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Abstract 
 
Through case studies and simulations, the authors have evaluated a range of estimation methods for 
combining probability and nonprobability samples. Our earlier evaluations show that the Small Area 
Modeling method, a doubly robust method developed at NORC, tends to achieve greater bias reduction 
than the other methods, especially for the modeled response variables with large known biases associated 
with the nonprobability sample. Meanwhile, Statistical Matching and Propensity Weighting also 
demonstrate good properties. This paper expands our earlier studies to explore hybrid methods that integrate 
Statistical Matching, Propensity Weighting, and Small Area Modeling. Specifically, it reports comparative 
evaluations of four methods: (1) Matching Imputation Weighting without Small Area Modeling, (2) 
Matching Propensity Weighting without Small Area Modeling, (3) Matching Imputation Weighting with 
Small Area Modeling, and (4) Matching Propensity Weighting with Small Area Modeling. Evaluations of 
these methods are based on estimates of bias, confidence interval coverage, and effective sample size. 
 
Key words: Nonprobability sample estimation, statistical matching, propensity weighting, small 
area estimation, doubly robust 
 

1. Introduction 
 
While probability sampling remains the gold standard for sample survey estimation, there has been growing 
interest in methods that combine probability and nonprobability samples in order to improve cost efficiency. 
Nonprobability samples may provide a lower cost alternative to probability samples; however, estimates 
based on nonprobability samples may be biased due to unknown coverage and selection biases.  
 
In this paper, we present some results from our comparative analysis based on a Monte Carlo simulation 
study. Specifically, we compare bias, confidence interval coverage, and effective sample size associated 
with four different estimation methods that combine probability and nonprobability samples.  
 

2. Methods Evaluated 
 
Survey researchers and practitioners have proposed a range of estimation methods based on combined 
probability and nonprobability samples (Valliant 2020; Chen et al., 2019; Elliot and Valliant 2017; Kim 
and Hazia 2014). In our past evaluations (Ganesh et al., 2017; Yang et al., 2018, 2019, 2020; Mulrow et al., 
2020), we reported comparative analysis of the following methods:  
 

 Calibration: Calibrate total estimates to known population benchmarks 
 Statistical Matching: Statistically match nonprobability and probability samples to derive pseudo 

weights 
 Superpopulation Modeling: Use a linear superpopulation model to derive population estimates 
 Propensity Weighting: Model the propensity of inclusion in a nonprobability sample 
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 Small Area Modeling: a doubly robust method that uses small area estimation to improve weighting 
adjustments 

 
Based on our earlier evaluations using case studies and simulations, Statistical Matching, Propensity 
Weighting, and Small Area Modeling consistently outperform Calibration and Superpopulation Modeling 
(Yang et al., 2018, 2019, 2020). In this paper, we evaluate four hybrid methods that feature some 
combination of Statistical Matching, Propensity Weighting, and Small Area Modeling. 
 
We start by matching each nonprobability sample unit to a probability sample unit using the R StatMatch 
package (D’Orazio, 2017). Statistical matching is carried out using a nearest neighbor hot deck algorithm 
based on a distance measure. The matching process resembles imputation in the sense that a donor from the 
probability sample is matched to a recipient from the nonprobability sample based on a set of matching 
variables (Bethlehem, 2015). Distances are measured using Gower’s dissimilarity measure, which can use 
both categorical and continuous variables in the dissimilarity calculation. The matching variables are 
determined using Gradient Boosting (D'Orazio, Di, and Scanu, 2006). 
 
Statistical matching divides the probability sample into two sets: 
 
𝑆

ெ: the set of probability sample units matched to a nonprobability sample unit 
𝑆

: the set of probability sample units that are not matched  
 
We develop an estimator that takes into account the matching pattern, as follows. 
 
