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Abstract
We present a Bayesian approach to a class of counting models for capture–recapture in

presence of “one–inflation”. One–inflation has received has received an increasing attention
in capture–recapture literature in recent years, particularly in estimating the size of illegal
populations. The phenomenon consists in the observation of an excess of individuals cap-
tured exactly once. If we do not explicitly model this aspect in the counting distribution,
we can overestimate the population size. Bayesian model selection and the role of prior
distributions are discussed. Applications to real data for the estimate of the size of some
illegal populations are used to illustrate the proposed methodology.

Key Words: Bayesian Model Selection; Capture-recapture; Illegal populations; One–
inflated Count Data Models

1. Introduction

A popular methodology to estimate the size of an elusive population is the capture-
recapture method. An important distinction in the methodologies concerns the
nature of the data: When capture occasions for each units are inherently different,
for example, when different sources/mechanisms report the presence of each unit,
data consists of individual capture histories, and we refer to a “Multiple Systems
Estimate”. When capture occasions are considered equally informative (typically,
when the captures/observations are continuously collected in a fixed interval of time,
and time is considered uninfluential), we only register the total number of captures
for each unit. In this paper we focus on this second case, usually referred to as
“repeated counting data”. To estimate the population size, one needs to model the
counting process of observation/capturing.

In recent years, a series of paper (see, e.g., [11], [9], [10], [3], [2]), has been de-
voted to the phenomenon of “one–inflation” in repeated counting data. We observe
an excess of “ones” in the counting distribution, i.e., more units than expected
are captured exactly once. The excess of “ones” is usually evaluated with respect
to a chosen family of counting distributions. In [11] the authors considered one–
inflation with respect to a “base” Poisson model. Godwin then extended the work
to more complex counting distribution: Negative Binomial in [9] and finite mixture
of Poissons in [10].

One–inflation can occur for different reasons; for instance we observe it when
some units of the population cannot be captured anymore after the first capture.
This may be the case of some wild animal populations, when the animals that expe-
rienced the capture once, find it so unpleasant that some of them develop the desire
and ability to avoid subsequent captures. A similar reasoning can be applied also to
human populations, particularly when the first capture consists of law enforcement,
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involves imprisonment or reveals an undesirable characteristic/behaviour. See [11]
for a rich discussion on the justifications and conditions for one–inflation in capture–
recapture, also including an interpretation of one–inflation as limiting case of the
so–called “trap shy” behavioural model (see, e.g., pg. 37 of [13] or pg. 119 of [5]).

One–inflation deserves specific attention due to its effect on usual estimators for
the population size. In fact, when not accounted for, one–inflation causes overes-
timation of the total population size. This is true even for the well–known lower–
bound Chao estimator, as discussed in [7] and [3].

In this paper we propose a Bayesian approach to count data models with one–
inflation. The properties of our models are analyzed by both simulation studies
and real data applications. In particular, we apply our models to real data for
estimating the size of some illegal population active in Italy in 2014 and to some
real data available from the literature on capture-recapture, where the issue of one–
inflation has been recognised.

The paper is organized as follows: in Section 2 we introduce the notation for
repeated count data and the Bayesian inference for population size, and describes
the passages of a Gibbs sampler. Section 3 specifies the results under the Poisson
assumption, and introduces a Bayesian test of the one–inflation assumption. In
Section 4 we consider the Negative Binomial distribution and its one–inflated coun-
terpart, and analyze the associated boundary problem. In Section 5 we show the
results of our approach on data on prostitution exploitation in Italy and on some
popular datasets in capture–recapture literature. Section 6 concludes the paper
with some remarks.

2. Bayesian inference for population size

According to the standard formulation, consider a closed population (no birth,
death or migration) of size N . For each unit in the population, let Y be a random
variable taking value j = 0, 1, 2, . . . if the individual is observed/captured j times.
We only observe the n individuals, n ≤ N , which are captured at least once. Let
y = (y1, . . . , yn) be the vector of the individual number of captures. Note that y
will denote the result of the capture-recapture experiment that comprises both the
number n of captured individuals and the number of captures for each observed
individual.

Let nj denote the number of individuals observed j times, that is, nj is the
frequency of count j in sample y. Our interest is to estimate the number of un-
captured units n0, and, consequently, the total population size N = n+ n0, on the
basis of some model for the observed nj .

