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Abstract 
The American Housing Survey (AHS) currently uses a hot-deck method to impute missing 
values for approximately 120 variables. Hot deck methodology for AHS involves imputing 
values for nonrespondents with values of respondents. The imputation process is completed 
within disjoint subsets of the universe, which we refer to as donor pools. We define the 
donor pools with auxiliary variables that are available for both the respondents and 
nonrespondents. In our paper, we introduce new auxiliary variables and apply cluster 
analysis to produce improved donor pools that minimize within-pool variation across all 
variables that use each set of donor pools. We also generate donor pools for imputing a 
single variable.  
 
We describe the clustering methods used to define the donor pools; the methods include 
classification and regression trees (CART), hierarchical agglomerative clustering, and k-
means clustering. We compare the donor pools by measuring the within-pool variation of 
the imputed variables using the current donor pools and the alternative donor pools. We 
also will compare our results with imputed values generated with multivariate multiple 
imputation methods.  
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1. Introduction 
 
Survey respondents occasionally neglect to answer every question. This presents a 
challenge to the data analyst, who is attempting to produce an estimate with incomplete 
data. Since the analyst is estimating a population parameter, she/he is more concerned with 
the distribution of the sample rather than the individual values and therefore uses 
imputation to complete the dataset. Imputation is an accepted practice by which the analyst 
uses a plausible value to fill in for the one that failed to respond (Andridge and Little 2010).  
 
Andridge and Little (2010) summarize the three mechanisms for missingness: Missing 
Completely at Random (MCAR), Missing at Random (MAR), and Not Missing at Random 
(NMAR). If Y is MCAR, the probability of its missingness is equal for all sample units. 
We would expect the distribution of the unobserved values of Y to match the distribution 
of the observed values. We can use the entire sample of respondents as one donor pool. If 
Y is MAR, an auxiliary variable is providing the missingess mechanism. For instance, a 
renter would be less likely to know when their residence was built than an owner because 
construction date is given when the owner is buying the house. We must condition on the 
auxiliary variables by stratifying the sample into donor pools such that within a donor pool 

 
1640



 
 
 

Y is essentially MCAR. If Y is NMAR, the mechanism is directly related to Y. For 
example, if real estate recordkeeping were less reliable for older houses, we would expect 
more missingness to the ‘year built’ question for older houses. 
 
The American Housing Survey uses hot deck imputation to impute values for most of its 
item-nonrespondents. In hot deck imputation, we obtain the ‘plausible’ value from one of 
the other respondents in the survey. We group respondents and non-respondents alike into 
mutually exclusive ‘donor pools,’ meaning that a respondent donates its value to the non-
respondent within the same pool. We build the donor pools using auxiliary information that 
is known for all survey respondents. The auxiliary variables are most effective if (a) they 
are associated with Y, the imputed variable and (b) they are associated with the 
respondent’s propensity to respond to Y. Andridge and Little (2010) note that both the 
variance in Y and the nonresponse bias are reduced if both conditions are met. 
 
We obtain this auxiliary information from the frame, from other surveys, or from the survey 
responses. Auxiliary information from the survey responses should be complete, and we 
must either impute any missing values in those variables prior to using that auxiliary 
variable to build the donor pool or group those cases into a “don’t know” donor pool 
stratum. This “don’t know” stratum is purely pragmatic, as it then assumes a MCAR 
process. 
 

2. Current Methods 
 
The AHS edits assign sample housing units to donor pools, which are also called matrices. 
Each matrix is a collection of disjoint donor pools, which we define with a set of auxiliary 
variables that are known for all observations. The donor pool contains both observations 
that did respond to the question (donors) and observations that did not respond (recipient). 
To impute a response to a recipient, we first identify the variable’s universe of interest. If 
an eligible observation responded, it becomes the donor for the next recipient. If an eligible 
observation did not respond, it becomes the recipient. The AHS hot deck is deterministic, 
as opposed to random (Andridge and Little 2010), in that it applies a nearest-neighbor 
method of sorting cases within a donor pool based on a set of geographic variables. Three 
matrices received our attention in this paper: Matrix A, Matrix B, and Matrix E. 
 
Matrix A produces the imputation cells for three variables: structure containing the housing 
unit, housing unit type, and number of units. The cell definitions use four auxiliary 
variables: interview status, tenure, type of vacancy, and number of floors in the building. 
 
Matrix B produces the imputation cells for twelve variables corresponding with the 
numbers of different types of rooms within the housing unit; for example, the number of 
bedrooms or the number of bathrooms. The hot deck produces 29 cells, using the variables 
interview status, tenure, type of vacancy, structure containing the housing unit, and persons 
in the unit as auxiliary variables. 
 