Let 𝑋 be a variable of interest for respondent 𝑖, 𝑟. The combined estimator of the population total is: 
 

𝑋 ൌ 𝑋
  𝜆𝑋

ெ  ሺ1 െ 𝜆ሻ𝑋ே, where  0  𝜆  1        
 
We assume that the matching pattern reflects the degree of undercoverage associated with the 
nonprobability sample. The population total is therefore expressed as the total of the unmatched portion 
plus the total of the matched portion of the population. For the unmatched portion, the only data source is 
the probability sample. For the matched portion, we have both a probability and a nonprobability sample 
and the total is estimated through a composite estimator with a combination factor 𝜆. This combined 
estimator implies that we weight the combined sample as follows: 
 

𝑤
 ൌ ቐ

𝑤                        𝑟 ∈ 𝑆


𝜆𝑤                   𝑟 ∈ 𝑆
ெ

ሺ1 െ 𝜆ሻ𝓌ே      𝑟 ∈ 𝑆ே

              

 
The unmatched probability units retain their original weights, while the matched probability and 
nonprobability units receive a weight adjustment governed by 𝜆. 
 
We now consider two alternative methods for deriving the nonprobability sample weights 𝓌ே which are 
still unknown. 
 
With Matched Imputation Weighting, we impute the nonprobability sample weights 𝓌ே as the weight of 
the matched probability sample unit. When a probability unit is matched to multiple nonprobability units, 
each matched nonprobability unit weight is imputed as the probability unit weight divided by the number 
of matches. 
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With Matched Propensity Weighting, we develop the nonprobability sample weights 𝓌ே  via the 
following steps: 
 

 Concatenate 𝑆
ெ and 𝑆ே 

 Create a dichotomous indicator variable, Y, 1 for nonprobability sample units 𝑆ே  and 0 for 
matched probability units 𝑆

ெ 
 Fit a logistic regression model to predict the probability of inclusion for the nonprobability sample 

units 
 The weight for nonprobability sample unit 𝑖, 𝓌ே, is computed as the reciprocal of the predicted 

probability 

Using propensity models to develop nonprobability sample weights has been quite common in practice. 
The difference here is that our propensity model uses only the matched probability sample instead of the 
entire probability sample as the reference sample. 
 
We now consider integrating Small Area Modeling in order to further improve the nonprobability sample 
weights. Small area estimation methods are used to jointly model domain-level estimates for one or more 
key response variables from the probability and the nonprobability sample (Ganesh et al., 2017). The model 
includes a set of covariates, fixed and random bias terms, and domain-level random effects. The combined 
sample weights are developed via the following steps: 
 

 A Bivariate Fay-Herriot model (Rao, 2003; Fay and Herriot, 1979) is used to jointly model the 
weighted domain-level point estimates for a set of key response variables from the probability 
sample (yୢ

) and the nonprobability sample (yୢ
):    

yୢ
 ൌ xୢ

ᇱ β  νୢ  εୢ
 

 
yୢ

 ൌ b  αୢ
  xୢ

ᇱ β  νୢ  εୢ
 

 
o d is a demographic group (e.g. 18-34 year old, male, Hispanic) 
o 𝐱ୢ is a vector of covariates 
o vୢ’s are domain level random effects 
o b is a fixed effect bias term associated with the nonprobability sample estimate 
o αୢ’s are random effect bias terms associated with the nonprobability sample estimate 
o εୢ

, εୢ
are the sampling errors associated with yୢ

, yୢ
 

 
 Predicted small area estimates for each domain are obtained using an Empirical Best Linear 

Unbiased Predictor (EBLUP). 
 Combined sample weights are derived such that the weighted sample estimates based on the 

combined sample match regular demographic benchmarks as well as the small area estimates for 
each domain for the key response variables. 

 
The small domains are typically defined by cross-classifying a set of demographic variables such as age, 
gender, education, race/ethnicity, etc.  
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We considered two methods for developing nonprobability sample weights: matched imputation weighting 
and matched propensity weighting, and we then considered applying small area modeling. Therefore, our 
current evaluation compares these four methods: 
 

 Matched Imputation Weighting with Small Area Modeling 
 Matched Propensity Weighting with Small Area Modeling 
 Matched Imputation Weighting without Small Area Modeling 
 Matched Propensity Weighting without Small Area Modeling 

 
3. Monte Carlo Simulation Setup 

 
As described in Benoit-Bryan and Mulrow (2021), simulation samples were generated using survey 
completes from a large-scale national study, Culture & Community in a Time of Crisis (CCTC): A Special 
Edition of Culture Track, a survey of the general public and culturally active Americans. The full population 
frame (Frame 1) for the simulation consists of 113,549 U.S. adult survey completes. From this frame, 1,000 
stratified random samples of size 1,000 were selected. These are considered probability samples. 
 
