
1

2πσ̂2
2i

e
− 1

2σ̂2
2i

(θ2i−θ̂2i)
2
}z2i

(1)

×
c∏

i=1

{
1√
2πδ2

e−
1

2δ2
(θ1i−x

˜
′
1iβ

˜
)2/Φ(

x
˜
′
1iβ

˜√
δ2

)

} ℓ∏
i=ℓ1+1

{
1√
2πδ2

e−
1

2δ2
(θ2i−x

˜
′
2iβ

˜
)2/Φ(

x
˜
′
2iβ

˜√
δ2

)

}
.

The joint posterior density is intractable and thus the standard Gibbs sampler cannot be applied. The

computational method we proposed is discussed in the next section. Note that not-in-sample prediction is not

needed in the small area model for our particular application. The primary interest is the posterior density

of the θ2i. In addition, for benchmarking, we need to obtain posterior inference about θ2i, i = ℓ1 + 1, . . . , ℓ

subject to the benchmarking constraint with a specified target. For convenience we re-label the θ2i as

θi, i = 1, . . . , n, where n is the number of counties available on the second year. For the ith county, let

ai denote the total number of acres under cash rents. Then, we need
∑n

i=1
ai∑n
i=1 ai

θi = T , where T is the

pre-published estimate of cash rents at the state level. Benchmarking is usually obtained from the output

analysis using raking, relatively simpler than other methods.

3.2 Computation

The posterior density (1) is a non-standard multivariate density, and there are difficulties in fitting it using

MCMC methods. We can rewrite the joint posterior density as

π(Ω | D)) = π(Ω1,Ω2, θ
˜
| D)) ∝ π(Ω1,Ω2|D)π(θ

˜
|β
˜
, δ2,Ω1, D)

We first integrate out the θ
˜

from the joint posterior density. Since there are many of parameters in this

model, and each of them is best done using a grid method, we can save a lot of time not drawing them

inside the Gibbs sampler. We use a two-block Gibbs sampler to draw samples from the posterior density of

π(θ
˜
|β
˜
, δ2,Ω1, D).

First, we define the following shrinkage parameters. For the first year, corresponding to the first and



second components of the mixture model respectively, we define

ω1i =
δ2

δ2 + ρσ̂2
1i/a

, ω∗
1i =

δ2

δ2 + σ̂2
1i/a

, i = 1, . . . , c,

and for the current year, we define

ω2i =
δ2

δ2 + ρσ̂2
2i

, ω∗
2i =

δ2

δ2 + σ̂2
2i

, i = ℓ1 + 1, . . . , ℓ.

The introduction of the latent variables creates a simplified and more easily sampled (not completely)

joint posterior density. In fact, the joint posterior density is

π(Ω | D) ∝ 1

(1 + δ2)2

×
c∏

i=1

(1− p)

√
ω1i

2πδ2
e−

ω1i
2δ2

(θ̂1i−x
˜
′
1iβ

˜
)2
Φ(

ω1iθ̂1i+(1−ω1i)x
˜
′
1iβ

˜√
(1−ω1i)δ2

)

Φ(
x
˜
′
1iβ

˜√
δ2

)


1−z1i

×
c∏

i=1

p

√
ω∗
1i

2πδ2
e−

ω∗
1i

2δ2
(θ̂1i−x

˜
′
1iβ

˜
)2
Φ(

ω∗
1iθ̂1i+(1−ω∗

1i)x
˜
′
1iβ

˜√
(1−ω∗

1i)δ
2

)

Φ(
x
˜
′
1iβ

˜√
δ2

)


z1i

×
ℓ∏

i=ℓ1+1

(1− p)

√
ω2i

2πδ2
e−

ω2i
2δ2

(θ̂2i−x
˜
′
2iβ

˜
)2
Φ(

ω2iθ̂2i+(1−ω2i)x
˜
′
2iβ

˜√
(1−ω2i)δ2

)

Φ(
x
˜
′
2iβ

˜√
δ2

)


1−z2i

×
ℓ∏

i=ℓ1+1

p

√
ω∗
2i

2πδ2
e−

ω∗
2i

2δ2
(θ̂2i−x

˜
′
2iβ

˜
)2
Φ(

ω∗
2iθ̂2i+(1−ω∗

2i)x
˜
′
2iβ

˜√
(1−ω∗

2i)δ
2

)

Φ(
x
˜
′
2iβ

˜√
δ2

)


z2i

;

see Appendix A for details.