Matrix E produces the imputation cells for a wide array of variables. Nine modules use 
Matrix E’s donor pool definitions. Among these are the equipment module – which 
includes variables like heating equipment, cooking fuel type, source for water; the 
breakdown module – which includes variables like exposed wire and evidence of roaches; 
and a module called out-of-sequence households – which includes variables that become 
auxiliary variables for other imputed variables, like rent and housing unit value. This matrix 
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uses auxiliary variables interview status, tenure, structure containing the housing unit, 
demographic information about the householder, number of bedrooms, and value/rent. We 
impute value and rent using Matrix E before the other variables, using the remaining 
auxiliary variables to produce their donor pools. 
 

3. Cluster Analysis 
 
Cluster analysis refers to a set of techniques used to divide a set of observations into 
mutually exclusive, meaningful groups. Our goal is to produce groups that are 
homogeneous within and heterogeneous between groups, with respect to one or more 
variables. We may not know the underlying mechanism that produces these relationships, 
but we do assume that the observed relationship generalizes to unobserved observations. 
 
3.1. Agglomerative Hierarchical Clustering 
Agglomerative Hierarchical Clustering refers to a set of techniques in which each 
observation starts in a cluster by itself. Using a distance measure, we combine all of the 
clusters such that each cluster is paired with its nearest neighbor. This continues until we 
have combined all observations into one cluster. Finally, we employ a dendrogram, or tree 
diagram, to determine the clustering scheme that satisfies the number of clusters we 
specify. 
 
Ward’s method (Ward 1963) defines the distance between two clusters as the amount of 
increase in the sums of squares when two clusters merge. This distance measure between 
cluster K and cluster L, DKL, is defined as: 
 

DKL=
‖x̅K-x̅L‖2

1
NK

+ 1
NL

 

 
Where each element of the x̅i vector is the variable’s mean across all observations within 
the ith cluster and Ni is the number of observations in the ith cluster. 
 
When the cluster contains one observation, x̅i is the vector of observed values for that 
observation. As we group observations into subsequent clusters, we recalculate x̅K and 
x̅Lusing the original observations. 
 
After determining the order of cluster pairings from n to one, we select a number of clusters. 
Each decision minimize the number of clusters results in an increase in the between-cluster 
variation. This increase is represented in a dendrogram, or tree diagram. Figure 1 provides 
an example of a dendrogram. To interpret it, imagine a vertical line moving from right to 
left. Any values to the left of an intersection are part of the cluster. As the vertical line 
moves left, there are more intersections and hence, more clusters. 
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Figure 1: Dendrogram example 
Source: U.S. Census Bureau, 2017 American Housing Survey 
 
3.2. K-means clustering (MacQueen 1967; Anderberg 1973) 
With K-means clustering, we set K to equal the number of clusters we want and group the 
observations into those K clusters. 
 
We begin by selecting our initial seeds. The seeds represent the cluster centroids. The 
distance between the ith unit’s reported values and the K cluster centroids is defined as the 
Euclidean distance between the Kth centroid and the ith observation: 
 

Di,K = ‖x𝑖 − x̅𝐾‖ 
 
Where x̅𝐾 is the vector of centroid means across the n variables. At the end of each iteration, 
we calculate Di,K for each observation across the K clusters. We assign each observation 
to the cluster where its value of Di,K is the smallest for the K clusters. After assigning each 
observation to a cluster, we recalculate each variable’s centroid. We repeat this until the 
centroids stop changing. 
 
3.3. Classification and Regression Trees 
Decision trees provide a way to conceptualize prediction of a variable’s levels based on a 
number of auxiliary variables. The response can be categorical or numeric. Each node of a 
decision tree typically represents a binary decision point; for instance, to predict whether a 
housing unit uses natural gas we may ask ‘do most housing units in the block use natural 
gas?’  
 
A classification tree models categorical responses while a regression tree models 
continuous responses. However, both methods follow a similar algorithm. First, we begin 
with the root node, which contains all observations.  
 
Second, we split the observations based on independent partitions on the levels of each 
auxiliary variable, such that we seek to minimize impurity, or the variation of the response 
within each child node. If the auxiliary variable is continuous, the algorithm finds the 
cutpoint that best divides the observations. This second step is known as ‘growing’ the tree. 
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In the SAS HPSPLIT procedure (SAS Institute 2015), the reduction in impurity is defined 
as  
 

∆𝑖(𝑠, 𝜏) = 𝑖(𝜏) − ∑ 𝑝(𝜏𝑏|𝜏)𝐵
𝑏=1 𝑖(𝜏𝑏), 

 
where 𝑖(𝜏) is the impurity of the parent node, 𝑖(𝜏𝑏) is the impurity of child node b, and 
𝑝(𝜏𝑏|𝜏) represents the weighted proportion of the number of units in the sample that are in 
child node b. We did not use weights in our application of CART; therefore, each weight 
equaled one. 
 