Bayesian inference for the population size N can be obtained by standard
Markov Chain Monte Carlo (MCMC) algorithms. In fact, let f(y|θ) = P (Y = y|θ)
for y = 0, 1 . . . , be the probability distribution function for Y . The generic expres-
sion for the likelihood f(y|θ,N) is

f(y|θ,N) =

(
N

n

)
f(0|θ)N−n

n∏
i=1

f(yi|θ). (1)

Assuming independent priors for θ and N , i.e., p(θ,N) = p(θ)p(N), the posterior
distribution p(θ,N |y) can be easily drawn, for example, by updating the conditional
distributions

p(θ|N,y) ∝ f(0|θ)N−n
n∏
i=1

f(yi|θ) p(θ)
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and

p(N |θ,y) ∝
(
N

n

)
f(0|θ)N−n p(N).

We can generate from those posteriors via Gibbs or Metropolis-Hastings steps, ac-
cording to the parametric family for Y and the prior for N . In particular, we note
that

i) by assuming p(N) ∝ 1/N , the full conditional distribution of n0 = N − n is
Negative Binomial with size parameter n and probability f(0|θ) whatever the
model for Y can be;

ii) the full conditional of θ corresponds to its posterior distribution when also the
zero counts are known.

For example, when Y is Poisson(λ) and a priori we take the conjugate prior
for λ which is Gamma(αλ, βλ) the latter step consists only in the generation of the
Gamma posterior with parameters given by αλ + s and βλ + n+ n0, where s is the
sum of the observed captures.

2.1 One–inflated models

We assume that in our population a specific behavioural mechanism is acting. That
is, an individual that without that mechanism would face multiple captures, now
has a positive probability ω of being captured just once.

Let Y denote the observed number of captures for a unit, and Y ∗ the latent
value we would observe without the behavioural mechanism. The two variables are
linked by means of the following infinite transition matrix:

1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
0 ω 1− ω 0 0 · · ·
0 ω 0 1− ω 0 · · ·

0 ω 0 0
. . .

...
...

...
...


,

where the (k, j)–th element represents the conditional probability P (Y = j −
1 | ω, Y ∗ = k − 1). When k > 1 these conditional probabilities can be written
as

P (Y = j | ω, Y ∗ = k) = ω(1−δk(j))(1− ω)δk(j) j = 1, k.

where δk(j) is Kronecker delta.
Let f(k|θ) = P (Y ∗ = k | θ) be the probability distribution, depending on some

parameter θ, of the number of captures without the behavioural effect, and let F (θ)
denote the associated c.d.f. Then, the resulting distribution for Y is the one–inflated
model defined as follows:

P (Y = j | θ, ω) =


f(0|θ) if j = 0;

(1− ω)f(1|θ) + ω(1− f(0|θ)) if j = 1;
(1− ω)f(j|θ) if j > 1.
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The conditional distribution of Y ∗ when Y = j is concentrated on j when j 6= 1,
while, when j = 1, we have:

P (Y ∗ = k | Y = 1, θ, ω) =


0 if k = 0;

f(1|θ)
f(1|θ) + ω(1− F (1|θ))

if k = 1;

ωf(k|θ)
f(1|θ) + ω(1− F (1|θ))

if k > 1.

(2)

2.2 Gibbs sampler for one–inflated models

Bayesian inference for the one–inflated models can be obtained by simulating the
posterior distribution of θ, ω,N, y∗1, . . . , y

∗
n given the observed data y, where y∗1, . . . , y

∗
n

indicate the unknown captures that the n observed units would have faced without
the behavioural mechanism. Let us assume that the parameters θ, ω and N are
a priori independent and let p(θ, ω,N) = p(ω)p(θ)p(N) denote the prior distribu-
tion. The general expression for the posterior distribution of one–inflated models
augmented with the vector y∗ = (y∗1, . . . , y

∗
n) is

p(θ, ω,N,y∗|y) ∝ p(y|θ, ω,N,y∗)p(y∗, θ, ω,N)

∝
n∏
i=1

P (Yi = yi|y∗i , ω)p(y∗|N, θ)p(θ)p(ω)p(N)

∝
(
N

n

)
f(0|θ)N−n

n∏
i=1

P (Yi = yi|y∗i , ω)f(y∗i |θ)p(θ)p(ω)p(N).