To create the nonprobability sample frame, a set of records from the full population frame were removed 
based on some descriptive variables in the file. Additional records were removed based on a highly skewed 
binomial distribution, resulting in a skewed nonprobability sample frame with 74,202 records. From this 
frame (Frame 2), 1,000 samples of size 4,000 were selected. These are considered nonprobability samples.  
 
Both the probability and nonprobability samples contain a large number of demographic variables and 
survey response variables. CCTC response variables of interest are categorical by nature. Therefore, 
statistics related to these variables are proportions related to the categories of each variable. For each 
response variable of interest, let 𝑃ி ଵ and 𝑃ி ଶ be the population proportion computed from the 
probability and nonprobability frame, respectively. The known absolute bias associated with the 
nonprobability frame, 𝐵 , is calculated as the difference of population proportions between the two 
frames:  
 

𝐵 ൌ |𝑃ி ଵ െ 𝑃ி ଶ| 
 
Information on the 𝐵  for 12 behavioral and two attitudinal variables that are used to evaluate the 
properties of the estimation methods are provided in Benoit-Bryan and Mulrow (2021). 
 

4. Simulation Results  
 

Each of the four methods is used to develop a set of combined weights for the probability and nonprobability 
samples, and these weights are used to derive combined sample estimates. In this section, we evaluate the 
properties of these estimates. 
 
4.1 Bias reduction 
For each outcome variable, the estimated bias associated with iteration 𝑚 is defined as the difference 
between the combined estimate per iteration �̂�, and the true population proportion 𝑃ி ଵ, 
 

𝑏 ൌ 𝑃ி ଵ െ �̂�, 
 
Absolute estimated bias is the average absolute bias across the 1,000 iterations: 
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𝑏ത ൌ
1

1000
 |𝑏| 

 

Figures 1-3 plot 𝐵 and 𝑏ത to show the magnitude and direction of bias reduction under each of the four 
methods for the outcome variables, where the outcome variables are ordered by the size of Absolute 
Known Bias. 
 
The magnitude and direction of bias reduction for each variable is represented by a vector, with the starting 
point representing the Absolute Known Bias and the ending point the Absolute Estimated Bias. Green 
vectors indicate bias reduction and orange vectors indicate bias increase. For each method, the dashed 
vertical line represents the average Absolute Estimated Bias across the outcome variables. 
 
In general, all four methods achieved great bias reduction for the outcome variables as the Absolute 
Estimated Bias is very small for all variables under all methods. Bias increased slightly for a few variables, 
but all these variables have small known bias to begin with and the Absolute Estimated Bias remains very 
small despite the bias increase. Note that, Matched Propensity without Small Area Modeling led to slightly 
larger average bias than the other methods; even so the bias remains small. 
 

 
Figure 1: Bias reduction for the behavioral variables.  
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Figure 2: Bias reduction for attitudinal variable Q17. During COVID-19, how important are arts 
& culture organizations? 
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Figure 3: Bias reduction for attitudinal variable Q18. Before COVID-19, how important were arts 
& culture organizations? 

 
4.2 Confidence interval coverage 
For each outcome variable, we compute the standard error of the combined estimate as 
 

𝑆𝐸 = ට
ଵ

ଵ
∑ሺ�̂�, െ �̅̂�ሻଶ 

 
We then construct a 95 percent confidence interval around the combined estimate per iteration �̂�, 
using 𝑆𝐸 as standard error.  
 
Finally, we calculate the 95 percent confidence interval coverage rate as the percentage of the 1,000 
intervals that contain the population true value. The results are reported in Figures 4-6. 
 
In Figures 4-6, the dashed vertical line represents the average confidence interval coverage rate per method 
across the estimates. All coverage rates are quite close to the nominal 95%. However, Matched Propensity 
without Small Area Modeling gives slightly lower average coverage and there is more variation and less 
consistency across variables. 
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Figure 4: 95 percent confidence interval coverage for behavioral variables.  
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Figure 5: 95 percent confidence interval coverage for attitudinal variable Q17. During COVID-
19, how important are arts & culture organizations? 
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Figure 6: 95 percent confidence interval coverage for attitudinal variable Q18. Before COVID-
19, how important were arts & culture organizations? 

