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Abstract
When the weights associated with data collected from a finite population (i.e., a sample or a census)
vary, estimators of the median are generally obtained from the (estimated) cumulative distribution
function (CDF). Median estimators based on the CDF are often associated with sorting algorithms
that asymptotically require O(n log n) operations. To improve the computational efficiency, alter-
native algorithms requiring O(n) operations are investigated and extended under complex sampling
designs or, as in the case of a census, after weight adjustments. Furthermore, the uncertainty as-
sociated with median estimators is traditionally computed using replicate methods, such as delete-
a-group jackknife and bootstrap. Although the bootstrap approach has been shown to be more
consistent than the leave-one-out jackknife when estimating the uncertainty of quantiles, it usually
requires more iterations than the delete-a-group jackknife. More computationally efficient algo-
rithms that also account for the uncertainty introduced by calibration are desirable. This paper
describes and compares several simulation studies that address both accuracy and timeliness of the
median standard error.

Key Words: Median estimator, Uncertainty, Complex sampling designs, Accuracy, Precision,
Computational efficiency.

1. Introduction

The United States Department of Agriculture’s (USDA’s) National Agricultural Statistics
Service (NASS) conducts the U.S. Census of Agriculture every five years to quantify the
number of U.S. operations with sales or potential of at least $1,000 in agricultural products.
NASS has adopted a Dual-System Estimation (DSE) methodology since 2012 to improve
the Census estimates. This technique accounts for those farms that are not captured by the
census mailing list (CML). The current practice employs data coming from two indepen-
dent frames to adjust the estimates for undercoverage, non-response, and misclassification.
The June Area Survey (JAS) is an area frame survey conducted each year during the month
of June. NASS keeps the JAS sampl independent from the CML, thus one can use any
standard capture-recapture technique to estimate the population size of the U.S. farms.

Abreu et al. (2010) studied the impact of JAS procedures on the farm number estimates,
and Young et al. (2017) further refined the estimation framework based on standard logistic
regression. However, the separate estimation of the probability models for coverage, non-
response, response follow-up, and misclassification does not utilize all the available Census
and JAS data. Inspired by Alho (1990), a single framework based on a penalized likelihood
has been developed to estimate simultaneously all the parameters of three logistic models.

Replicate methods (Kott, 2001, 2005, 2006; Hyman et al., 2021) have been studied
and applied for estimating the variances of Census totals, while linearization methods have
not been considered due to the estimation complexity of the Census of Agriculture. Fur-
thermore, the analyses of historical data (NASS, 2012, 2017b) and a simple simulation
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study (see e.g. Appendix A) have identified an upward bias when providing standard errors
for the Census medians when using replicate methods (see Figure 1), indicating these meth-
ods lead to reporting a greater level of uncertainty associated with an estimated median than
is truly present. NASS reports a limited number of medians in its Census publications, and
others (with their standard errors) are computed internally and used by the U.S. Congress
for policymaking.

A new weighted median approach with linear-time complexity is proposed to accelerate
part of the computations required by the replication methods in the following sections. Fur-
thermore, the performances of the proposed delete-a-group jackknife (DAGJ) and nonpara-
metric bootstrap sampling (NPBS) are evaluated to account for the uncertainty associated
with both the new estimation methodology and the integer calibration (INCA) algorithm
developed by Sartore et al. (2019).

In Section 2, a computationally efficient median estimator is introduced for improving
the timeliness of replicate algorithms. Two variance estimation techniques for weighted
medians are introduced in Section 3. In particular, a DAGJ estimator is developed in Section
3.1, and a NPBS algorithm is presented in Section 3.2. A simulation study is performed to
assess the performances of the proposed variance estimators, and its results are discussed
in Section 4. Finally, concluding remarks are given in Section 5.

