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Abstract

Successive sampling population size estimation (SS-PSE) is a method used by government agencies
and aid organizations around the world to estimate the size of hidden populations using data from
respondent-driven sampling (RDS) surveys. SS-PSE addresses a specific need in estimation and
helps us evaluate the vulnerability of areas to HIV and other epidemics by estimating the size of
populations that are at higher risk of contracting and spreading HIV. However, SS-PSE relies on
several assumptions, one of which requires the underlying social network of the hidden population
to be fully connected. This research proposes two modifications to SS-PSE for estimating the size
of hidden populations whose underlying social network is clustered.
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1. Introduction

Hidden population size estimation is of great interest to aid organizations and public health
agencies since many vulnerable populations at higher risk of contracting and spreading HIV
and other infectious diseases are hidden. Size estimates for these at-risk populations can
help in assessing the magnitude of the HIV epidemic, monitoring the trend of the epidemic
in at-risk populations over time, and effectively allocating resources for the most vulner-
able members of society (World Health Organization and UNAIDS 2010). The ability to
estimate the size of a hidden population is important in global efforts to understand and
address the HIV epidemic.

Successive sampling population size estimation (SS-PSE) is one commonly used method
to estimate the size of hidden populations (Handcock, Gile, and Mar 2014). SS-PSE uses
a Bayesian approach that combines prior expectations with data from respondent-driven
sampling (RDS) surveys in order to make probabilistic statements about the unknown pop-
ulation size N. SS-PSE is most often used to estimate the size of vulnerable populations at
higher risk of contracting and spreading HIV (Johnston et al. 2015; Weikum et al., 2019;
McLaughlin et al. 2019), but it has been recently extended to other hidden populations
of interest as well (Johnston et al. 2017; Wesson et al. 2018). SS-PSE is advantageous
compared to other population size estimation methods, since it only requires a single data
source and can be appended to existing studies with relative ease. In addition, the Bayesian
framework allows for the incorporation of external information about the population size
from local experts or previous studies.

Gathering information about hidden populations is often challenging in itself. RDS
surveys, like those used by SS-PSE, provide one way to sample directly from a hidden
population by utilizing the underlying social network of connections between hidden pop-
ulation members. Since RDS uses social connections in its sampling process, the structure
of the underlying population network is influential both in implementing an RDS sample
and in making inference using RDS data. In modeling the RDS process, SS-PSE relies on
the assumption of a connected social network to make accurate inference about the pop-
ulation size. In the case of disconnected or weakly connected networks, the probability
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model used by SS-PSE may be inappropriate, which leads to bias in point estimation and
misleadingly small estimates of variance.

If the connected network assumption can be relaxed, SS-PSE may be applicable for
studying other hidden populations which are not as strongly connected as those used in
classical applications. It could also be applicable in estimating the size of hidden popu-
lations in areas that are naturally divided by geography, socioeconomic variables, or lan-
guage barriers. Finally, developing a modification to SS-PSE that allows for clustering in
the underlying population could have applications in combining city-level population size
estimates into a country-level estimate.

Section 2 gives a background discussion on RDS sampling and the existing SS-PSE
method. Section 3 introduces two modifications to SS-PSE — the Posterior Sum and Clus-
tered SS-PSE methods — which extend the practical application of existing methodology to
clustered populations. Finally, Section 4 contains concluding remarks.

2. Hidden Population Size Estimation

Hidden or hard-to-reach populations are populations for which no sampling frame ex-
ists and public acknowledgment of membership is potentially threatening to members
(Heckathorn 1997). They tend to be characterized by members’ incentive to remain hidden,
oftentimes because members practice stigmatized or illegal behaviors. Many hidden popu-
lations are also small in size relative to the general population. While the study of hidden
populations is important for research regarding the HIV epidemic, these populations pose
several unique problems for statistical inference. Since no sampling frame exists, it is diffi-
cult and often impossible to obtain a probability sample directly from a hidden population.