We use the two-block Gibbs sampler to sample the joint posterior density. Specifically, we sample

Ω1 | Ω2, D and Ω2 | Ω1, D, each in turn, until convergence. Note that this joint posterior density does not

contain θti and this is enormous gain because they are not included in the Gibbs sampler, thereby providing

a more efficient Gibbs sampler. We will sample the θti in an output analysis (i.e., after the Gibbs sampler is

finished).



Let

d21i =
a

ρσ̂2
1i

{(1− z1i) + z1iρ}, i = 1, . . . , c, d22i =
1

ρσ̂2
2i

{(1− z2i) + z2iρ}, i = ℓ1 + 1, . . . , ℓ.

It is worth noting that d1i and d2i do not depend on Ω2. Conditioning on β
˜
, δ2 and Ω1, the θ1i and the θ2i

are all independent. Letting λ1i =
δ2d21i

1+δ2d21i
, i = 1, . . . , c, and λ2i =

δ2d22i
1+δ2d22i

, i = ℓ1 + 1, . . . , ℓ, we have

θti | β
˜
, δ2,Ω1, D

ind∼ Normal{λtiθ̂ti + (1− λti)x
˜
′
tiβ

˜
, (1− λti)δ

2}, θti > 0, i = 1, . . . , c, t = 1, 2. (2)

4. Case Study of 2016 and 2017 Cash Rental Rates

In this section, 2016 and 2017 cash rental rate data are selected as the case study. We fit the cash rental

rate model for each land type (non-irrigated land, irrigated land and pasture land) for twelve regions in US.

NASS has twelve regional offices across the country, each of which is responsible for the statistical work in

several states that are close to each other.

x
˜
ti are the known auxiliary information used in the model and include an intercept, the corresponding

previous year county-level official estimates, the number of positive responses, and The National Com-

modity Crop Productivity Indices (NCCPIs). NCCPIs, which measure the quality of the soil for growing

non-irrigated crops in climate conditions best suited for various crops, are available at the county level in

the US. They are also correlated to the crop yield.

In Section 4.1, we discuss the model fit, Bayesian diagnostics, and the computation time related to the

model. In Section 4.2, we show nationwide comparisons among model, survey and the published estimates.

4.1 Model Fit and Estimation

The two-component mixture model introduced in Section 3 is a useful tool for producing model-based

estimates of cash rental rates with measures of uncertainty. We fit the cash rental rate model for each land

type (non-irrigated land, irrigated land and pasture land) for twelve regions in the US.

Convergence diagnostics are conducted. The convergence for parameters involved in the two-block

Gibbs samplers (Ω1, Ω2) is monitored using trace plots, the Geweke test of stationarity( Geweke (1992))

and the effective sample sizes. There is a single run of 10,000 iterates to fit the model and a ”burn in“

of 2000 iterates. In order to eliminate the correlations among neighboring iterations, those iterations are



thinned by taking a systematic sample of 1 in every 8 samples. Finally, 1000 MCMC samples are obtained

to construct the posterior distributions of parameters and make inferences for the current year cash rental

rate estimates θ2i, i = ℓ1 + 1, . . . , ℓ. We find that the Geweke tests for all the parameters in the model are

not significant and the effective sample sizes are all near the actual sample size of 1000 (mostly all of them

are 1000). Computation time is an additional factor when candidate models are evaluated for use in NASS

production. The described model and their posterior summaries, which generate estimates and measures of

uncertainty for thousands of counties per land type, must be completed in less than 1 day during the annual

production windows. In the case study, the computation time for models fitted for twelve regions by three

land types was less than 2 hours. This is acceptable in the NASS production process.