The definition of our impurity 𝑖(𝜏) varies based on the type of data we are clustering. For 
numeric responses, the SAS HPSPLIT RSS grow criterion defines 𝑖(𝜏) as the residual sum 
of squares, 
 

𝑖(𝜏) =
1

 𝑁𝜔(𝜏)
∑ (𝑌𝑖 − 𝑌̅𝜔)2𝑁(𝜏)

𝑖=1 , 
 
where 𝑁(𝜏) is the number of observations, 𝑁𝜔(𝜏) is the weighted sum of observations, 𝑌𝑖 
is the value of the response, and 𝑌̅𝜔 is the weighted mean of the response variable. 
 
The within-node sum of squares displayed in the SAS output as ‘RSS’ is calculated as 
 

𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛 = ∑ ∑ 𝜔𝑖(𝑌𝑏𝑖 − 𝑌̅𝜔(𝜏𝑏))
2𝑁(𝜏𝑏)

𝑖=1
𝐵
𝑏=1 . 

 
For categorical responses, we define 𝑖(𝜏) as the entropy impurity,  
  

𝑖(𝜏) = − ∑ 𝑝𝑗𝑙𝑜𝑔2𝑝𝑗
𝐽
𝑗=1 , 

 
where 𝑝𝑗 is the weighted proportion of the sample that have the jth response value. 
 
The HPSPLIT procedure selects the best splitting variable and the best cutoff value to 
produce the highest reduction in impurity. We continue splitting the nodes based on our 
variance-minimizing criterion, which eventually could contain so many nodes that they 
could not be generalized back to new data.   
 
To avoid overfitting the model to the data, the last step is to prune the tree. We employed 
the Cost-Complexity criterion proposed by Breiman et al. (1984), which essentially is a 
function that combines an error rate with a penalty function that increases as the number 
of leaves increases. For categorical responses, the error rate is equal to the proportion of 
cases misclassified. For numeric responses, the error rate is equal to SSwithin. 
 

4. Multiple Imputation 
 
The Census Bureau is researching an alternative imputation method called Multiple 
Imputation (Dalby et al. 2019). Multiple Imputation (MI) is a model-based imputation 
method that estimates a distribution of the imputation variable and draws multiple values 
from the estimated distribution. 
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The current MI research evaluates the Fully Conditional Specification modeling approach 
(Dalby et al. 2019), which iteratively estimates distributions for imputation variables, one 
at a time, such that newly imputed variables can be included in the model to impute 
subsequent variable distributions. After a short number of iterations, the distributions 
converge. The evaluation method in Dalby et al incorporates randomness to the regression 
parameters as well as the predicted values.   
 

5. Results 
 

We applied cluster analysis to build hot-deck donor pools. Instead of grouping individual 
sample units, we combined groups of sample units. We calculated the group mean of each 
variable, and calculated our distance measures with these means. Either directly obtained 
from the respondent or produced through coding, the hot deck uses categorical auxiliary 
variables. We created the auxiliary variable groups by identifying all of their possible 
combinations; for example, one auxiliary variable with five levels and another with four 
levels can produce up to 20 groups. These 20 groups would serve as our initial donor pools. 
The cluster analysis determines how to combine the 20 groups into our final donor pools. 
 
Both hierarchical and k-means clustering use a distance measure, which requires numeric 
values. However, a given hot deck matrix can contain different types of variables. For 
instance, Matrix E imputes categorical variables such as ‘type of heating fuel used.’ We 
expressed those variables as sets of binary variables. For example, HEAT1=1 if fuel 
type=A, HEAT1=0 otherwise; HEAT2=1 if fuel type=B, HEAT2=0 otherwise; and so 
forth. Additionally, when we worked with a mix of variable types, we grouped numeric 
variables into binned categorical variables and converted them to binary variables. This 
allowed us to keep all imputation variables in the same scale so that the numeric variables 
did not dominate the distance calculations. 
 
The results in this paper represent a few case studies to evaluate the effect of applying 
cluster analysis to the hot deck. Except where noted, the intent of this research was to keep 
auxiliary variables constant between methods and evaluate the impact of changing the way 
we group the auxiliary variables.  
 