2.1 Respondent-Driven Sampling

RDS is an adaptive sampling method that produces a sample directly from a hidden pop-
ulation using the underlying social network of its members (Heckathorn 1997). The sam-
pling process for RDS begins with a convenience sample of “seeds” who are chosen from
the population of interest. Generally, these seeds are self-selected volunteers or people
purposefully selected by researchers who are believed to be well connected in the target
population. Once selected for the study, participants receive a set number of coupons they
can use to recruit other members of the target population in their social circle. Coupons
with unique identification codes allow researchers to track peer recruitment while main-
taining confidentiality. In-person RDS studies then ask coupon recipients to report to a
study center, where they participate in the survey and receive their own coupons to dis-
tribute. Recruitment continues in this way until the desired sample size is reached. The
resulting sample is a collection of trees, or chains, from the underlying social network.

Participants fill out an anonymous survey asking about any variables of interest to the
researchers. For at-risk populations to HIV, these surveys typically ask about risk behaviors
and experiences of violence or discrimination, among other things (World Health Organi-
zation 2017). Participants are also asked how many people in the population of interest they
know who also know them. This question is meant to measure each individual’s degree in
the underlying social network. For at-risk populations to HIV, a free and anonymous HIV
test is often included, which acts both as a public service and an incentive for participation
in the study.

Because of peer recruitment, design-based inclusion probabilities are not known before
data collection, and must therefore be modeled from the observed data. Several such mod-
els have been proposed to estimate inclusion probabilities for RDS respondents (Salganik



and Heckathorn 2004; Volz and Heckathorn 2008), including the successive sampling (SS)
model proposed by Gile (2011). The SS model is an improvement over older methods since
it does not require assumptions that the population is very large relative to the sample size
and that the sampling process is done with replacement.

2.2 Successive Sampling Population Size Estimation

SS-PSE is a hidden population size estimation method that only requires data from a single
RDS sample. SS-PSE is a Bayesian method that combines each individual’s network size
and order of recruitment in the sample with prior information gained from local experts or
previous studies to model the observed depletion of the population and produce a posterior
distribution on the population size /N (Handcock, Gile, and Mar 2014; Handcock, Gile, and
Mar 2015).

Like other hidden population size estimators, SS-PSE has advantages and disadvan-
tages. Since it only requires sample data about individuals’ degrees and their sample or-
der, adding an SS-PSE estimate to an existing RDS study is usually easy and low in cost.
Additionally, since SS-PSE is a Bayesian method, it offers the opportunity to incorporate
additional sources of information about population size. However, SS-PSE methods also
require several strong assumptions. The performance of SS-PSE estimators relies heavily
on the underlying population structure and the quality of the RDS data and the prior infor-
mation used. Results from SS-PSE methods should be interpreted carefully and considered
in conjunction with other population size estimates (McLaughlin et al. 2019).

SS-PSE has been used to estimate the size of populations at-risk of contracting HIV
in a variety of contexts, including in Morocco (Johnston et al. 2015); Papua New Guinea
(Weikum et al. 2019); Armenia (McLaughlin et al. 2019); and Bratislava, Bucharest,
Verona, and Vilnius (Johnston et al. 2021). Additionally, it has been used to estimate the
number of women in South Kivu Province of The Democratic Republic of Congo who have
had sexual violence-related pregnancies (Johnston et al. 2017) and in the United States to
estimate the number of transgender women living in San Francisco (Wesson et al. 2018).

To employ the Bayesian SS-PSE method, both a probability model on the observed
data and prior distributions on the unknown parameters in that model are necessary. The
following sections briefly describe the theoretical framework behind SS-PSE, which helps
inform the extension for clustered populations in Section 3.

2.2.1 Probability Model of Observed Data

SS-PSE estimates the inclusion probabilities of an RDS sampling process using the SS
approximation, which models the RDS process as a without-replacement random walk
through the network. Inclusion probabilities are then calculated over all possible network
configurations of a set degree distribution (Gile 2011).

Let G = (Gy, ..., Gy,) be the ordered random vector of observed unit indices, where
G, has support 1, ..., N. Let g be the vector of realized unit indices, and let \ g be the set of
indices in the population not in g. Let u = (u1, ..., ux) be the vector of unit sizes for each
member of the population.

Under the SS model, the first unit is sampled with probability proportional to its unit
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Subsequent units are then sampled with probability proportional to their unit size from the
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Because of the sum Zj\f: 1 uj, this probability model relies on the degree of all units in
the population, some of which are not observed. For this reason, Handcock, Gile, and Mar
(2014) add a super-population component to the probability model, wherein the distribution
of degrees in the network is considered a random draw from a super-population of possible
degree distributions, governed by unknown parameters.