2. A suitable median estimator for replicate algorithms

The median estimator, θ̂, often requires more computations than the mean. In general, the
estimating equation for computing weighted medians is F̂ (θ)− 1

2 = 0, where

F̂ (θ) =
n∑

i=1

wi1[xi,∞)(θ)

/ n∑
i=1

wi

corresponds to the Hájek (1971) estimator.
Standard methods to estimate the median, θ̂ = inf{θ : F̂ (θ) ≥ 1

2} as proposed by
Kuk (1988), are usually implemented through sorting algorithms that have computational
complexity of O(n log n), such as the Quick-sort algorithm (Hoare, 1962; JaJa, 2000).
Instead of sorting the observations, an approach inspired by variations of the Radix-sort al-
gorithm (McIlroy et al., 1993) is implemented by borrowing some ideas from Weiss (2006)
and Zhang et al. (2014). This approach results in a weighted median estimator suitable to
be used in replication algorithms (such as the DAGJ or the NPBS). The weighted medians
are computed with linear complexity, i.e. O(n), by partitioning the observed range itera-
tively. Thus, the identification of θ̂ is accomplished using histograms with range lengths
that converge to zero.

3. Variance estimation of weighted medians

The total variation of the Census estimates begins with the data collection of the Census
given that the JAS data are fully available. The variation introduced by the imputation
and editing processes is here ignored, although it should be accounted at later development
stages. Modeling, which should include variable selection as part of the estimation pro-
cess, currently provides the most substantial contribution to the uncertainty associated with
Census estimates. Furthermore, calibration adjusts the estimated weights computed in the
modelling phase producing an integer number for each respondent farm in the CML.

The new Census estimators (for both totals and medians) use only the respondent units
in the CML. Hence, the estimation of the standard errors associated with these totals can be
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performed using replicate methods (such the DAGJ and the NPBS). Since the estimation
of the Census totals is based on a capture-recapture procedure, the combination of Census
data with the JAS information should be similarly treated in the replicate method of choice.
Because the JAS data are fully available during the Census data collection, the selection
scheme should characterize the uncertainty by randomizing only the samples acquired by
the Census. Furthermore, some of the Census records are flagged as “Must Cases” and have
final integer calibrated weight equal to one; that is, they are selected from the population
of interest with probability one. Therefore, “Must Cases” should not be subject to any
resampling or deletion procedure and should provide a constant basis to build replicate
estimates.

3.1 The DAGJ estimator

Given each observation i ∈ C∩R, where C and R respectively represent the sets of indexes
for the CML and those that respond to the Census questionnaire. Each observation i is
randomly assigned into a group Gg, for g = 1, . . . , G, where G denotes the number of
jackknife groups.

Under the considerations provided in the Introduction, the likelihood developed for the
Census of Agriculture must use the contribution of the observation i

L
(g)
JK,i =

(
π
(g)
J,i

)yJ,i
{
π
(g)
C,i

(
ρ
(g)
i

)ri (
1− ρ

(g)
i

)1−ri
}yC,iAi (

1− π
(g)
C,i

)yJ,i(1−yC,iAi)

K
(yC,i+yJ,i−yC,iyJ,i)(yJ,i+Ai−yJ,iAi)
i

(
1− π

(g)
J,i

)−yC,iAi(1−yJ,i)
,

where yC,i and yJ,i are respectively indicator variables for Census and JAS coverage, ri
represents the indicator variable for positive response from a farm in the CML. The nota-
tion Ai accounts for “Must Cases” and group deletion and is defined as

Ai = zi + {1− 1{g}(g̃i)} − zi{1− 1{g}(g̃i)},
= 1− 1{g}(g̃i) + zi1{g}(g̃i),

where zi is one if observation i is a “Must Case”, zero otherwise; g̃i denotes the Jackknife
group randomly assigned to the observation i; and 1A(x) denotes an indicator function, i.e.

