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Abstract 
Nonresponse adjustments are often performed on survey weights to reduce the bias of 
estimates when analyzing complex sample survey data. Several algorithms are available 
when modeling survey nonresponse for these adjustments, many of which include the 
option to incorporate design weights. The literature reports uncertain findings related to the 
benefits of weighting in these settings. Lohr, Hsu, and Montaquila (2015) found no benefits 
in using weights when modeling response propensity; Lin and Flores Cervantes (2019) 
showed minor improvements with weighted analysis; and Cecere, Lin, Jones, Kali, and 
Flores Cervantes (2020) and Jones, Cecere, Kali, and Lin  (2021) reported mixed results. 
A shared limitation of these studies is that they were not specifically designed to assess the 
use of weights when using these methods. In this paper, we investigate the sensitivity of 
select classification tree-based algorithms when using weights by conducting a simulation 
study of a stratified sample design with design weights highly correlated to the outcome 
variable. We compare unweighted and weighted analysis and evaluate the effect of 
incorporating design weights on estimating response propensity and reducing nonresponse 
bias. 
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1. Introduction 

Missing information resulting from sampled units who refuse to participate can negatively 
impact the quality of the estimates made from the survey data. Many methods are available 
to adjust weights to account for this type of nonresponse (i.e., unit nonresponse; Brick and 
Montaquila 2009). When undertaking this task, researchers are faced with the choice of 
methods to use to best adjust estimates for nonresponse; that is, to adjust the sampling 
weights that produce estimates with reduced nonresponse bias while minimizing their 
variance. A popular method among survey statisticians is the weighting-class adjustment 
method (Lessler and Kalsbeek 1992). The weighting classes are created either by fitting 
regression models to predict response propensity and making cutpoints of the estimated 
propensity or by utilizing terminal nodes of classification or regression trees (Lohr et al. 
2015). 
 
This paper focuses on nonresponse adjustments for weighting classes based on the terminal 
nodes of classification trees fitted to the observed response status (i.e., respondent and 
nonrespondent). Researchers have made progress in this area over the past few years. For 
example, Toth and Phipps (2014) explored the use of regression trees as a tool to study the 
characteristics of survey nonresponse, and Lohr et al. (2015) compared the estimates 



obtained with nonresponse adjusted weights from various classification tree and random 
forest algorithms. Lohr et al. explored the choices of the parameters for these methods; for 
example, the inclusion or exclusion of survey weights and different pruning methods and 
loss functions. Their research favored the conditional inference tree method (i.e., R 
package ctree, explained in Section 2), advised against recursive partitioning (i.e., R 
package rpart), and found no benefit of using survey weights when modeling response 
propensity. More recently, Lin and Flores Cervantes (2019) compared nonresponse 
adjusted estimates based on weighting-class nonresponse adjustments to estimates with 
weights adjusted using a two-step modeling approach based on the gradient boosting 
algorithm. This method incorporated both the probability of response and estimated survey 
outcomes into the nonresponse adjustment to reduce bias while controlling for variance 
(Little and Vartivarian 2005). Lin and Flores Cervantes found benefits of the traditional 
weighting method combined with the recursive partitioning for modeling survey data (i.e., 
R package rpms) over the two-step modeling approach with gradient boosting. Cecere et 
al. (2020) expanded the research of Lohr et al. (2015) and Lin and Flores Cervantes (2019) 
by comparing additional tree-building algorithms as well as those they recommended for 
the creation of nonresponse weighting classes. Cecere et al. compared the algorithms 
empirically through a Monte Carlo simulation study using an artificial population and 
response based on the data from the American Community Survey (ACS) Public Use 
Microdata Sample (PUMS) and found that the conditional inference tree method as 
implemented by the ctree package in R produced the most favorable results as measured 
by empirical bias and variance. Jones et al. (2021) built upon the research of Cecere et al. 
(2020) by comparing select tree-building algorithms under a cluster sample design and 
under low- and high-response scenarios using the same artificial population and response 
based on data from the ACS PUMS. 
 
Kott (2012) argues that when estimating population means of survey variables that roughly 
behave as random variables with constant means within weighting classes that 
incorporating the design weights into the adjustment factors will usually be more efficient 
than not incorporating them. Under their conditions, Lohr et al. (2015) found no benefit to 
using survey weights when building classification trees. Our research specifically evaluates 
the use of design weights under conditions where the response propensity is correlated with 
the design weight. As with Cecere et al. and Jones et al., we compare the algorithms 
empirically through a Monte Carlo simulation study using the same artificial population 
and response based on the data from the ACS PUMS. The performance of the method is 
evaluated using the empirical bias and variance of the estimators of two outcomes. 
 