Let U = (Uy,...,Un) be the random vector of unit sizes for all members in the pop-
ulation. We treat U as an i.i.d. sample from some super-population distribution f(-|n)
supported on the natural numbers. Let U,,s and u,s be the random and realized vectors
of the observed unit sizes in the sample. Similarly, let U,,,0ps and u,,0ps be the random
and realized vectors of the unobserved unit sizes in the population. After adding the super-
population component, the full probability model is now
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Where U(uyps) is the set of all possible unobserved unit size vectors Uy,eps given the

observed unit sizes Uy, and 7, = Zj\/: LU — Zf;ll g, is the sum of remaining degrees

from the unsampled population units at step k£ of the sampling process.

Since any one of the N — n entries in uy,,ps can range over the support of f(-|n),
this likelihood is generally very difficult to compute, so Handcock, Gile, and Mar (2014)
suggest working under the Bayesian framework. They employ a four-component Gibbs
sampler to estimate the joint posterior distribution of all model parameters conditioned on
the sample data. This simulated distribution can then be marginalized to produce estimates
of the population size IV, the unit size distribution parameters 7, and the full distribution of
unknown unit sizes U,,,,obs-

2.2.2  Prior Selection

Since SS-PSE is a Bayesian method, priors need to be selected for each of the model
parameters. The unknown parameters in the probability model given in equation 1 are the
population size N and the parameters governing the unit size distribution, n. Handcock,
Gile, and Mar (2014) suggest modeling the sample proportion - as Beta(c, 3), where the
hyper-parameters « and 5 can be set by using population size estimates from experts in
the area or from information collected in previous studies. It is common practice to use a
single point estimate N as the median of the prior and fit a distribution to that median using
the additional restriction that @ = NJX - (Handcock and Gile 2022). Common choices for
the unit size distribution f(-|n) are counting distributions that have Poisson-like behavior
while also allowing for over and under dispersion, such as the Conway-Maxwell-Poisson.




2.2.3 Assumptions

The successive sampling model is an improvement over previous methods in that it does
not require the population to be large, and it does not model the sampling process as with
replacement (Gile and Handcock 2010). A complete discussion of SS assumptions can be
found in Gile (2011). For our purposes, the SS model assumes that the graph is connected,
meaning any member of the population can be reached by any other member through a path
in the network. This is not true for clustered populations.

2.3 Clustered Populations

For the purposes of this paper, a clustered population is a disconnected population network
such that any member of cluster ¢ cannot reach any member of cluster j through a path in
the network for all clusters ¢ # j.

Such populations can arise within cities where there are strong geographical, social, or
linguistic divisions. If this type of clustering in the underlying population is ignored, the un-
adjusted SS-PSE estimator performs poorly in a variety of ways (Gamble and McLaughlin
2023). Clustered populations are also a way to model a population of interest that is spread
over multiple cities, where the cities act as clusters and the goal is an overall estimate of
population size across cities.

3. Theoretical Justification for Two Novel Methods

In this section, we introduce two modifications to SS-PSE for estimating the size of clus-
tered populations. The Posterior Sum method is theoretically straightforward but relies on
prior information about the cluster level population sizes NV;, which may not always be
available. The Clustered SS-PSE method is more theoretically complex since it introduces
new parameters into the hierarchical Bayesian structure of the SS-PSE model, but it allows
for estimation in settings where prior information about the cluster level /V; is unavailable.
Both proposed methods require RDS chains from each cluster in the population, where
cluster membership of each chain is known.

3.1 Posterior Sum Model

Consider a population of NV units divided into m distinct clusters. Each cluster is connected,
meaning any one member of cluster ¢ can be reached by any other member in cluster ¢
through a path on the network, but no two clusters are connected to one another. In other
words, no member of cluster ¢ can be reached by any member of cluster j for ¢ # j. This
implies that all participants recruited from the same seed are in the same cluster. A cluster
can contain multiple seeds.