To describe our approach to simulate the posterior distribution of one–inflated
models, we introduce an additional latent binary variable Zi indicating the pres-
ence/absence of the behavioural mechanism which causes the one–inflation in unit
i, i.e., Zi is the indicator function of the event {Yi 6= Y ∗i }. Then, we have that:

P (Zi = 1 | Yi 6= 1) = 0,

and, from (2), we have

P (Zi = 1 | Yi = 1) =
ω(1− F (1|θ))

f(1|θ) + ω(1− F (1|θ))
.

Then , since Zi = 1 implies Y ∗i > 1, we have

P (Y ∗i = k | Zi = 1) =


f(k | θ)

1− F (1 | θ)
if k > 1;

0 otherwise.
(3)

Now we can outline a Gibbs sampler looping over the full conditionals of Y ∗ and
ω, N and θ. The updating of θ will depend on the model assumption for Y ∗ and
may require a Metropolis–within–Gibbs step, whereas the updating of Y ∗, ω and
N can always be performed by the following exact Gibbs steps:

i) The simulation of the full conditional of Y ∗1 , . . . , Y
∗
n can be obtained in two

steps, by first updating Z1, . . . , Zn. In fact, let nz =
∑n

i=1 Zi be the number
of units affected by one–inflation, then, conditional on the current value of ω
and θ, we can generate a value for nz from

Binom

(
nj1 ,

ω(1− F (1|θ))
f(1|θ) + ω(1− F (1|θ))

)
.
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Then, for each of the nz units, we can generate a value of Y ∗ by simply
simulating a number of captures from the truncated count distribution (3).

ii) Consider the prior
ω ∼ Beta(αω, βω),

and let nz,k be the number of units among the nz for which Y ∗ = k, such that∑
k nz,k = nz. Then, we can write the full conditional of ω, p(ω | −) as:

p(ω | −) ∝ ωαω−1(1− ω)βω−1
∏
k>1

[
ωf(k | θ)

]nz,k ·
[
(1− ω)f(k | θ)

]nk .

That is, we can directly draw ω from

Beta

(
αω + nz , βω +

∑
k>1

nk

)
.

iii) The full conditional distribution of N is given by

p(N | −) ∝
(
N

n

)
f(0|θ)N−np(N).

and, by assuming the improper prior p(N) ∝ 1/N we can directly draw n0
from the following Negative Binomial(

N − 1

n− 1

)
f(0|θ)N−n(1− f(0|θ))n.

Finally, as we have said, the updating of θ will depend on the model assumption
for Y ∗. The general expression for the full conditional of θ is:

p(θ | −) ∝ f(0|θ)N−n
n∏
i=1

f(Y ∗i |θ)p(θ).

3. One–inflated Poisson

If we assume that our count data Y ∗ follows a Poisson distribution, i.e., f(θ) repre-
sents a Poisson density with parameter λ, the model proposed for the observed Y
in previous section 2.1 corresponds to the one presented in [11].

The estimating procedure is based on the Gibbs sampler described in Section 2.1,
where, in order to complete the analysis framework, we assume a Gamma(αλ,βλ)
prior for λ, αλ and βλ being shape and rate parameters. Let n∗k be the total number
of units captured k times after updating n0, nz and Y ∗, that is,

n∗k =


n0 for k = 0;

n1 − nz for k = 1;
nk + nz,k if k > 1.

and let {n∗} denote the set of all values n∗k for k = 0, 1, ... Then, we can generate
the updated value for λ from its full conditional

Gamma

(
αλ +

∑
k>0

k n∗k , βλ +N

)
.
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3.1 Testing the one–inflation assumption

To test the one–inflation assumption, we may adopt a fully Bayesian comparison of
the Poisson and the One–Inflated Poisson (OIP, hereafter) models. That is, we give
the two competing models (M1 and M2 respectively) equal prior probabilities, and
evaluate the Bayes factor (BF) in favour of the OIP

BF =
P (M2 | y)

P (M1 | y)
=
p(y|M2)

p(y|M1)
,

where P (Mi |y) indicates the posterior probability of model Mi given the data, and
p(y|Mi) is the marginal likelihood that can be generally written as

p(y|Mi) =

∫ ∞∑
N=n

f(y | θi, N,Mi)p(θi, N |Mi) dθi,

where θ1 = λ and θ2 = (λ, ω) denote respectively the parameters of the Poisson and
the OIP models. Note that assuming the non informative prior p(N) = c/N would
produce marginal likelihoods depending on the constant c. However, the parameter
N has got the same meaning across the two models, hence the use of the same
improper prior p(N) = c/N is justified and the constant c cancels out in the Bayes
factor, (see [12]).