We evaluated Matrices A, B, and E. For each matrix, we identified all AHS-National 
observations that (a) were completed interviews and (b) provided responses to all of the 
imputation variables in the matrix, either directly or through a consistency edit. 
 
5.1. Matrix A 
Matrix A produces the donor pools to impute three variables corresponding with the 
structure type of the housing unit. Two variables are categorical and one is numeric. 
 
We recoded our auxiliary variables of occupancy status, tenure, and vacancy type into one 
categorical variable with five levels: owner-occupied, renter-occupied, vacant-sold/for 
sale, vacant-rented/for rent, and vacant-other. We also recoded number of floors into a 
categorical variable with six levels: missing, one through four floors, and 5-or-more floors. 
The five levels of our tenure recode and the six levels of our floors recode gave us 30 
mutually exclusive pools with which we combined with the clustering algorithms. Of our 
imputation variables, structure containing the housing unit and housing unit type are 
categorical, while number of units, called NUNITS, is numeric. To standardize all three 
variables, we first recoded NUNITS into a categorical variable representing the published 
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ranges for multiunit buildings; 2-4, 5-9, 10-19, 20-49, and 50+. We then recoded our three 
variables into a series of binary variables. Standardizing our imputation variables put them 
all into the same scale when we applied the distance calculations in our cluster analysis. 
 
We evaluate the variable NUNITS here. We focus on the number of units only in multiunit 
buildings because the value equals one for single-family attached, detached, and mobile 
homes. There were 67,000 respondents in the 2017 AHS. Of those, 64,500 housing units 
provided responses to all three variables in Matrix A – structure containing the housing 
unit, housing unit type, and NUNITS. We only used respondents to all three variables in 
the cluster analysis. Of the units we used, there were 17,000 housing units in multifamily 
buildings. Overall, 2,200 units in multifamily buildings did not respond to the NUNITS 
question. 
 
We applied Ward’s method and K-means clustering to produce donor pools that take into 
account all of the respondents, while we applied CART to produce donor pools for only 
those units in multiunit buildings. For each method we iterated cluster size from c=3 to 30, 
the maximum number of available clusters.  
 
We applied Ward’s method to group our 30 initial donor pool clusters hierarchically. For 
each recoded version of the three imputation variables, we calculated our 30 initial donor 
pool cell proportions. We used the initial donor-pool cell proportions as the basis for our 
distance measures. We used the relationships between initial clusters represented in this 
dendrogram to group the 30 initial donor pool cells into final clusters, from c=three clusters 
to c=30. 
 
Next, we applied K-means clustering to our 30 initial donor pools. Similar to our approach 
in hierarchical clustering, we calculated distances between our c centroids and our pools’ 
values, defined as the standardized variable proportions. We specified from c=three 
centroids to c=30. 
 
Lastly, we applied CART to NUNITS, using the subset of the sample that only includes 
multiunit buildings. We wanted to compare the effectiveness of clustering one variable at 
a time to clustering all variables simultaneously. To keep our imputation variables 
consistent across methods, we used our recoded NUNITS, which we recoded as 
categorical. We used the entropy criterion to grow the tree and a cost complexity criterion 
to prune the tree.  
 
After developing the clusters described above, we calculated Mean Square Error (MSE) of 
the observed value NUNITS with an Analysis of Variance for each method / number of 
clusters. Figure 2 displays the change in MSE by method as the number of clusters increase. 
We also provide the MSE associated with the current method, denoted as a horizontal black 
line for comparative purposes. 
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Figure 2: Mean Square Error, NUNITS within cluster. 
Source: U.S. Census Bureau, 2017 American Housing Survey 
 
We see in Figure 2 that the current method does an adequate job accounting for the 
variation in NUNITS captured with the auxiliary variables, when compared its Mean 
Square Error with those from the 30-cluster scenarios. With respect to improvements - we 
note the current method produces nine donor pools. Figure 2 suggests that for nine donor 
pools, CART performs slightly better than the current method, while K-means and Ward’s 
Hierarchical clustering performs slightly worse. However, as the number of clusters 
exceeds 15, all methods perform slightly better than the current method. 
 
We applied our donor pool definitions back to the sample to impute the 2,200 missing 
values for NUNITS. We specified nine clusters for all cluster-based methods, the same 
number of donor pools specified in the current method. We sorted our sample by donor 
pool, then by the series of geographic variables used in the current methodology. If the first 
value within a pool was missing, we selected from a random uniform distribution within 
each donor pool. In Figure 3, we compare the distributions of the currently imputed values 
with the three candidate methods, no cells – only a geographic sort, and the 17,000 values 
from those units that did provide responses. 
 