Assume we have taken RDS samples from each of the m clusters. Next, we run
m SS-PSE methods on each of the m sample subsets with seeds in the same cluster.
The results of these m SS-PSE methods are posterior distributions on the cluster sizes
P(Ny|Dy), ..., P(Ny,|Dyy,), where D; is the sample information from cluster i. To sim-
ulate the overall posterior for N = Nj + ... + N,,,, the Posterior Sum method takes the
sum of random draws from the individual cluster posteriors until a sufficient sample from
P(N|Dy, ..., Dy,) has been obtained. The median of this posterior sum distribution can be
used as a point estimate for IV, and its variance reflects the aggregated uncertainty of each
cluster level estimate, which can be used to obtain credible intervals.

Since the Posterior Sum method relies on m separate SS-PSE models, it requires some
prior information about the cluster level population sizes N;, which may not be attainable



in every situation. It is also relatively sensitive to misspecification of those priors on /V;.

3.2 Clustered SS-PSE Model

The Clustered SS-PSE Model is proposed to extend the application of SS-PSE to clustered
populations where no reliable prior information exists for the individual cluster sizes. The
Clustered SS-PSE method introduces a new set of parameters to the Bayesian framework
of SS-PSE that represent the cluster proportions: p; = % for each cluster ¢. Since p
is a simplex of positive numbers that sum to 1, a weakly informative or non-informative
prior can be imposed in situations where prior information about the cluster sizes N; is
unreliable.

The introduction of this new p parameter is the novel contribution of the Clustered
SS-PSE Model, and it allows for the joint estimation of the population size and cluster
proportions using data from all clusters. Including p changes both the probability model
on the data and the full conditional posterior distributions of model parameters that are
required in the Gibbs sampler. Below is a derivation of the new probability model on the
data.

Consider a population of N units divided into m distinct clusters. Let U; = (U, ...,
Uin, ) be the random vector of unit sizes associated with each population member in cluster
i, where Uj is a random sample from the super-population unit size distribution f(-|n;).

Assume we have taken RDS samples from each of the m clusters with sample sizes
N1, ..., Wm. Let G; = (Gi1, ...Gin, ) be the ordered random vector of observed unit indices
from cluster ¢, where G;; has support 1, ..., N; and length n;. Let g; = (9i1, ---gin, ) be the
realized values of those unit indices from cluster 7. Let \g; be the set of unit indices in
cluster ¢ that are not in g;. Let U; o5 = (Uy,,, ... Ugmi) be the random vector of observed
unit sizes in cluster ¢, with realized values w; ops = (tg;,, -+ Ug,,. ). Similarly, let U; yn0bs
and u; yy0ps be the random and realized vectors of unobserved unit sizes in cluster 7. Let
Uynobs be the set containing Uy ynobs, ---Unmunobs- Let D; be the matrix of complete
sample data from cluster i: (G;, U; ops), and let D be the set containing D1, ..., D,.

3.2.1 Probability Model of Observed Data

Since the sample is composed of m independent RDS samples from each cluster, the prob-
ability of observing sample data D is the product of the cluster level probability models
across all clusters.

m
P(D[n,N,p) = [[ P(Diln, N, p)
i=1
The probability model within each cluster can be rewritten as the sum of the joint probabil-
ity P (D;, U; unobs|m, N, p) over all possible unobserved unit sizes.

P(Dz|77> Nap) = Z P(Diin,unobs|77>Na P)

U unobs eu(ui,obs)

Where U (u; 0p5) is the set of all possible unobserved unit sizes in cluster ¢ given the ob-
served unit sizes u; ps. Next, the joint probability of the sample data and the unobserved
unit sizes — (Dj, Uj ynobs) = (Gi, Ui obs, Ui unobs) — can be rewritten using the defini-
tion of conditional probabilities.



P (Du Ui,unobs|na N7 P) =P (Gi|Ui,obsa Ui,unobsna N7 P) P (Ui,abs’ Uz’,unobs‘nv Nv p)

— < pl—n, ' H uzgm) Hf (ttigy, Imi) T f(uijlmi)
k=1

JE\8:

2

The first term of this equation is the probability of an observed sampling order given a set
population of unit sizes (1; obs, Wi unobs) (Handcock, Gile, and Mar 2014). The second
term is the probability of that set population of unit sizes under the unit size distribution
f(:|m;). The notation r;, = Z? ]\1] uij — Zf;ll U;g; is the sum of remaining degrees in
cluster ¢ from the unsampled population units at step k£ of the sampling process.