An analytical evaluation of the marginal likelihoods p(y|Mi) is not possible,
then we use Chib’s approximation introduced in [6], which can be easily obtained
as a by-product of the Gibbs algorithm both for the Poisson and the OIP model.

To validate the use of the BF in this context, we design a simulation study for
the model selection criterion. We generate datasets from each of the two models
and compared the performance of each using the BF. Specifically, we set up three
scenarios: in the first scenario we generate from a Poisson, in the second scenario
we generate from a one–inflated Poisson with a moderate inflation rate, in the third
scenario the data generating process is a one–inflated Poisson with a substantial
inflation rate. The scenarios and the values of the different parameters we tested
are summarised in Table 1. We set the parameters using values similar to those
from the real cases analysed in Section 5.

Table 1: Simulation scenarios and data generation models, parameters’ values, and
the expected sample size E[n] (note that the expected values of n are common to
all three scenarios)

Scenario I Scenario II Scenario III N λ E[n]

Poisson OIP (ω = 0.2) OIP (ω = 0.5)

1000 1 632
2 865

5000 1 3161
2 4323

In each scenario, we generated 100 datasets of N units from the relative gener-
ating model, and remove the 0-counts. The sample size n varies at each iteration,
and in Table 1 we report the average value for each scenario. In each simulation
we computed the posterior mean of n0 under both models, and the BF in favour of
OIP. Table 2 reports the evidence of the BF in favor of the OIP model under dif-
ferent scenarios. We adopt the categories proposed in [12] to describe the evidence
in favor of the statistical model.
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Table 2: Evidence of the Bayes Factor in favor of the One–inflated Poisson model
in the three scenarios

Evidence in favour of OIP
Against Anecdotal Moderate Strong Extreme

Scenario I ≤ 1 1-3.2 3.2-10 10-100 ≥ 100

N=1000 λ=1 97 2 1 0 0
λ=2 100 0 0 0 0

N=5000 λ=1 98 0 1 1 0
λ=2 99 1 0 0 0

Scenario II Against Anecdotal Moderate Strong Extreme

N=1000 λ=1 29 23 17 23 8
λ=2 0 0 0 4 96

N=5000 λ=1 0 0 2 8 90
λ=2 0 0 0 0 100

Scenario III Against Anecdotal Moderate Strong Extreme

N=1000 λ=1 0 1 2 7 90
λ=2 0 0 0 0 100

N=5000 λ=1 0 0 0 0 100
λ=2 0 0 0 0 100

Clearly, the BF favors the true data-generating model in all scenarios and pa-
rameter combinations, with the only exception of Scenario II, with N = 1000, and
λ = 1. Note that in this case, the sample size we observe is small (E[n] = 632), as is
the one–inflation ω. The behaviour of the BF in this particular setting can be better
interpreted by analysing the simulation results in terms of parameter estimates.

Figure 1 shows the results of the simulation study in terms of % relative bias
in the estimation of the zero counts n0. The % relative bias is calculated as the
relative difference between the true value and the posterior mean of the parameter.

The posterior mean we obtain with a one–inflated model is always lower than
that obtained with the Poisson model. Consequently, when the OIP is the true
generating process, the posterior mean deriving from the Poisson model severely
and systematically overestimates N . On the converse, if we generate data from the
Poisson, the bias deriving from considering the posterior mean of the OIP model is
less severe and, on average, we moderately underestimate N .

In conclusion, as expected, the OIP model encompasses the Poisson model and,
when one–inflation is not present, the slight underestimation of N decreases as n
increases.