Figure 3 suggests that all methods produce similar distributions of imputed values. We also 
note some slight but clear separation in the distributions starting near the 80th percentile. 
The reported values at this point are smaller than the imputed values. We surmise that the 
auxiliary variables are not completely capturing the mechanism that drives the missingness 
in NUNITS. We explore this at a future point. 
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Figure 3: Cumulative distributions of imputed NUNITS values by method, with reported 
values for comparison. 
Source: U.S. Census Bureau, 2017 American Housing Survey 
 
We now compare values imputed with the hot deck to those imputed with multiple 
imputation. As our three methods performed relatively consistently, we selected one 
method, Ward’s Hierarchical, as our base of comparison to MI. We simulated a MAR 
process in which the missingness varied based on the number of floors in the building. 
Using our 17,000 cases that (a) were in multifamily buildings (b) responded to the NUNITS 
interview question, and (c) responded to the ‘number of floors in building’ interview 
question. We produced three simulations with different random seeds to determine which 
observations to remove. For each simulation, we removed 2,700 values. We used the same 
auxiliary variables to apply our evaluation methods. We then combined the three 
simulations for evaluation. Figure 4 displays the cumulative distributions of the imputed 
values from the clustering and MI methods, as well as those imputed with the current hot 
deck methodology, a pure geographic sort (i.e., no cells), and the combined three sets of 
2,700 actual responses we removed.  
 

 

 

Figure 4: Cumulative distributions of imputed and known values from simulations. 
Source: U.S. Census Bureau, 2017 American Housing Survey 
 
The distributions of our imputed values using the current hot deck, cluster analysis, and a 
pure geographic sort all appeared to mimic the distribution of the reported values, while 
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the distribution of the MI-based imputed values suggests that method imputed a larger 
proportion of the smaller-sized 50+ unit buildings and fewer larger-sized buildings.  
 
Table 1: Summary of differences between observed and imputed by building size, from 
simulations 

Current 
Building 
Size Min Q1 Median Q3 Max 

Sum of Squared 
Differences 

2-4 -996 -14 -4 0 2 11,390,000 
5-9 -992 -16 -2 2 7 10,250,000 
10-19 -988 -11 2 8 17 11,830,000 
20-24 -978 -26 11.5 21 46 22,050,000 
50+ -898 -7 62 146 996 99,280,000 
Current Total 154,800,000 
Cluster Analysis 
Building 
Size Min Q1 Median Q3 Max 

Sum of Squared 
Differences 

2-4 -996 -14 -4 0 2 11,060,000 
5-9 -992 -16 -2 2 7 11,720,000 
10-19 -988 -14 2 8 17 13,860,000 
20-24 -978 -20.5 12 22 47 17,090,000 
50+ -898 0 65 147 996 98,670,000 
 152,400,000 
Multiple Imputation 
Building 
Size Min Q1 Median Q3 Max 

Sum of Squared 
Differences 

2-4 -180 -7 -2 0 2 253,700 
5-9 -731 -2 2 4 7 680,600 
10-19 -615 2 8 10 17 1,110,000 
20-24 -481 12 20 28 47 2,246,000 
50+ -849 52 95 194 996 101,300,000 
Multiple Imputation Total 105,600,000 
Geo Sort 
Building 
Size Min Q1 Median Q3 Max 

Sum of Squared 
Differences 

2-4 -995 -26 -6 0 2 13,550,000 
5-9 -992 -19 -2 2 7 16,190,000 
10-19 -988 -18 2 8 16 15,360,000 
20-24 -958 -18.5 12 23 46 15,030,000 
50+ -938 42 93 191.5 996 103,300,000 
Geo Sort Total 163,400,000 

Source: U.S. Census Bureau, 2017 American Housing Survey 
 
To gain insight about the differences suggested in Figure 4, we produced summaries of the 
differences between the actual and imputed values of NUNITS. Table 1 provides the 
interquartile ranges of differences, defined as “actual – imputed,” by building size and 
imputation method. We see that MI outperformed all methods for building sizes ranging 
from 2-unit buildings through 24-unit buildings. We also note that for the middle 50 percent 
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of the 50+ group, Q1 through Q3, MI consistently produced smaller imputed values than 
actual, as indicated by the positive differences. 
 
5.2. Matrix B 
Matrix B produces the donor pools to impute twelve variables corresponding with the types 
of rooms in the housing unit. Each variable is a count variable. There were 52,500 
observations with responses to all 12 interview variables. 
 