1A(x) =

{
0, if x ̸∈ A,

1, if x ∈ A,

for a generic set A. The normalization constant Ki is defined as

Ki = π
(g)
C,i

(
1− π

(g)
J,i

)
ρ
(g)
i + π
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(
1− π
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+ π
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(g)
J,i

(
1− ρ

(g)
i

)
,
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where the modelled probabilities are as follows:

π
(g)
C,i = {1 + exp(−Xc,iβ

c,g)}−1, π
(g)
J,i = {1 + exp(−Xj,iβ

j,g)}−1, and

ρ
(g)
i = {1 + exp(−Xr,iβ

r,g)}−1,

for any deletion group g = 1, . . . , G.
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The G Jackknife replication groups are uniformly assigned at random to each obser-
vation i ∈ C ∩ R. Afterwards, parameter estimates for all model-based probabilities are
computed by maximizing the following penalized log-likelihood:

ℓ
(g)
JK =

∑
i∈J∪(C∩R)

log
(
L
(g)
JK,i

)
+

∑
i∈C∩R

Ai log

 ui

π
(g)
C,iρ

(g)
i

1[ui,+∞)

 1

π
(g)
C,iρ

(g)
i

 ,

where ui corresponds to the upper bound used for to assess the calibration weight of ob-
servation i, and J denotes the set of indexes for the observations covered/captured by the
JAS.

Model based weights w̃(g)
i =

(
π̂
(g)
C,iρ̂

(g)
i

)−1
, for any i ∈ (¬Gg)∩C ∩R are successively

calibrated through INCA using group-specific benchmarks. Thus, the integer calibrated
weights ŵ(g)

i , for any i ∈ (¬Gg) ∩ C ∩ R, are then used for computing the group-specific
medians (or totals) θ̂(g) appearing in the following Jackknife estimator:

VAR[ θ̂ ] =
G− 1

G

G∑
g=1

(
θ̂(g) − θ̂∗

)2
,

where θ̂∗ corresponds to the final Census estimate. For implementation purposes, the jack-
knife calibrated weights ŵ(g)

i must be set to zero, for all i ∈ Gg ∩ C ∩ R.

3.2 The NPBS estimator

As for the DAGJ approach, the assumptions considered above in Section 3 still hold when
developing a NPBS estimator for the standard errors of Census medians (and totals).

All observations acquired through the JAS are going to be available throughout each
bootstrap replicate, as well as for the “Must Cases” that will be selected with probability
one in our replicate subsamples since they have weights equal to one. Therefore, only Cen-
sus records with final integer calibrated weights in the set {2, 3, . . . , 6} will be resampled
without replacement. No record in the Census is allowed to have weight larger than 6.

To avoid the construction of a pseudo-population, each record i ∈ C ∩ R is associated
with a randomly generated integer number S(b)

i ∼ Bernoulli(ŵ−1
i ), where ŵ−1

i is the final
integer calibrated weight associated with record i for any bootstrap replicate b = 1, . . . , B,
where B is a large integer number. Thus, the random variable Si represents the selection
indicator of the record i ∈ C ∩ R.

The contribution of a generic record i to the likelihood at the bootstrap iteration b is

L
(b)
BS,i =

(
π
(b)
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)yJ,i
{
π
(b)
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ρ
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K
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where V
(b)
i accounts for “Must Cases” and bootstrap selection, and it is defined as

V
(b)
i = zi + S
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(b)
i + zi

(
1− S

(b)
i

)
.

 
1789



The parameter estimates for all probabilities are computed by maximizing the following
penalized log-likelihood:

ℓ
(b)
BS =

∑
i∈J∪(C∩R)

log
(
L
(b)
BS,i

)
+

∑
i∈C∩R

V
(b)
i log
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π
(b)
C,iρ

(b)
i
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 1

π
(b)
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(b)
i

 .