4.2 Numerical Summaries and Comparisons

The model of Section 3 was fit to the cash rental rates reported on the 2016 and 2017 Cash Rent Surveys

(CRSs) at the county level for twelve regions in the US. We present in Figure 2 a graphical display of

published estimates v.s. survey estimates and model estimates, respectively. The horizontal axes of the plots

represent the 2017 nationwide county-level survey estimates (left panel) or the mixture model estimates

(right panel) by three land types. The vertical axes represent the published estimates. It is straightforward to

see that the points in the right panel plots of the published estimates versus the model estimates are scattered

around the 45 degree line. In the left panel, some of the survey estimates are far away from the 45 degree

line, especially points corresponding to the pasture land (V).

To evaluate the effectiveness of the estimator, we computed the following two deviation measures for

the model estimates and survey estimates from the “truth” (i.e. the published estimates): the average abso-

lute relative deviation (AARD) and the average squared relative deviation (ASRD). External evaluation of

potential models can shed light on their usefulness. We conducted external model evaluation at the time of

research using the previous published estimates. Note that the published estimates would not be available

for the current year. However, they are appropriate for use in assessing the quality and reasonableness of

model-based estimates at the research stage.

• Average absolute relative deviation (AARD):

AARD =
1

n

n∑
i=1

|θ̂i − θpubi |
θpubi

;



• Average squared relative deviation (ASRD):

ASRD =
1

n

n∑
i=1

(θ̂i − θpubi )2

θpub
2
i

,

where n is the number of all counties and θ̂i is the county-level after-benchmarking posterior means and

θpubi is the published estimates. The number of responses for cash rental rates varies with county in each

state. Small area models tend to improve the accuracy of estimates comparing to the accuracy of survey

estimates, especially in areas with small sample sizes. In order to examine the effect of sample size, we

split counties into three groups according to their positive number of reports in the survey: small sizes (less

than 15); median sizes (between 15 and 30); large sizes (larger than 30). These summary measures for the

comparison are given in Table 1 and 2.

Figure 2: The plots of county-level published estimates for cash rental rates versus survey direct estimates
(1st column of the panel) and the model point estimates (2nd column of the panel) for each land type
(represented by each row).

To demonstrate the gain in reliability based on the model relative to the survey, we compare the posterior



Table 1: AARD based on nationwide model and survey estimates

Sample Sizes
D I V

DE ME DE ME DE ME
≤ 15 0.0908 0.0816 0.0629 0.0617 0.0828 0.0781
(15,30] 0.0527 0.0441 0.0416 0.0380 0.0512 0.0465
>30 0.0262 0.0250 0.0251 0.0248 0.0457 0.0412

Table 2: ASRD based nationwide model and survey estimates

Sample Sizes
D I V

DE ME DE ME DE ME
≤ 15 0.0351 0.0224 0.0135 0.0129 0.0233 0.0151
(15,30] 0.0084 0.0063 0.0054 0.0048 0.0102 0.0065
> 15 0.0023 0.0014 0.0024 0.0016 0.0045 0.0036

coefficients of variation (CVs) from the model to the survey CVs. The CVs,

CV = 100× SDm
i

θ̂mi
, (3)

are calculated, where m = {DE, ME} and SD is the corresponding posterior standard deviation of θME
i

from the model and the standard error of survey estimates, respectively. Figure 3 shows the CVs comparisons

among three groups of counties based on sample sizes. The three scatter plots in the upper row show the

CVs comparison between model and survey in small, median, and large sample sizes counties, respectively,

for the non-irrigated land (D). The plots in the second row are for the irrigated land and the last row are for

the pasture land. The posterior CVs have a greater reduction compared with the CVs of the survey estimates.

The median CVs from the model are smaller than the CVs from the survey, for all counties. As expected, the

CVs are smaller when sample sizes increase. The results demonstrate the tendency of the small area model

to improve the reliability of estimates when compared to the reliability of survey estimates, especially in

counties with small sample sizes, that is, counties with very large CVs.

5. Conclusion

We have proposed a two-component mixture HB model with the power prior to obtain the estimates of

county-level cash rental rates for US. This is a two-component mixture model that accounts directly for



Figure 3: The scatter plots of Model CVs v.s. Survey CVs among small, median, and large size counties by
three land types (D, I, V)



outliers and it uses the power prior to input how much of the past data one wants to use. Instead of using all

the past data, as is suggested by the two published papers (Berg et al. (2014) and Erciulescu et al. (2019))

on this topic, we model the percentage of the usage of the past data and it varies by the regions in US. In

addition, the model avoids correlations between two years by using the power prior. Therefore, the new

proposed area-level model is practical in terms of computation time when compared with the unit-level

model, which is a key factor for the evaluation of model for the production in government agencies.