All together, this gives the probability model
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As with the unadjusted SS-PSE method, the likelihood that follows from this proba-
bility model is restrictively difficult to compute. However, a Gibbs sampler can be used
to simulate the joint posterior distribution of all parameters in the model, which allows for
inference on the parameters of interest—overall population size, cluster sizes, and the unit
size distributions in each cluster (Gamble and McLaughlin 2023).

3.2.2  Prior Selection

The prior on N can be specified according to Handcock, Gile, and Mar (2014), as described
in Section 2.2.2. In the simplest case, it is possible to use a single prior estimate for the
total population size in order to fit a Beta(c, 3) distribution to the sample proportion .
The prior on each 7; can also be specified as in the standard SS-PSE method.

The parameter p is the new component of this extended model. Since p is a vector
of proportions that sum to 1, a Dirichlet(c, o) distribution can be used, where @ =
(a1, ..., auy) is the mean vector of the prior 7(p) and « is a global concentration parameter
controlling the variance of (p). In other words,
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Note that this parameterization is equivalent to a Dirichlet(agay, ..., apayy,) distribution.
The separation of the mean vector from the concentration parameter is useful for discussion
on the properties of the Dirichlet family as a prior on p.

By setting a; = ... = a, = % and ag = m, it is possible to obtain a uniform prior
over the unit hypercube in m dimensions. This property is useful for applications in which
no prior information is known about the cluster sizes p; N. However, the Dirichlet family
also provides freedom to incorporate prior knowledge of the relative cluster sizes, if such
information is known.

The global concentration parameter o plays a key role in the behavior of the
Dirichlet distribution. For example, Figure 1 shows the marginal densities of a
Dirichlet(ayg, (0.5,0.25,0.25)) distribution for values of ag from 1 to 10. All of these
distributions have the same mean, as indicated by the vertical line. However, those with
smaller concentration values are required to have larger variances, which results in the dis-
tribution having more density away from the mean. As a special case, when oy < o% for

m(p) =



any dimension ¢, the marginal density in that dimension will be convex. Because of this, it
is recommended to select aig > ﬁ{a} where « is the mean vector of 7(p).
Marginal densities of Dirichlet distribution
under different concentration parameters
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Figure 1: Marginal densities of Dirichlet distribution under different concentration param-
eters.

4. Discussion

Estimation methods for RDS data such as SS-PSE address the need for sampling from
hard-to-reach populations, and their implementation helps to answer important questions
about global health and well-being. This research extends the functional application of
SS-PSE to populations whose underlying social network is disconnected. We propose two
modifications to SS-PSE to allow for the estimation of population size when the underlying
population is clustered.

The Posterior Sum method is a straightforward correction that combines the results
from several different SS-PSE fits to obtain an estimate for the overall population size that
incorporates variance from each population individually. This method performs well under
most simulation settings considered, as long as the cluster level prior information is correct.
In general, the Posterior Sum method relies heavily on the quality of prior information
(Gamble and McLaughlin 2023).

The Clustered SS-PSE method works by introducing a new set of parameters into the
SS-PSE model that represent the proportion of the population in each cluster. This method
is useful in a larger variety of settings, due to the fact that it does not require prior infor-
mation about the population size at the cluster level. The Clustered SS-PSE method also
performs well under most simulation settings considered and is generally less sensitive to
prior misspecification than the Posterior Sum method (Gamble and McLaughlin 2023).

Potentially the most important area of future work for these and other SS-PSE methods
is in addressing the almost certain measurement error present in both the self-reported
degree and observed sampling order. To this end, McLaughlin et al. (2015) have developed



a measurement error model for degree, which can improve estimates in situations where the
self-reported network sizes are inaccurate. It would be useful to implement in the Clustered
SS-PSE model. However, there has been little investigation into the effect of measurement
error in observed sampling order. Since the order of enrollment is so integral to SS-PSE
results, this is an area for future research.

Finally, the further investigation of these and all other SS-PSE methods on a wider vari-
ety of population structures is always of value. The performance of SS-PSE depends greatly
on the structure of each sample drawn and the complex connections in the underlying pop-
ulations. Any additional information about specific features that can affect SS-PSE would
be of use to those implementing the methods in real populations.
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