The rest of the paper is organized as follows. In Section 2, we describe the nonresponse 
adjustment algorithms included in the comparisons. Section 3 describes the details of the 
simulation, such as the source for the population frame, predictors, response definitions, 
and dependent variables, in addition to the sample design. Section 4 describes the 
simulation study, while Section 5 summarizes the simulation results, including direct 
comparisons to results found in Cecere et al. (2020). We finish in Section 6 with 
conclusions and recommendations for future research. 
 

2. Nonresponse Weighting Candidate Models 

A large number of tree-based algorithms have been described in the literature (see Loh 
2014). We evaluated six tree-building algorithms in this study (see Table 1), which were 
chosen based on recommendations from the literature. Three of the methods are 



implemented by packages in R, and three of the methods are options under the HPSPLIT 
procedure in SAS. 
 

Table 1: Tree-building algorithms evaluated 

Program Algorithm 
R Package 

partykit Conditional Inference Tree (ctree) 
REEMTree Random Effects Models (REEM) 
rpms Recursive Partitioning for Modeling Survey Data (rpms) 

SAS 
HPSLIT Procedure CHAID - Node splits based on statistical tests 
HPSLIT Procedure Entropy - Node splits based on impurity 

 
The ctree and REEM algorithms performed well in Lohr et al. (2015) and were therefore 
included in our research. The rpms algorithm is a relatively new method developed 
specifically to account for complex survey designs by treating weights appropriately. This 
algorithm was favored by Lin and Flores Cervantes (2019). We include the chi-square 
automatic interaction detection (CHAID) algorithm via the SAS HPSPLIT procedure 
because CHAID is a popular choice for creating nonresponse adjustment cells. Lin, Flores 
Cervantes, and Kwanisai (2021) compare two implementations of the CHAID method: SI-
CHAID and the CHAID option under the HPSPLIT procedure in SAS. They found that 
under the conditions of their study, empirical bias and variance were not affected by 
differences between the two implementations. We round out our list of algorithms with two 
measures of impurity used to split tree nodes, the Gini index and entropy options under 
HPSPLIT. We present more details on each of these algorithms in the following sections. 
 
2.1 ctree Algorithm 
In the R package partykit (Hothorn and Zeileis 2015), the function ctree (Hothorn, Hornik, 
and Zeileis 2006) implements an algorithm that builds classification trees using the 
conditional distribution of the response variables given the covariates, assuming that the 
observations are independent. At each step, the method determines whether further 
partitioning is needed by testing the independence between the response variable and each 
covariate. If the null hypothesis is not rejected for each covariate, then it stops splitting. On 
the other hand, if the test is rejected for at least one covariate, it selects the covariate with 
the strongest association (i.e., the minimum p-value from the set of independence tests for 
all covariates) to be the basis of the split. The method then finds the split that results in the 
maximum difference of target between two nodes. 
 
2.2 REEM Algorithm 
It is often the case that practitioners want to account for cluster-to-cluster variability in the 
models for nonresponse. One solution is to treat the cluster as a fixed effect covariate. 
However, often there are a large number of clusters (or Primary Sampling Units) in a 
survey, and some tree methods have a selection bias toward variables with a large number 
of categories such as the PSUs, as Lohr (2015) suggests. As an alternative for accounting 
for area effects, Sela and Simonoff (2012) outlined an approach that uses the Expectation-
Maximization (EM) algorithm for clustered data. The REEMtree package in R (Sela, 
Simonoff, and Jing 2021) utilizes the package rpart (Therneau, Atkinson, and Ripley 2022) 
for tree building with the addition of a linear model for random effects. The algorithm in 
the REEM function takes an iterative approach and alternates between fitting random 
effects through maximum likelihood estimation and fitting a tree after removing the 



random effects. The resulting response propensities are a combination of estimates from 
leaves and estimated random effects. 
 
2.3 rpms Algorithm 
A relatively new classification algorithm reviewed in this paper is the recursive partitioning 
for modeling survey data algorithm implemented in the function rpms of the R package of 
the same name (Toth 2021). As implied by the name, the algorithm recursively classifies 
data using independent variables. This package is appropriate for survey data as it was 
developed explicitly to include parameters for sampling weights, clusters, and stratum 
definitions from complex survey designs into the trees. The rpms function fits a linear 
model to the data conditioning on the splits selected through a recursive partitioning 
algorithm. The models of the created classification trees are design-consistent and account 
for clustering, stratification, and unequal probabilities of selection at the first stage. 
 
2.4 SAS HPSPLIT Algorithms 
The HPSPLIT procedure in SAS/STAT® software (2015) builds classification and 
regression trees. The procedure offers several options for partitioning criteria. Two 
commonly used options are included in this research. The first criterion uses entropy 
information for classification. The second criterion used in our research is based on a 
CHAID algorithm, which utilizes chi-square tests to partition the data into trees. In 
CHAID, the natural logarithm of the p-value from the selected statistical test determines 
the best split (Kass 1980). The splitting algorithms in the HPSPLIT procedure that we 
studied have the potential of overfitting the training data with a full tree, resulting in a 
model that does not adequately generalize to new data. To prevent overfitting, HPSPLIT 
implements the method of pruning: the full tree is trimmed to a smaller subtree that 
balances the goals of fitting training data and predicting new data. 
 