4. One–inflated Negative Binomial

The Negative Binomial distribution (NB) is often adopted as a two-parameters
generalization of the Poisson that can account for over-dispersed count data. Its
use is known in capture–recapture, and has been also investigated in the presence
of one–inflation in [9].

Here we assume that the unobserved count Y ∗ follows a NB model with the
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Figure 1: Relative Bias (%) of n0 estimates in different simulation settings, when
using Poisson and one–inflated Poisson (OIP) models.

following parameterization in terms of r and p:

P (Y ∗ = k | r, p) =
Γ(k + r)

Γ(r)k!
pr(1− p)k, (4)

and we will call the resulting model for Y , One–inflated Negative Binomial (OINB).
In our Bayesian approach, we set two independent priors on the parameters p and
r. For p we take a Beta(αp, βp) prior, while for r we compare Gamma and Inverse
Gamma priors in order to evaluate the different tail behaviour of these distributions
on the posterior summaries.

The Gibbs sampler we developed follows the same passages presented in section
2.1, where f(θ) takes the form (4). Recall that n∗k represents the number of units
captured k times after updating n0, Z and Y ∗. Then, generating from the full
conditional of p presents no difficulties, as it results to be:

[p | −] ∼ Beta

(
αp +Nr , βp +

∑
k>0

k n∗k

)
.

To update r, we compare two different approaches: a Gaussian random-walk Metropolis-
Hastings step, and the two-stages Gibbs sampler proposed by [19].
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4.1 Metropolis Hastings

The full conditional of r results in:

P (r | −) ∝ pNr
∏

k=0,1,...

(
Γ(k + r)

Γ(r)k!

)n∗
k rαr−1

erβr
.

Then, if we consider a Gaussian random walk Metropolis-Hastings, we accept a
proposed value r′ with probability equal to the minimum between 1 and

exp
{∑

k

n∗k
[
log Γ(r′ + k)− log Γ(r′)− log Γ(r + k) + log Γ(r)

]
+N(r′−r) log(p)+Ψ

}
,

where

Ψ =

{
(αr − 1) log(r′/r) + βr(r − r′) if r ∼ Gamma(αr, βr);
(αr − 1) log(r/r′) + βr(1/r − 1/r′) if r ∼ InvGamma(αr, βr).

4.2 Two-stages Gibbs sampler

[19] approach exploits a representation of the Negative Binomial as a compound
Poisson distribution (a result that dates back to [14]):

Y ∗i ∼ NB(r, p) ⇐⇒ Y ∗i =

li∑
j=1

ui,j

where

li ∼ Poisson(−r log(p)) and ui,j
iid∼ Logarithmic(1− p).

They found the explicit distribution of the full conditional of li to be the Chinese
Restaurant Table (CRT) distribution with concentration parameter r. Then, the
two Gibbs steps are the following:

i) We sample the latent counts, li, associated to each observed count y∗i , which
can be generated as:

li =

y∗i∑
j=1

vj , vj ∼ Bernoulli
(

r

r + j − 1

)
.

ii) We sample r from its full conditional that, given the conjugacy between the
Gamma prior for r and the Poisson distribution, results in

[r | −] ∼ Gamma

(
αr +

n∑
i=1

li , βr −N log(p)

)
. (5)

Note that, since the total number of captures is often in the order of thousands,
and in (5) we are just interested in generating the sum of the li, we can simply
adopt a Gaussian approximation in the first step. That is,

∑
i

li ∼ N

(∑
i

E[li],
∑
i

V ar[li]

)
.
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4.3 Boundary problem

The use of the NB in capture–recapture is limited by the so called “boundary prob-
lem” (see, e.g., [1]). That is, when the estimate of r approaches zero, the Horvitz–
Thompson estimation of the population size diverges. More generally, when in the
observed (truncated) data the mean number of captures is close to one (which is typ-
ically the case in the presence of one–inflation), the NB model severely overestimate
N , sometimes by several order of magnitudes, even in simulated data generated by
the NB itself. As pointed out in [9], accounting for one–inflation alleviate this
phenomenon, but does not completely avoid it.

We can confirm that, even in our Bayesian approach to the OINB model, we
encounter the boundary problem. In general, we noted a great sensitivity of the
estimates of N to small differences in the value of parameter r, particularly when
r < 1, and, accordingly, a great sensitivity of the estimates to specification of the
prior distribution over r.