We developed our initial cells using the same auxiliary variables used in the current 
method: occupancy status, tenure, vacancy status, type of housing unit, and persons in the 
housing unit. We capped persons in the housing unit to six, as sample was sparse beyond 
six persons. We also recoded occupancy status, tenure, and vacancy into a variable with 
five levels: owner-occupied, renter-occupied, vacant-sold/for sale, vacant-rented/for rent, 
and vacant-other. As only occupied housing units contain persons, the variable was 
somewhat confounded with our occupancy status recode and was only applicable for the 
owners and renters. Crossing these three variables produced 60 initial donor pool clusters. 
Similar to Matrix A we converted each imputation variable to a series of indicator 
variables, calculated cell-level proportions for each indicator variable, and used these 
proportions to calculate the cluster algorithms’ distance measures. 
 
We applied Ward’s method to group our 60 initial donor pool clusters hierarchically. For 
each of the 12 variables we calculated the 60 initial donor pool cell means. We used the 
initial donor pool cell means as the basis for our distance measures. We also standardized 
our variables’ means prior to calculating distances. We grouped the 60 initial donor pool 
cells into final clusters, from c=three clusters to c=60. 
 
Next, we applied K-means clustering to Matrix B. Similarly to our approach in hierarchical 
clustering, we calculated distances between our c centroids and our pools’ values, defined 
as the standardized variable means. We specified from c=three centroids to c=60. 
 
Lastly, we applied CART to two of the 12 variables in Matrix B. We evaluated bedrooms 
and family rooms, named BEDRMS and FAMRM, respectively. The distribution of 
BEDRMS is among the most variable of the 12 in the matrix, while the variability in 
responses decreases for FAMRM. We wanted to compare the effectiveness of clustering 
one variable at a time as opposed to clustering all variables simultaneously. We used a 
residual sum of squares criterion to grow the tree and a cost complexity criterion to prune 
the tree.  
 
After developing the clusters described above, we calculated Mean Square Error (MSE) 
with an Analysis of Variance for each method / number of clusters. Figures 5 and 6 display 
the change in MSE by method as the number of clusters increase. We also provide the MSE 
associated with the current method, given as a horizontal line for comparative purposes. 
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Figure 5: Mean Square Error for BEDRMS for the number of clusters (c), by method. 
Source: U.S. Census Bureau, 2017 American Housing Survey 

 
Figure 6: Mean Square Error for FAMRM for the number of clusters (c), by method. 
Source: U.S. Census Bureau, 2017 American Housing Survey 
 
In both figures above, we observe that our within-cell variability hits an inflection point at 
about ten clusters across all methods. We also notice that with CART and Ward’s 
hierarchical clustering, we can achieve a similar level of within-cluster variability to the 
current method with fewer than 29 clusters. Overall, CART and Ward’s appear to 
outperform K-means clustering, particularly in the number of bedrooms. Lastly, we note 
that the compromises we make in accounting for all 12 variables in Ward’s hierarchical 
clustering are not hindering the method’s ability to reduce variation in all variables, when 
compared to clustering individual variables with CART. 
 
We focus on BEDRMS here. In Figure 7, we compare the distributions of the currently 
imputed values with the three candidate methods, no cells – only a geographic sort, and the 
values from those units that did provide responses for the number of bedrooms. The purely 
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geographic sort appeared closest the distribution of the responses, while CART and Ward’s 
Hierarchical clustering appeared to produce consistent distributions with the current 
method. K-means produced visually inconsistent comparisons between two and four 
bedrooms. 
 

 
Figure 7: Cumulative distributions of imputed and reported Number of Bedrooms. 
Source: U.S. Census Bureau, 2017 American Housing Survey 
 
We now compare values imputed with the hot deck to those imputed with multiple 
imputation. To simplify our visual analysis, we selected one method, Ward’s Hierarchical, 
as our base of comparison to MI. We simulated a MAR process in which the missingness 
varied based on the tenure and vacancy status of the unit. Using our 52,500 cases that 
responded to the BEDRMS question, we produced three simulations with different random 
seeds to determine which observations to remove. For each simulation, we removed on 
average 650 values. We used the same auxiliary variables to apply our evaluation methods. 
We then combined the three simulations for evaluation. Figure 8 displays the cumulative 
distributions of the imputed values from these two methods, as well as those imputed with 
the current hot deck methodology, a pure geographic sort (i.e., no cells), and the actual 
responses we removed. 
 