This paper compares the empirical bias and variance of the estimates computed using the 
listed methods of two outcome variables for a low-response and a high-response scenario. 
 

3. Simulation 

We created the sampling frame for the simulation study using the household-level 2013-
2017 ACS PUMS. The sampling frame served as the population for a simulation study 
mirroring a national survey of households. The frame consisted of a one-time simple 
random sample (SRS) of 200,000 households (excluding group homes) of the ACS PUMS 
dataset. A total of 5,000 repeated samples were selected using a clustered design. The 
primary sampling units (PSUs), or clusters, were defined by Public Use Microdata Areas 
(PUMAs) or combined PUMAs containing at least 300 housing units. Sampling began by 
selecting 25 PSUs from each of the four Census regions for a total of 100 PSUs. One 
hundred housing units were then randomly selected from each of the sampled PSUs. Each 
simulation run consisted of 10,000 housing units. 
 
Our simulation considers nonresponse for the final sampling unit and not the PSU level. 
Details of the simulation design can be viewed in Table 2. We study two response levels: 
low (30 percent) and high (70 percent). Previous year household income was one of the 
auxiliary predictors used in the modeling of response mechanisms. In one scenario, the 
mechanism produced response propensity that was correlated with household income, and 
in the other, it was not. We employed two types of sampling; a SRS of housing units as a 
baseline sample and a probability-proportional-to-size (PPS) sample (i.e., informative 
sampling) where high-income households had a greater chance of selection. In this paper 



we use the terms PPS and informative sampling interchangeably. The PPS sample offered 
a setting where our auxiliary variable, previous year household income, was correlated with 
our outcome variables. We ran each setting with and without weights to assess the impact 
of using weights when creating nonresponse weighting cells. 
 
We anticipated that the nonresponse bias in the SRS sampling would be the highest in the 
setting where correlation is high between our auxiliary variable and both response 
propensity and the outcome variables, and the lowest when both correlations are low. 
Literature on the effect of informative sampling is limited; therefore, we had no 
expectations of bias results under that sample design. 
 

Table 2: Simulation design 

Sampling Response rate Auxiliary correlation 
PPS 
PPS 
PPS 
PPS 
SRS 
SRS 
SRS 
SRS 

High – 70% 
High – 70% 
Low – 30% 
Low – 30% 
High – 70% 
High – 70% 
Low – 30% 
Low – 30% 

High 
Low 
High 
Low 
High 
Low 
High 
Low 

 
The response mechanisms were generated using the basic model 
 

𝒓𝒓 = 𝜷𝜷𝟎𝟎 + 𝜷𝜷𝟏𝟏𝒙𝒙𝟏𝟏 + 𝜷𝜷𝟐𝟐𝒙𝒙𝟐𝟐 + 𝜷𝜷𝟑𝟑𝒙𝒙𝟑𝟑 + 𝜷𝜷𝟒𝟒𝒙𝒙𝟒𝟒 + 𝜷𝜷𝟓𝟓𝒙𝒙𝟓𝟓 
 
Where 𝒓𝒓 is the response mechanism, 𝜷𝜷𝟎𝟎 is the control for levels of response in Table 2, 𝜷𝜷𝟏𝟏 
is the control for levels of correlation with our auxiliary predictor, and 𝜷𝜷𝟐𝟐,𝜷𝜷𝟑𝟑,𝜷𝜷𝟒𝟒, and 𝜷𝜷𝟓𝟓 
are the coefficients generated by a logistic model using the top predictors of ACS response. 
A logit transformation was then implemented on the various values of 𝒓𝒓 to obtain response 
probabilities between 0 and 1. 
 
We selected two outcome variables for the simulation study, listed in Table 3. The 
empirical study compared estimates of means for the continuous variable (percentage of 
households where all residents have health insurance) and proportions for the binary 
variable (at least one member of the household has a bachelor’s degree) of these outcome 
variables. 
 

Table 3: Outcome variable descriptions 

Outcome variable Description Type Values 
Health Insurance Percentage of households where all 

members have health insurance 
Percentage 0-1 

Bachelor’s degree Percentage of households that have at least 
one member with a bachelor’s degree 

Percentage 0-1  

 
The population frame included 39 variables selected as predictors for nonresponse. Of 
those variables, 35 were household-level characteristics, while the remaining 4 were 
person-level characteristics derived by summarizing to the household level the 
corresponding person-level variables. The 39 predictors included 4 continuous variables 
and 35 categorical variables. The categorical variables were recoded such that the smallest 



category contained at least 5 percent of the households in the population. Most tree 
algorithm packages used in the simulation do not handle predictors with missing values; 
therefore, missing values were assigned to a separate category. 
 