Weights w̃
(b)
i =

(
π̂
(b)
C,iρ̂

(b)
i

)−1
, for any i ∈ C ∩ R : V

(b)
i = 1 are successively cali-

brated through INCA using specific benchmarks at every bootstrap iteration. The integer
calibrated weights ŵ

(b)
i , for any i ∈ ∩C ∩ R : V

(b)
i , are then used for computing the

group-specific medians (or totals) θ̂(b) appearing in the following NPBS estimator:

VAR[ θ̂ ] =
1

B − 1

B∑
b=1

(
θ̂(b) − θ̂∗

)2
,

where θ̂∗ corresponds to the final Census estimate. For implementation purposes, the boot-
strap calibrated weights ŵ(b)

i must be set to zero, for all i ∈ C ∩ R : V
(b)
i = 0.

4. Practical application

The data from the 2017 US Census of Agriculture have been considered for two states:
Connecticut and Illinois. These states have very different agricultural practices. In fact,
farms in Connecticut predominantly produce hay and alfalfa, while corn and soybeans are
the major crops cultivated in Illinois. In 2021, Connecticut had about 5,500 farms and
about 380,000 acres of land devoted to agriculture. In Illinois, the number of farms was
approximately 70,900 while the total farm land in 2021 was about 27,000,000 acres. The
two 2017 datasets are, therefore, much different in the number of records to process and
the type of information provided by the quantitative variables.

For this application, state-level medians and totals for land in farms are estimated using
a capture-recapture methodology that simultaneously estimates the parameters for coverage
and nonresponse using all the data available from both the CML and JAS. The estimated
weights are then calibrated using the algorithm proposed by Sartore et al. (2019). The
state-level totals for the number of farms are also provided to better assess the magnitude
of the uncertainty for different quantities of interest. In particular, the coefficients of vari-
ation (CV) for both medians and totals are computed using the variances provided by the
two replicate methods presented in Section 3.1 and 3.2. For the DAGJ methodology, the
number of deletion groups has been set to G = 10, and the number of replicates B = 100
has been considered for the NPBS. The results computed for Connecticut are shown in
Table 1, and those for Illinois are presented in Table 2.

Table 1: Estimated totals and medians in Connecticut, with respective CVs, based on
DAGJ (with G = 10) and NPBS (with B = 100)

N. Farms Land in Farm
Estimated totals 5,565 405,807
CV based on DAGJ 5.05% 102.44%
CV based on NPBS 1.51% 31.62%
Estimated medians – 20
CV based on DAGJ – 15.73%
CV based on NPBS – 4.26%
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The calibrated total number of farms in Connecticut during 2017 is quite close to the
published number of farms during 2021. This suggests that the number of agricultural op-
erations in Connecticut has not changed much, and the total land operated by farms (based
on the proposed methodology) has decreased when compared to the published number
for 2017. These considerations, however, do not account for the variability of the esti-
mates obtained with the proposed method. The CVs computed for the number of farms
and the land devoted to farming using the DAGJ are larger than those produced with the
NPBS. This aspect might be due to the violation of homogeneity assumptions among the
groups. Furthermore, the variations observed between the estimates produced for 2017
and the number published in 2021 are not high enough to suggest any substantial change
between 2017 and 2021. On the other hand, although a single Connecticut farm has an
average of approximately 73 acres of land, the median value is 20 acres. This highlights a
positive skewness of the distribution of land associated with individual farms.

Table 2: Estimated totals and medians in IL, with respective CVs, based on
DAGJ (with G = 10) and NPBS (with B = 100)

N. Farms Land in Farm
Estimated totals 72,698 26,791,391
CV based on DAGJ 0.56% 39.19%
CV based on NPBS 0.27% 7.70%
Estimated medians – 98
CV based on DAGJ – 6.42%
CV based on NPBS – 1.79%