 
Figure 8: Cumulative Distribution of Values with Forced Missingness for Number of 
Bedrooms, by Method 
Source: U.S. Census Bureau, 2017 American Housing Survey 
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Figure 8 suggests that for the simulated missingness mechanism, both cluster analysis and 
the current method produce hot deck cells that mimic the distribution of the actual 
responses. We also note that the auxiliary variables added information that gave us 
improvements over a pure geographic sort. We finally note that the auxiliary variables, 
when used by the MI model, produced a similar distribution given in Figure 2d in Dalby et 
al (2019); such that the MI model drew higher proportions of 0, 1, and 5-or-more-bedroom 
responses from the estimated distribution than what was available in the distribution of 
actual responses. We provide a summary of the differences between the reported and 
imputed values in Table 2. We see that the current and cluster-based methods produce 
symmetric distributions. We also note the reduced Sum of Squared differences after 
applying a cell-based hot deck method, when compared to a pure geographic sort. We also 
note that MI produced the greatest amount of total variability between reported and 
imputed values in our simulations.  
 
Table 2: Summary of differences between observed and imputed, from simulations 

Method Min Q1 Median Q3 Max Sum of 
Squared 
Differences 

Current -7 -1 0 1 8 3,050 
Cluster -5 -1 0 1 8 2,824 
MI -7 -1 0 1 9 7,114 
Geo Sort -7 -1 0 1 7 4,900 

Source: U.S. Census Bureau, 2017 American Housing Survey 
 
5.3. Matrix E 
Matrix E produces the donor pools to impute sets of many variables from nine modules. 
Eight of these modules are housing unit-level and one is person-level. In this section we 
evaluate the impact of clustering with the imputation variables from the eight housing unit-
level modules on the quality of the donor pools with respect to one of those modules – 
equipment. The equipment module contains 26 variables related to kitchen and laundry 
appliances, bathroom equipment, types of fuel used, and the types of heating and cooling 
equipment. We first created clusters using the variables from the eight housing unit-level 
modules and observations with responses to all the imputation variables, which consisted 
of approximately 13,000 observations. Then we created clusters using only the equipment 
module’s variables from full-respondents, which consisted of about 62,500 observations. 
After developing clusters, we conducted simulations by mapping the clusters back to the 
62,500 observations that provided responses to all equipment variables. 
 
We developed our initial cells using the same auxiliary variables used in the current 
method: occupancy status, tenure, vacancy status, type of housing unit, number of 
bedrooms, demographic information about householder, and rent/value. In this research, 
we are assuming that value and rent are already reported & imputed. We recoded 
occupancy status, tenure, and vacancy into a variable with five levels: owner-occupied, 
renter-occupied, vacant-sold/for sale, vacant-rented/for rent, and vacant-other. We recoded 
number of bedrooms into two levels to mimic Matrix E; one represents two or fewer 
bedrooms, while the other represents three-or-more. We coded the demographic 
information to mimic Matrix E: a variable with three levels representing whether (a) the 
unit is vacant or a mobile home, (b) the householder is present, under 65, and white/non-
Hispanic, or (c) the compliment of (b). Altogether, these variables produced 80 initial 
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donor pool clusters. Similar to Matrix A we converted each imputation variable to a series 
of indicator variables, calculated cell-level proportions for each indicator variable, and used 
these proportions to calculate the cluster algorithms’ distance measures. 
 
For Matrix E, we produced clusters with Hierarchical clustering and CART. We specified 
29 clusters for each method, as the current hot deck contains 29 donor pools. Figure 9 
below provides a side-by-side comparison of the within-donor pool distributions for the 
current method’s pools and those constructed with Hierarchical clustering, using the 13,000 
observations that provided responses to all imputation variables. 
 

  
Figure 9: Distributions of Water Fuel (WFUEL) donor pools using current method and 
hierarchical clustering, respectively. 
Source: U.S. Census Bureau, 2017 American Housing Survey 
 
We see in Figure 9 that the current method contains one pool, the 23rd pool, consisting of 
only values of WFUEL=electricity. With a few exceptions, both sets of distributions 
suggest all donor pools contain approximately 50 percent of cases using electricity and 50 
percent using gas. 
 
Of the eight modules we incorporated into our cluster analysis, we evaluate the methods’ 
impacts on the equipment module. We calculated the chi-square statistic for each 
imputation variable in that module, for the three methods: current, hierarchical clustering, 
and CART. We excluded K-means to reduce the number of evaluation methods.  
 
We calculated chi-square statistics for all variables/methods to compare their relative 
amounts of between-cluster variability. We did this for our two aforementioned scenarios: 
first, we included all eight modules and their observations with responses to all questions; 
second, we included only the equipment module and their observations with responses to 
all of those questions. These corresponded with 13,000 and 62,500 observations, 
respectively. Their chi-square statistics are given in Table 3. 
 