The models predicting response propensities were fit using the methods in the statistical 
software packages discussed in Section 2. The fitted response propensity models were then 
used to compute weighting classes and nonresponse adjustment factors to adjust the design 
weights. Final weighted estimates of mean or proportions adjusted for unbalanced sample 
selection and nonresponse bias were computed for the outcome variables discussed above 
and compared against the true values from the population. The statistics examined for 
comparing the estimators 𝑌𝑌��𝐸𝐸  are the absolute empirical relative bias (RelBias), and 
empirical relative root mean squared error (RRMSE), defined as 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑌𝑌��𝐸𝐸�% = |100 × 𝐵𝐵−1 ∑ 𝑌𝑌��𝐸𝐸,𝑏𝑏−𝑌𝑌�

𝑌𝑌�
𝐵𝐵
𝑏𝑏=1 |, as 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �𝑀𝑀𝑀𝑀𝑀𝑀(𝑌𝑌��𝐸𝐸)
𝑌𝑌�2

, 

where B  is the number of simulations runs and 𝑀𝑀𝑀𝑀𝑀𝑀�𝑌𝑌�𝐸𝐸� is the empirical mean squared 

error of 𝑌𝑌��𝐸𝐸 computed as 𝑀𝑀𝑀𝑀𝑀𝑀�𝑌𝑌�𝐸𝐸� = ∑ (𝑌𝑌��𝐸𝐸,𝑏𝑏−𝑌𝑌�)2𝐵𝐵
𝑏𝑏=1

𝐵𝐵
. 

 
Each statistical software package contains unique sets of parameters to control tree fitting. 
Special effort was made to apply global settings among all packages to minimize subjective 
differences in bias and variance evaluation. 
 
3.1 ctree 
The following parameters were used for all trees: 
 
• Minbucket: the minimum number of observations in a terminal node was set to 40. 
• Maxdepth: NA. 
• Prune: ctree avoids overfitting by using hypothesis tests to determine the splitting 

nodes stopping point, thus eliminating the need for pruning. 
• Weight: in contrast to the other packages studied in this paper, ctree requires integer-

valued weights and treats the weights as observation frequencies as opposed to 
survey weights. This parameter was not used for this reason. 

• Bonferroni: use Bonferroni adjustment to compensate for multiple testing in the 
global null hypothesis, and therefore was set to Yes. 

• Alpha: 0.05. 
• Mincriterion: 0.95. 
 
All other parameters were set to their default values. 
  



3.2 REEM 
The following parameters were used for all trees: 
 
• tree.control: rpart.control. 
• Minbucket: the minimum number of observations in a terminal node was set to 40. 
• Cp: 0.01. 
• Random: region was treated as the random effect in the mixed model. 
 
All other parameters were set to their default values. 
 
3.3 rpms 
The following parameters were used for all trees: 
 
• Bin_size: the minimum number of observations in a terminal node was set to 40. 
• Prune: similar to the conditional inference tree, the rpms algorithm eliminates the 

step of pruning. 
• Strata: Census region was specified as the sampling strata. 
• Cluster: PSU was specified as the sampling clusters. 
• P-val: 0.05. 
 
The following factors were varied: 
 
• Weight: weight = 1 for all observations or weight = design weight. 
 
All other parameters were set to their default values. 
 
3.4 SAS HPSPLIT Algorithms 
The following parameters were set equal for all trees: 
 
• Minleafsize: the minimum number of observations in a terminal node was set to 40. 
• Maxdepth: the maximum level a tree could be grown was set to 5. 
• Prune: to avoid overfitting, one procedure is to grow the tree out as far as possible 

and then prune back to a smaller subtree (Breiman, Friedman, Olshen, and Stone 
1984). The pruning method specified for this package was reduced-error pruning 
(Quinlan 1986). 

 
The following factors were varied: 
 
• Weight: weight = 1 for all observations or weight = design weight. 
• Criterion: CHAID, Gini, or entropy. 
 
All other parameters were set to their default values. 
 

4. Results 

Table 4 shows the simulation results of the high-response setting without design weights, 
and when response propensity is not correlated to household income, our auxiliary 
predictor. The results are shown for each of the algorithms studied under a SRS or 
uninformative design, and a PPS or informative design. Results are shown for both 
outcomes: the proportion of household s in which all residents have health insurance and 



the proportion of households in which at least one household members holds a bachelor’s 
degree. We treat the results exhibited in Table 4 as baseline measures. 
 