We have also included a positivity constraint for the cash rent model. This has been a long-term prob-

lem associated with small sample sizes and large sample variances. Without the positivity constraint, it is

possible to generate negative estimates, which do not make sense for the cash rental rates. We are able to

overcome this problem and propose the computation method with the positivity constraint.

In the case study of 2016 and 2017 CRSs, we show the comparisons between model estimates and

survey estimates. First, the scatter plots show that the HB model adjusts for outliers, closer to the published

estimates than the survey estimates. In addition, the statistics of AARD and ASRD values show that the

model provides estimates closer to the published values than those from the survey. Moreover, the associated

measures of uncertainty (CVs) from models are significantly smaller than the CVs of the survey estimates.

The model can reduce the CVs while borrowing strength from auxiliary information and all counties within

one region. Therefore, the performance of the model illustrates significant improvement of nationwide

county-level estimates of cash rental rates for all three land types in accuracy, precision, and reliability.

Ongoing and future research related to the model involve the investigation of different auxiliary infor-

mation. The auxiliary information considered here is the nationwide data sources available at the county

level. Future efforts will be on searching and applying other useful data sources to strengthen the model. Tax

data, farm intensity data and other census data are available at the county level in specific states. Variable

selections can be investigated for different states and regions by the three land types.
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APPENDIX A: Integrating out the θti from the Joint Posterior Density with Positivity Constraint

We describe a generic problem that can be easily used to obtained the joint density of the θ̂ti. The generic

problem is

θ̂ | θ ∼ Normal(θ, σ2), θ ∼ Normal(x
˜
′β
˜
, δ2), θ > 0,

where we want to find the marginal distribution of θ̂.

Clearly,

p(θ̂) =

∫ ∞

0

1√
2πσ2

e−
1

2σ2 (θ̂−θ)2 ×
1√
2πδ2

e−
1

2δ2
(θ−x

˜
′β
˜
)2

Φ(
x
˜
′β
˜√
δ2
)

dθ. (A.1)

Letting ω = δ2

δ2+σ2 , we have

1

σ2
(θ̂ − θ)2 +

1

δ2
(θ − x

˜
′β
˜
)2 =

1

(1− ω)δ2
{θ − (ωθ̂ + (1− ω)x

˜
′β
˜
)}2 + ω

δ2
(θ̂ − x

˜
′β
˜
)2

p(θ̂) =

√
1− ω

2πσ2
e−

ω
2δ2

(θ̂−x
˜
′β
˜
)2 1

Φ(
x
˜
′β
˜√
δ2
)
×
∫ ∞

0

1√
2π(1− ω)δ2

e
− 1

2(1−ω)δ2
{θ−(ωθ̂+(1−ω)x

˜
′β
˜
)}2

dθ.

Finally, using a transformation in the integral to a standard normal, it is easy to show that

p(θ̂) =

√
ω

2πδ2
e−

ω
2δ2

(θ̂−x
˜
′β
˜
)2
Φ{ωθ̂+(1−ω)x

˜
′β
˜√

(1−ω)δ2
}

Φ(
x
˜
′β
˜√
δ2
)

,−∞ < θ̂ < ∞. (A.2)

It is interesting that there are no restrictions on θ̂ because it is still in (−∞,∞). However, the restriction on

θ has changed its distribution quite a bit. Doing the algebra again without the constraint, θ > 0 (same as

taking the ratio of the two probabilities equal 1 in (A.2)). That is, without any restriction on θ, we have

θ̂ ∼ Normal(x
˜
′β
˜
, δ2 + σ2),

as it must be. Actually, this is the distribution in (A.2) but it is adjusted by the ratio of the two normalization

constants. In fact, the ratio of the normalization constants goes to 1 as δ2 goes to 0. That is, in the limit the

final density is sensible because θ becomes a point mass at 0.