We see this phenomenon as an opportunity to investigate the usefulness of the
Bayesian approach to further alleviate the boundary problem under the OINB. To
this purpose, we conducted a simulation study to assess the effect of different prior
specifications on the parameter r. We generate 100 replications of random values
drawn from an OINB with parameters p = 0.35, r = 0.5, and ω = 0.5. N is set to
5000. The observed sample size n varies at each replication; its expected value over
the 100 replications is 2040. The values of these parameters are comparable to the
values studied in [9], in the frequentist setting. In addition, they are akin to some
values actually observed in the real cases analysed in section 5.

We test some prior specifications on the r parameter, considering both the
Gamma and the Inverse Gamma distributions. For the estimation of r, we ap-
ply both the Metropolis-Hasting step and the two-stages Gibbs sampler proposed
by [19], observing negligible differences in the results. The outcomes presented in
this Section are obtained using the Metropolis-Hasting approach. Finally, we com-
pare the results with the maximum likelihood estimates for one-inflated Negative
Binomial.

Table 3 shows the % relative bias and the % mean square error (MSE) of the
population size estimates, considering the difference between the true value and the
mean of the posterior distribution obtained by the MCMC simulations. Table 3 also
reports the number of cases, in percentage, in which we encountered the boundary
problem. In fact, we can define the boundary problem on both r̂ and N̂ . We adopt
the following convention for the occurrence of the boundary problem: on r̂, we
consider to have run into the boundary problem if r̂ < 0.25; on N̂ , we consider to
have run into the boundary problem if N̂ > 5N . Finally, in the last row, Table 3
reports the results of the maximum likelihood approach (MLE), obtained using the
model proposed by [9] and the R code provided by him as Supporting Information.

The Bayesian procedure implements the algorithm described in section 4.1, set-
ting the number of replications of the MCMC algorithm to 2 · 106. We set, a priori,
p(N) ∝ 1/N , and Beta(1, 1) for both ω and p.

From Table 3, it can be seen that a weakly informative prior specification for
r, like Gamma(1, 1) is already useful in reducing the boundary problem, when
compared to the MLE approach. A stronger limitation of the boundary problem is
achieved by using the Inverse Gamma as prior distribution for r. In the simulation,
the Inverse Gamma prior has the double advantage of reducing both the boundary
problem and the MSE of the estimates, at the cost of introducing a negative bias
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Table 3: Boundary cases for r̂ and N̂ , %bias and %MSE of N̂ for some prior
specifications of r. Results from MLE in the last row, for comparison

Prior distribution % Boundary cases % bias of N̂ % MSE of N̂
over r for r for N

Gamma(0.1,0.1) 33 30 218.59 1618.82
Gamma(1,1) 11 11 97.64 859.51
InvGamma(0.1,0.1) 0 0 -10.52 6.71
InvGamma(0.5,0.5) 0 0 -15.58 5.13
InvGamma(1,1) 0 0 -19.06 5.27
InvGamma(1,2) 0 0 -26.70 7.91
MLE 16 3 91.75 2217.32

(underestimation) of the population size N .
Note that we used the convention of defining the occurrence of the boundary

problem when r̂ < 0.25, while in [9] the boundary problem is fixed at r̂ < 0.05. We
believe that r̂ < 0.25 is already enough to indicate the presence of the boundary
problem, since as clear from table 3 it corresponds approximately to an estimate of
N 5 times larger than its true value.

5. Results on estimating illegal populations

Illegal activities by their nature are difficult to measure because the people involved
have obvious reasons to hide these activities. In this Section, we apply our models
to estimate the number of people implicated in the exploitation of prostitution, in
Italy in 2014. In addition, in Section 5.1 we illustrate the results obtained on some
well-known data-sets in capture-recapture literature.

In Italy, prostitution is neither persecuted nor regulated, but trafficking, ex-
ploitation, and aiding and abetting of prostitution is a crime, disciplined by law and
prosecuted. This activity is mostly managed from foreign organizations, e.g. Chi-
nese, African and East-European. In this study we exploit administrative records
from the Ministry of Justice, which report criminal complaints for which the judicial
authority has initiated criminal proceedings.