Table 4: Estimates of RelBias and RRMSE under SRS and PPS sample designs for high 
response when response propensity is not correlated to household income, unweighted 

Algorithms 

Outcome variable 
Health insurance Bachelor’s degree 

Simple random 
sample 

Informative 
sampling 

Simple random 
sample 

Informative 
sampling 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

ctree  0.2 0.6 0.2 0.6 0.2 0.9 0.3 1.0 
REEMtree  0.2 0.6 0.3 0.7 0.4 1.0 0.3 1.0 
rpms  0.3 0.6 0.3 0.7 0.5 1.0 0.6 1.2 
SAS CHAID  1.0 1.4 0.1 0.7 1.7 2.8 1.4 1.9 
SAS Entropy  0.7 1.2 0.1 0.6 0.3 2.1 0.0 1.0 

 
The estimated absolute relative bias for the R package algorithms are comparable between 
the two sample designs and are close to zero across all simulation settings. This is observed 
in the results of both outcome variables, suggesting that these algorithms can largely reduce 
nonresponse bias when the probability of response is not correlated with an auxiliary 
predictor, regardless of the survey outcome or probability of selection. Compared to the R 
package algorithms, the SAS options generally produced estimates with elevated absolute 
relative biases, indicating less success in mitigating nonresponse bias. The exception to 
this was the result associated with health insurance when an informative sample was used, 
in which case the relative bias for the SAS options was lower than the R package options. 
The largest estimated absolute relative bias (1.7 percent) was associated with the bachelor’s 
degree outcome measure calculated when CHAID was used and under an uninformed 
sample design. No apparent pattern is observed for SAS options between sample designs 
or outcome estimates, suggesting that the increase in bias is a result of the algorithms as 
opposed to the simulation settings. 
 
The balance of bias and variance as measured by the RRMSE does not display much 
fluctuation among R package algorithms within a simulation setting. For the health 
insurance estimates, the RRMSE is consistently 0.6 percent under simple random sampling 
and ranges from 0.6 to 0.7 percent under informative sampling. For the bachelor’s degree 
estimates, the range of RRMSE is 0.9 to 1.0 percent under simple random sampling and 
1.0 to 1.2 percent under informative sampling. The RRMSE associated with the SAS 
options resulted in an overall increase, partially contributed by elevated levels of bias. A 
notable observation is that the SAS Entropy estimator of bachelor’s degree under simple 
random sampling produced estimated absolute RelBias comparable to the R package 
algorithms (0.3 percent). However, the RRMSE is much higher (2.1 percent) indicating a 
higher variance associated with this outcome variable and algorithm. 
 
Table 5 provides results under the same conditions as those in Table 4, but with design 
weights applied to the algorithms. 
 
 



Table 5: Estimates of RelBias and RRMSE under SRS and PPS sample designs for high 
response when response propensity is not correlated to household income, weighted 

Algorithms 

Outcome variable 
Health insurance Bachelor’s degree 

Simple random 
sample 

Informative 
sampling 

Simple random 
sample 

Informative 
sampling 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

ctree  0.2 0.5 0.2 0.6 0.2 0.9 0.2 1.1 
REEMtree  0.2 0.6 0.3 0.7 0.4 1.0 0.3 1.0 
rpms  0.3 0.6 0.3 0.7 0.5 1.0 0.6 1.2 
SAS CHAID  1.0 1.4 0.5 0.8 0.9 2.4 0.8 1.4 
SAS Entropy  0.9 1.2 0.2 0.7 2.0 2.8 0.0 1.1 

 
Applying design weights appears to have had a nominal effect on bias and variance. For 
example, the estimated absolute RelBias for the unweighted and weighted ctree estimates 
under most settings is 0.2 percent. The only case where use of design weights reduced the 
estimated absolute RelBias was SAS CHAID, but the effect was not consistent among all 
settings. 
 
Table 6 provides results under conditions similar to those as Table 4, the only difference 
being the response propensity is highly correlated to the auxiliary predictor, household 
income. 
 
Table 6: Estimates of RelBias and RRMSE under SRS and PPS sample designs for high 
response when response propensity is highly correlated to household income, unweighted 

Algorithms 

Outcome variable 
Health insurance Bachelor’s degree 

Simple random 
sample 

Informative 
sampling 

Simple random 
sample 

Informative 
sampling 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

ctree  0.4 1.3 0.4 1.4 0.9 2.2 1.5 2.6 
REEMtree  0.9 1.1 1.1 1.5 2.6 2.8 2.9 3.3 
rpms  0.4 1.0 0.3 1.3 0.4 1.8 0.3 2.1 
SAS CHAID  1.0 1.4 1.3 1.7 1.7 2.8 3.5 4.1 
SAS Entropy  0.7 1.2 0.7 1.6 0.3 2.1 1.2 2.9 

 
Compared to Table 4, we observe an overall increase in the estimated absolute RelBias for 
the R package algorithms when response propensity is highly correlated to household 
income, the auxiliary predictor. Within an outcome estimate, the degree of increase is either 
similar between sample designs or sees a slightly higher degree of increase associated with 
informative sampling. A more prominent difference is observed between outcome 
estimates where the estimated absolute RelBias of the health insurance estimates are 2 to 
4 times higher than those in Table 4, while the estimated absolute RelBias of the bachelor’s 
degree estimates are 5 to 11 times higher than those in Table 4. This may suggest that the 
R package algorithms are better equipped to mitigate nonresponse bias induced by the 
probability of selection than that of survey outcome. 
 