The calibrated total number of farms in Illinois during 2017, on the other hand, is larger
than the published number of farms during 2021. This suggests a decrease in the number
of the agricultural operations in Illinois through time; however, the total land operated by
farms has increased slightly. Furthermore, when accounting for the variability of the esti-
mates obtained with the proposed method, no substantial changes for the land devoted to
agriculture is observed. This, however, cannot be said for the total number of Illinois farms.
In fact, the decrease noted between the estimates produced with the proposed methodology
for 2017 is quite substantial if one considers the CV computed with the NPBS. However,
one can draw opposite conclusions when looking at the CV produced with the DAGJ. In
any case, the CVs produced with the DAGJ tend to be consistently higher than those pro-
duced with the NPBS, showing potential for improvement in producing unbiased variance
estimates. Furthermore, the average land operated by a single farm in Illinois is estimated
to be 369 acres while the median value is 98 acres. Thus, the distribution of an Illinois
farm devoted to agriculture is highly skewed, and the average is affected by very large
operations.

Similarly, NPBS CVs have been attained by looking at subsets of 10 replicates from
the B = 100 replicates originally computed to produce the results in both Table 1 and 2.
This aspect shows the NPBS produces satisfactory results even with a low number of repli-
cates at the expense of statistical efficiency that is usually gained when B → ∞. Nonethe-
less, considering B = 10 could be a convenient solution for implementing time-expensive
computational tasks within a limited amount of time.

5. Conclusion and final remarks

The existing methodology to compute the variances is designed to obtained unbiased es-
timates of Census totals; however, it is not optimal for the variance estimation of Census
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medians. Because, in some cases, medians are more informative than averages, especially
for skewed distributions (e.g. land-in-farm and economic variables), these are often es-
timated by leveraging sorting algorithms. To improve the computational performances of
replication methods, a new algorithm is proposed to quickly estimate the medians and avoid
the sorting of the data.

While improving the computational algorithm to estimate the medians from a finite
population by providing minor accelerations, a much larger set of operations is required
for computing the variances when using a replication method. In fact, model fitting and
calibration must be performed at each replicate requiring several minutes (on average 20)
to obtain a set of calibrated weights. Furthermore, the DAGJ usually requires less replica-
tions than the NPBS. However, the NPBS has produced more reliable results (as shown in
Section 4).

Extensions of the proposed methodology for all states are currently under investiga-
tion. However, this process will benefit greatly from the inclusion of an automatic covari-
ate selection. Because each state requires a different set of covariates to produce sound
results (mostly due to differences in agricultural practices), high-performance computing
capabilities could allow processing several models simultaneously. These modern tech-
nologies have a potential to reduce the computational time required to improve model se-
lection and obtain replicate weights through parallel computing devices (such GPUs).
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A. Simulation results using 2017 variance methodology

To inspect the performance of the 2017 variance methodology (NASS, 2017a), a simple
simulation study has been performed by considering the following steps:

1. Simulate a population of size N .

2. Generate uniformly distributed sampling weights, wi ∈ {1, . . . , 6}.

3. Perform Poisson sampling with selection probabilities πi = w−1
i .

4. Estimate the CVs of weighted medians using a direct approximation, the DAGJ, and
the current 2017 Census methodology.

5. Iterate steps 3. and 4. to study the empirical distribution of the CVs assuming wi are
known for any i = 1, . . . , N .

The box-plots shown in Figure 1 have been obtained with 1, 000 samples drawn from
a population of size N = 10, 000. The direct estimates of the CVs have been computed
according to the following formula:

CV[ θ̂ ] =
1

2
√
n f(θ̂y) θ̂

,

where f(θ̂) is evaluated using the first derivative of a smooth approximation of the empiri-
cal cumulative distribution functions (Sedransk and Sedransk, 1979), F̂ (θ̂).
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Figure 1: Results from a simulation study on the distribution of the variance estimates ob-
tained through three different methods (direct approximation, DAGJ, and the current 2017
Census methodology).

Although the results computed with both the direct approximation and the DAGJ method
are unbiased (i.e. with distributions centered and aligned according to a common median
value), the direct approximation is a more statistically efficient estimator than the DAGJ
method. On the other hand, the estimator based on the current 2017 methodology has been
producing unbiased variance estimate for weighted totals but not for weighted medians (as
seen in Figure 1).
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