Records in the registers of the Public Prosecutor’s offices, contain soft identi-
fiers of the denounced subjects, namely date and place of birth and gender, as well
as some characteristics of the denounced subjects and the crimes, like age at the
moment of the crime, nationality, the association with other subjects and previous
crimes. On the basis of soft identifiers (date, country of birth and gender), per-
petrators can be identified and followed over a given time span, that is one year
in this application. In this way, the administrative source can be viewed as a list
of potential prostitution exploiters and we can observe the number of times an in-
dividual is charged. Obviously, we cannot observe the units not captured by the
Justice system. We aim to estimate the hidden part of the population, i.e., the size
of those unreported to the Public Prosecutor’s offices. Capture-recapture models
have already been used to investigate prostitution and sex workers, see for instance
[16] which estimate the number of street prostitutes in 1986/1987, in Vancouver
and [15] which estimate their clients. In this paper, we aim to estimate the size
of prostitution procurers, rather than the number of prostitutes or their clients.
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Figure 2 shows our data. The total number of observed prostitution exploiters is
n = 2740, and the number of individuals captured once is n1 = 2269. Counts larger
than 5 are quite low, 12 is the maximum number of observed captures.
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Figure 2: Relative frequencies of observed counts for prostitution exploitation data
in Italy in 2014

The presence of one–inflation seems quite evident from figure 2. To test the
one–inflation assumption, we calculated the Bayes Factor obtaining a value for the
logarithm equal to 101, i.e. a decisive evidence in favor of one–inflation.

Hence, we apply the OIP model proposed in Section 3 to estimate the unknown
population size N . We set, a priori, λ ∼ Gamma(0.01, 0.01), ω ∼ Beta(1, 1) and
p(N) ∝ 1/N . Different values of the parameters for the Gamma prior were also
tested, e.g. αλ = βλ = 1, obtaining very similar results. The number of replications
of the MCMC algorithm is 106 with a thinning of 20 observations.

Figure 3 shows the estimated posterior distributions of the unobserved popula-
tion size n0, λ and ω. The regular shape of the posterior distributions is evident
from Figure 3, so the differences in adopting the posterior mode, median or mean are
quite negligible. The regularity of the posterior distributions has been consistently
observed in all applications and simulations presented in this paper.

In Table 4, we compare our results with other popular approaches. On the upper
part of the Table we report the estimates that ignore the one–inflation, i.e., Chao’s
lower bound estimator, the Zelterman estimator, the Poisson maximum likelihood
estimator, (ML.Poisson), and the Poisson Bayesian estimator, (B.Poisson). In the
lower part of the Table we report results from models that account for one–inflation,
i.e., the maximum likelihood OIP estimator proposed by [11], (ML.OIP), and our
Bayesian proposal, (B.OIP).

As expected, if we ignore the one–inflation, we risk severely overestimating the
population size, even when using the non-parametric Chao’s lower-bound estimator,
which is known to be robust to other types of heterogeneity in the data. It should
be noted that the use of non-informative priors in the Bayesian context produces
estimates that are very close to the ML ones, in both cases, with and without
accounting for one–inflation. The data on prostitution exploitation do not show
over-dispersion, so the Negative Binomial distribution is not appropriate in this
case. In the following Section, we consider some applications where the OINB
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Figure 3: Posterior estimates of the unobserved units n0, and the parameters λ
and ω under one–inflated Poisson for prostitution exploitation data

Table 4: Comparison of population size estimates N , confidence/credible intervals,
and the parameters λ and ω for prostitution exploitation data

Estimator/Model N̂ CI.N̂ λ̂

Ignoring one–inflation
Chao 9851 8961 - 10868
Zelterman 10030 9033 - 11027 0.319
ML.Poisson 7234 6858 - 7680 0.476
B.Poisson 7214 6783 - 7693 0.476

Modeling one–inflation ω̂
ML.OIP 3890 3678 - 4156 1.219 0.648
B.OIP 3889 3652 - 4155 1.212 0.647
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Table 5: The posterior mode and credible intervals for the population size N ,
posterior mean for ω and model parameters, for some popular real cases analysed

1. Prostitutes in Vancouver N̂ HPD(N̂) ω̂ λ̂ r̂ p̂

Model Poisson 1237 1178 – 1301 1.253
OIP 1016 980 – 1057 0.439 2.037
OINB 1157 1017 – 1753 0.327 4.175 0.6862