Among R package algorithms, the estimated absolute RelBias is comparable between the 
ctree and rpms estimators for the health insurance outcome, ranging from 0.3 to 0.4 percent 
under both sample designs, while the REEMtree estimators exhibit a slight increase with 
values between 0.9 to 1.1 percent. For the bachelor’s degree outcome, the rpms estimators 
had the smallest absolute RelBias ranging from 0.3 to 0.4 percent (comparable to health 
insurance), followed by the ctree estimators ranging from 0.9 to 1.5 percent. The REEMtree 
estimators had the largest absolute RelBias ranging from 2.6 to 2.9 percent. In terms of the 
balance of bias and variance, the rpms estimators displayed the smallest RRMSE (1.0 to 
2.1 percent) with the values increasing slowly from left to right of the table. The ctree 
estimators displayed slightly higher RRMSE especially in the bachelor’s degree estimates 
(1.3 to 2.6 percent), following the same increase pattern as rpms. The REEMtree estimators 
displayed the highest RRMSE (1.1 to 3.3 percent), also with the values increasing from left 
to right of the table. The patterns of bias and variance suggest that rpms estimators are the 
most robust in handling interactions between sample design, response propensity, and 
survey outcome when the response rate is high and the response propensity is highly 
correlated to the auxiliary predictor, while REEMtree estimators are the least stable. 
 
Among the SAS options, SAS Entropy produced results comparable or slightly preferable 
to REEMtree regardless of outcome estimate (RelBias: 0.3 to 1.2 percent; RRMSE: 1.2 to 
2.9 percent). On the other hand, SAS CHAID produced results comparable or slightly less 
preferable to REEMtree in the estimates of health insurance but produced the least desired 
results among all algorithms for the bachelor’s degree estimates. The largest estimated 
absolute RelBias and RRMSE are observed in the bachelor’s degree estimate with the SAS 
CHAID estimator under informative sampling (3.5 percent and 4.1 percent, respectively). 
 
Table 7 provides results under the same conditions as those in Table 6, but with design 
weights applied to the algorithms. 
 

Table 7: Estimates of RelBias and RRMSE under SRS and PPS designs for high 
response when response propensity is highly correlated to household income, weighted 

Algorithms 

Outcome variable 
Health insurance Bachelor’s degree 

Simple random 
sample 

Informative 
Sampling 

Simple random 
sample 

Informative 
sampling 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

ctree  0.5 1.0 0.7 1.3 1.9 2.3 2.2 2.9 
REEMtree  0.9 1.1 1.2 1.5 2.6 2.8 2.9 3.3 
rpms  0.4 1.1 0.4 1.4 0.4 1.9 0.2 2.3 
SAS CHAID  1.0 1.4 1.4 1.7 0.9 2.4 3.6 3.9 
SAS Entropy  0.9 1.2 0.8 1.5 2.0 2.8 1.0 3.2 

 
Applying design weights again appears to have been inconsequential. With a few 
exceptions, the RRMSE for the weighted algorithms are either unchanged or slightly higher 
than their unweighted counterpart. The exceptions occur in the ctree estimator of health 
insurance under simple random sampling (1.3 percent-unweighted vs. 1.0 percent-
weighted), the SAS CHAID estimator of bachelor’s degree under simple random sampling 
(2.8 percent-unweighted vs. 2.4 percent-weighted), and the SAS CHAID estimator of 
bachelor’s degree under informative sampling (4.1 percent-unweighted vs. 3.9 percent-
weighted). However, the difference in RRMSE exhibited in the exceptions are minimal 
and do not suggest a substantial improvement in weighted algorithms. 



 
Table 8 provides results applying the same conditions as those from Table 4, but for the 
low-response setting. 
 