 
 
4.3 Effective sample size ratio 
 
For each outcome variable, we compute an effective sample size ratio under each method, defined as the 
effective sample size for the combined sample divided by the effective sample size for the probability 
sample only. Effective sample size is the nominal sample size divided by design effect due to weighting. 
We use this ratio to measure the marginal contribution of the nonprobability sample. It turns out that the 
effective sample size ratio is also the mean squared error ratio. 
 
The effective sample size ratio is, 
 

𝑛ாሺሻ

𝑛ாሺሻ
ൌ

5000/𝐷𝐸𝐹𝐹

1000/𝐷𝐸𝐹𝐹
 = 

𝑀𝑆𝐸തതതതതത


𝑀𝑆𝐸തതതതതത


 

 

where  𝑀𝑆𝐸തതതതതത
 ൌ

ଵ

ଵ
∑ሺ�̂�, െ 𝑃ி ଵሻଶ  is the mean squared error with the probability sample, and 

𝑀𝑆𝐸തതതതതത
 ൌ

ଵ

ଵ
∑൫�̂�, െ 𝑃ி ଵ൯

ଶ
 is the mean squared error with the combined sample. Figures 

7-9 show the results of the effective sample size ratio comparisons. 
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Figure 7: Effective sample size ratio for behavioral variables. 
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Figure 8: Effective sample size ratio for attitudinal variable Q17. During COVID-19, how 
important are arts & culture organizations? 
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Figure 9: Effective sample size ratio for attitudinal variable Q18. Before COVID-19, how 
important were arts & culture organizations? 

 
Effective sample size ratios are all greater than 1, which means that the addition of the nonprobability 
sample helped to increase the effective sample size of the combined sample in all cases. However, the 
increase is quite modest. We brought in 4,000 additional nonprobability cases, but only increased the 
effective sample size by about 50 percent. There may be a point of diminishing returns for the size of the 
nonprobability sample, which needs to be investigated in relation to the cost model.  Increasing the 
nonprobability sample size beyond a certain point may not increase statistical or cost efficiency.  
 
Among the four methods, Matched Propensity Weighting without Small Area Modeling gives the largest 
effective sample size ratio. In general, without Small Area Modeling did better than with Small Area 
Modeling on this measure. Both Statistical Matching and Small Area Modeling tend to produce greater bias 
reduction but larger weight variations per our earlier investigations (Yang et al., 2018). Therefore, it should 
not be all that surprising to see only modest increase in effective sample size. If we consider bias reduction 
as the major objective in nonprobability sample estimation, we would prefer methods that generate greater 
bias reduction. However, we need to better understand the complex tradeoffs between bias and variance. 
Furthermore, the major advantage of Small Area Modeling is that it produces more reliable estimates for 
small domains, which may also require greater weighting adjustments and need to be investigated. 
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5. Summary and future research 
 
In this study, we evaluated the properties of combined probability and nonprobability sample estimates 
based on four estimation or weighting methods. Our simulations show that all four methods result in 
significant bias reductions. Methods with Small Area Modeling led to greater bias reduction than those 
without Small Area Modeling. Meanwhile, confidence interval coverage rate for all methods is close to the 
nominal 95%, except that Matched Propensity Weighting without Small Area Modeling achieved lower 
and less consistent coverage rate across the outcome variables. However, methods with Small Area 
Modeling resulted in smaller effective sample sizes. Therefore, no obvious best method emerged from these 
simulations and our research will continue. 
 
Our current simulations use a ratio of 1:4 between probability and nonprobability samples. In future 
research, we intend to investigate estimator properties with different probability and nonprobability sample 
size ratios. Given the modest increase in effective sample size observed here, we believe a smaller sample 
size ratio may be more efficient. 
 
The standard error of the combined estimates is currently based on the variance of estimates across the 
1,000 iterations. In future research, we will also consider the variance of estimates within each iteration, 
which may be estimated via a jackknife procedure (Yang et al., 2020). 
 
Small Area Modeling is primarily designed to enable better small domain estimation. As such, we would 
like to expand our current investigation to compare combined estimates for small domains under the 
different methods. Generating more reliable estimates for small domains may be considered important for 
some studies and justify some increase in overall variance. 
 
Finally, we would like to investigate the impact of weight trimming on estimator properties. In general, 
methods that lead to greater bias reductions also tend to produce larger weight variations. Therefore, it is 
important to understand the potentially complex bias-variance tradeoffs to inform decision making in 
practice. 
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