2. Opiate users in Rotterdam N̂ HPD(N̂) ω̂ λ̂ r̂ p̂

Model Poisson 2929 2832 – 3038 1.174
OIP 2500 2418 – 2587 0.336 1.663
OINB 3753 2965 – 5488 0.100 1.666 0.629

3. Heroin users in Bangkok N̂ HPD(N̂) ω̂ λ̂ r̂ p̂

Model Poisson 9453 9427 – 9477 4.134
OIP 9364 9349 – 9380 0.207 5.004
OINB 10850 10619 – 11109 0.055 1.616 0.301

model is more appropriate.

5.1 Results on some popular case-studies

In this section, we apply the Bayesian model on some well-known datasets in the
capture–recapture literature. We consider the following real cases:

1 street prostitutes in Vancouver: counts of prostitution arrests made by
the Vancouver Police Department Vice Squad for engaging in prostitution in
1986/1987, initially presented and analysed in [16];

2 opiate users in Rotterdam: numbers of applications for a methadone treat-
ment program made by opiate users in Rotterdam in 1994, first reported and
analysed in [8];

3 heroin users in Bangkok: counts of treatment episodes by heroin users in
Bangkok in 2002, available in [18] and [4].

In the Vancouver prostitutes dataset, we observe n = 886 individuals and the
number of units captured once is n1 = 541. The Rotterdam opiate users dataset
contains n = 2029 units and n1 = 1206. The Bangkok heroins users dataset reports
n = 9302 observations with n1 = 2176. These data sets have been widely examined
in capture–recapture literature, also under the one–inflation hypothesis, (see [11]
and [9]). The Bayesian test for model selection introduced in 3.1 is strongly in favor
of one–inflation, with a BF greater than 100 in all cases.

We apply our models to the three case–studies, with the following priors set-
ting: For the Poisson and OIP models we set, a priori, ω ∼ Beta(1, 1) and λ ∼
Gamma(0.1, 0.1). In the OINB model we set r ∼ Gamma(0.1, 0.1) and p ∼
Beta(1, 1). In all our applications, the number of replications of the MCMC al-
gorithm is 106 with a thinning of 20 observations. Standard diagnostics tools con-
firmed the convergence of the algorithm. The results for all three datasets are
summarized in Table 5, which reports the posterior modes and credible intervals of
N , and the posterior medians of the model parameters.

The presence of one–inflation in these datasets is less severe than in the pros-
titution exploitation data analysed in the previous Section. However, as expected,
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the Poisson estimates are always larger than the OIP estimates, confirming that we
might be overestimating the population size if we ignore one–inflation. In the cases
of Vancouver prostitutes and Rotterdam opiate users, for example, the estimate of
n0 under the Poisson model is more than twice that under the OIP model. As for
the OINB model, the boundary problem is not an issue with these datasets, since
the estimates of r are fairly larger than 1. In the cases considered, the one–inflation
rate estimates under the OINB model are always lower than the estimates obtained
from the OIP model. It appears that by using the OINB, part of the one-inflation
component identified by the OIP is instead explained through the two parameters
of the Negative Binomial. Also, OINB’s credible intervals are always larger than
OIP’s, and barely overlap.

Results of Table 5 can be compared with non Bayesian results reported in [11]
and [9]. We note that, using weakly informative priors leads to results that are close
to the frequentist approach.

6. Concluding remarks and future works

In this paper we presented a Bayesian approach to the analysis of the one–inflated
Poisson and one–inflated Negative Binomial in capture–recapture. A fully Bayesian
test for the one–inflation assumption has been developed for the Poisson distribu-
tion. We discussed the boundary problem of the Negative Binomial distribution,
and showed how weakly informative priors can help in stabilizing the estimation
procedure.

Currently, we are investigating more general classes of counting distribution and
their one–inflated counterparts, to model unobserved heterogeneity.

Moreover, we are investigating different source of one–inflation, deriving from
record linkage errors. In fact, when dealing with sensible data which do not share a
unique identifier, like the prostitution exploitation data, we may encounter record
linkage problems. In this case it would be important to take account for the record
linkage process uncertainty in population size estimation, (see [17]).
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