Table 8: Estimates of RelBias and RRMSE under SRS and PPS sample designs for low 
response when response propensity is not correlated to household income, unweighted 

Algorithms 

Outcome variable 
Health insurance Household w/ bachelor’s degree 

Simple random 
sample 

Informative 
Sampling 

Simple random 
sample 

Informative 
sampling 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

ctree  0.4 1.0 0.5 1.1 0.7 1.6 1.0 1.9 
REEMtree  0.6 1.0 0.5 1.1 0.2 1.5 0.2 1.7 
rpms  0.7 1.1 0.7 1.2 0.9 1.7 1.2 2.1 
SAS CHAID  3.5 3.7 0.4 1.7 12.0 12.4 1.9 3.2 
SAS Entropy  1.5 2.6 0.4 1.1 0.4 4.5 0.4 1.8 

 
The simulation results in Table 8 demonstrate that both bias and variance are amplified by 
low response rate when all other simulation settings are fixed. The R package algorithms 
are still largely successful in reducing nonresponse bias with the estimated absolute 
RelBias for health insurance ranging from 0.4 to 0.7 percent, and that of bachelor’s degree 
ranging from 0.2 to 1.2 percent. In general, bachelor’s degree estimates exhibit a slightly 
higher bias than health insurance estimates. The RRMSE for R package algorithms are 
twice as large as those displayed in Table 4 in almost all settings while still within the range 
of 2.1 percent. These patterns suggest that when the outcome estimate is highly correlated 
to the auxiliary predictor, R package algorithms may be slightly less effective in reducing 
nonresponse bias when the response rate is low. 
 
Estimates from the SAS options continued to exhibit less desirable results than those of R 
package algorithms. In some settings, the SAS Entropy estimators showed comparable 
levels of bias reduction as R package algorithms but the pattern is not consistent. Moreover, 
the RRMSE values of SAS Entropy estimators are generally higher than those of R package 
algorithms. SAS CHAID estimators produce the least desired results. A notable 
observation is large measures of RelBias and RRMSE associated with the bachelor’s 
degree estimate with SAS CHAID under a SRS (RelBias: 12.0 percent; RRMSE: 12.4 
percent). 
 
Table 9 provides results under the same conditions as Table 8, but with design weights 
applied to the algorithms. The results exhibit similar patterns shown in Table 5 and Table 7. 
 
  



Table 9: Estimates of RelBias and RRMSE under SRS and PPS sample designs for low 
response when response propensity is not correlated to household income, weighted 

Algorithms 

Outcome variable 
Health insurance Household w/ bachelor’s degree 

Simple random 
sample 

Informative 
sampling 

Simple random 
Sample 

Informative 
sampling 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

ctree  0.4 1.0 0.3 1.1 0.8 1.7 0.7 1.9 
REEMtree  0.6 1.0 0.5 1.1 0.2 1.4 0.2 1.7 
rpms  0.7 1.1 0.7 1.2 1.0 1.8 1.4 2.2 
SAS CHAID  3.1 3.7 1.2 1.6 10.0 11.4 2.9 3.5 
SAS Entropy  1.5 2.5 0.5 1.3 1.3 4.8 0.7 2.0 

 
Table 10 shows the simulation results of the low-response setting without design weights 
when response propensity is highly correlated to the auxiliary predictor for each of the 
algorithms studied under a SRS design and an informative design. 
 
Table 10: Estimates of RelBias and RRMSE under SRS and PPS sample designs for low 
response when response propensity is highly correlated to household income, unweighted 

Algorithms 

Outcome variable 
Health insurance Household w/ bachelor’s degree 

Simple random 
sample 

Informative 
sampling 

Simple random 
Sample 

Informative 
sampling 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

ctree  0.5 2.3 0.4 2.7 2.0 4.2 1.7 4.4 
REEMtree  2.0 2.4 2.2 2.9 4.8 5.3 5.2 6.0 
rpms  1.5 2.4 1.5 3.0 1.7 4.2 1.4 4.9 
SAS CHAID  3.5 3.7 4.1 4.3 12.0 12.4 15.9 16.2 
SAS Entropy  1.5 2.6 1.7 3.5 0.4 4.5 0.8 6.1 

 
With the underlying structure of a high correlation between response propensity and our 
auxiliary predictor, the ctree, rpms, REEMtree, and SAS Entropy algorithms continue to 
demonstrate effectiveness in reducing nonresponse bias while balancing variance when the 
outcome estimate is not correlated to the auxiliary predictor (i.e., health insurance). In both 
simple random sampling and informative sampling, the algorithm that best balances bias 
and variance (i.e, exhibits the least RRMSE) is ctree (2.3 percent and 2.7 percent, 
respectively). In the most extreme setting where the outcome estimate is also highly 
correlated to the auxiliary predictor (i.e., bachelor’s degree), the algorithm that best 
balances bias and variance for both simple random sampling and informative sampling is 
again ctree (4.2 percent and 4.4 percent, respectively). SAS CHAID again produced the 
least desired results, with RRMSE values of 3.7 percent (SRS) and 4.3 percent (informative 
sampling) for the health insurance estimate, and enormous RRMSE values of 12.4 percent 
(SRS) and 16.2 percent (informative sampling) for the bachelor’s degree estimate. 
 
Table 11 provides results under the same conditions as those that produced results in Table 
10, but applies weights to the algorithms. The observations are, again, similar to those 
displayed in Table 5, Table 7, and Table 9 where applying design weights appear to have 
a nominal effect on results. 



 
Table 11: Estimates of RelBias and RRMSE under SRS and PPS sample designs for low 
response when response propensity is highly correlated to household income, weighted 

Algorithms 

Outcome variable 
Health insurance Household w/ bachelor’s degree 

Simple random 
sample 

Informative 
sampling 

Simple random 
sample 

Informative 
sampling 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

ctree  0.1 2.5 1.1 3.6 2.4 4.5 2.5 6.2 
REEMtree  2.0 2.4 2.2 2.9 4.8 5.3 5.2 6.0 
rpms  0.8 3.5 0.8 5.0 1.2 6.0 1.0 8.4 
SAS CHAID  3.1 3.7 3.6 3.9 10.0 11.4 13.1 13.3 
SAS Entropy  1.5 2.5 2.0 3.5 1.3 4.8 1.3 6.2 

 
6. Conclusions 

Using the 2013-2017 ACS PUMS data as a pseudo-population, and under a cluster sample 
design, we selected repeated samples drawn from a fixed population with PUMAs serving 
as the PSUs. By using the ACS PUMS as our fixed population, we were able to mimic a 
national household-level survey and introduce a nonresponse mechanism that allowed for 
comparisons between estimates and true population values. We investigated the use of the 
following five tree algorithms for producing nonresponse classification cells using a 
simulation study: rpms, ctree, REEM, CHAID, and Entropy; the former three are R 
packages or part of R packages and the latter two are called by the HPSPLIT procedure in 
SAS. 
 
Under the stratified SRS in Cecere et al. (2020), ctree stood out as the algorithm that 
produced the smallest relative bias and RRMSE for all outcomes compared to the other 
algorithms. Under the cluster design in Jones et al. (2021), the results were mixed; for a 
high-response scenario, all the methods performed well at reducing nonresponse bias, with 
the ctree algorithm performing slightly better than the rest; for a low-response scenario 
there was no consistent “winner.” For the high-response scenario in our simulation, when 
response propensity was not correlated to the auxiliary predictor (previous year household 
income), all R package algorithms effectively reduced nonresponse bias while SAS options 
were less successful. When response propensity was highly correlated to the auxiliary 
predictor, the three R package algorithms remained effective when the outcome estimate 
was not correlated to our auxiliary predictor. Results began to deteriorate when the 
outcome estimate was correlated to the auxiliary predictor, with ctree and rpms still 
producing favorable relative root mean square error and REEMtree seeing a higher increase 
in bias and/or variance. SAS Entropy results were comparable to REEMtree, while SAS 
CHAID produced the least desired relative root mean square error. Both bias and variance 
were amplified in the low-response scenario in our simulation – ctree and rpms continue 
to produce reasonable results, followed by REEMtree and SAS Entropy. Results from SAS 
CHAID continued to be the least desirable. 
 
We performed weighted and unweighted analyses for all the algorithms. Our results 
showed minimal differences between weighted and unweighted analyses for relative bias 
and RRMSE for both outcome variables. Moreover, we observed no substantial 
improvement in the weighted analyses in the informative sampling scenario, which we 
specifically designed to evaluate the effectiveness of applying design weights in tree 



algorithms. This observation surprisingly includes the rpms algorithm, in which we 
expected improvements from the use of weights since we developed the algorithm to 
account for complex sample design. This result agrees with the recommendation of Lohr 
et al. (2015) in that weights do not provide a benefit when modeling response propensity. 
 
Simulation results may be different for other sample designs. For operational efficiency, 
national samples often incorporate a clustering stage, forming PSUs of smaller geographic 
areas and selecting households within PSUs. We anticipated that rpms and REEMtree 
would perform better under a clustered sample design due to the usage of area effects. 
However, this was not the case. These algorithms could also be tested under additional 
sample design frameworks. 
 
A limitation of our simulation study is that statistical tests were not conducted comparing 
the results of the various software packages. Additionally, the number of simulations is 
only 5,000, which reduces the ability to make inferences about the results. 
 
Our results showed minimal differences between weighted and unweighted analyses. There 
could potentially be two explanations: 1) weights have little effect in the tree algorithms 
tested, or 2) the outcome variables used in our analysis did not have a high enough 
correlation to the probability of selection. Therefore, we would like to test the effect of 
using weights during the nonresponse adjustments with an outcome variable that has a 
higher correlation with the probability of selection than what was used in this study. 
Additionally, this simulation study was designed to provide results for a stratified design. 
We would like to perform this analysis with a clustered design. 
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