We did not compare chi-square statistics across scenarios, as sample sizes were drastically 
different. Within each scenario, we see that our two evaluation methods produced donor 
pool cells with similar levels of between-cluster variability as the current method, 
suggesting that clustering eight modules’ variables produced donor pools of similar quality 
as those we produced with only the equipment module. We bolded WFUEL, the variable 
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representing water fuel. These values correspond with the distributions from Figure 9. We 
reference this variable in a future section. 
 
Table 3: Chi-Square statistics calculated for each variable, by evaluation method and 
input-data scenario. 

 13,000 observations 62,500 observations 
Variable current cluster CART current cluster CART 
COOK 189 269 289 3,625 3,991 3,976 
BURNER 49 54 63 277 274 292 
OVEN 45 54 56 445 451 460 
CFUEL 455 506 487 2,043 2,272 2,037 
REFR 318 429 499 7,439 7,723 7,750 
SINK 112 182 249 2,060 2,342 2,406 
DISH 1,896 1,986 1,995 10,740 11,400 11,420 
WASH 1,906 2,312 2,297 19,530 22,950 22,880 
DFUEL 270 315 321 1,226 1,356 1,369 
DRY 1,987 2,398 2,390 19,390 22,600 22,420 
HOTPIP 106 223 250 3,816 4,869 4,792 
TUB 25 53 86 364 854 936 
TOILET 27 58 100 379 959 1,027 
BSINK 26 56 93 379 897 984 
WFUEL 398 533 481 3,705 3,901 3,814 
WATER 1,241 2,086 2,504 4,127 5,112 4,946 
HEQUIP 1,077 1,614 1,512 6,683 8,190 8,322 
HFUEL 1,142 1,870 1,805 6,098 6,753 6,483 
OAFUEL 54 82 85 34 45 41 
NUMAIR 1,295 1,057 1,198 1,526 1,460 1,899 
AIR 380 550 548 2,311 2,658 2,520 
OARSYS 70 63 104 938 519 527 
FPLWK 1,471 1,814 1,857 14,860 14,850 14,860 
AFUEL 104 134 135 193 145 194 
AIRSYS 369 629 620 3,114 3,848 3,774 
BATHEXCLU 19 19 18 56 62 61 

Source: U.S. Census Bureau, 2017 American Housing Survey 
 
Next, we simulate missingness for each variable and evaluate how closely our imputed 
values match actual values. For each of our two sample-size-based clustering scenarios, we 
mapped our clusters back to the sample of 62,500 observations. We note that when 
mapping the clusters produced with 13,000 observations to the larger sample, some initial 
donor pool groups were not represented in the final pools; we therefore created a “don’t 
know” stratum to capture them. Next, we conducted 30 simulations where we randomly 
excluded 10 percent of our responses. We assumed a MCAR process to give all donor pool 
cells an overall equal rate of missingness.  
 
In our 30 simulations, we imputed values and identified those imputed values that matched 
the actual value. Next, we calculated the proportion of imputed values that match the actual. 
We calculated the average of those proportions, and the standard deviation of the difference 
between the current and proposed methods. Table 4 provides results from our simulations. 
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If a standardized difference between the current method and evaluation method was greater 
than 1.645, we flagged it as significant with bold font. 
 
Table 4: Results of imputation simulations for each variable, by evaluation method and 
input-data scenario: Proportion of imputed values that match the actual value. Significant 
differences in bold. 

 13,000 observations 62,500 observations 
Variable current cluster CART current cluster CART 
COOK 96.1% 96.2% 96.2% 96.1% 96.2% 96.2% 
BURNER 73.8% 75.5% 73.7% 73.8% 75.9% 76.9% 
OVEN 73.3% 73.1% 65.7% 73.3% 73.2% 73.8% 
CFUEL 65.3% 65.7% 65.1% 65.3% 65.3% 65.4% 
REFR 97.3% 97.3% 97.4% 97.3% 97.4% 97.4% 
SINK 98.9% 98.9% 98.9% 98.9% 98.9% 98.9% 
DISH 69.9% 69.2% 69.5% 69.9% 70.0% 70.1% 
WASH 80.4% 81.6% 81.2% 80.4% 81.7% 81.7% 
DFUEL 76.0% 76.3% 76.3% 76.0% 76.1% 76.4% 
DRY 79.5% 80.5% 80.3% 79.5% 80.6% 80.7% 
HOTPIP 98.5% 98.5% 98.5% 98.5% 98.5% 98.5% 
TUB 99.7% 99.7% 99.7% 99.7% 99.7% 99.7% 
TOILET 99.8% 99.8% 99.8% 99.8% 99.8% 99.8% 
BSINK 99.8% 99.7% 99.8% 99.8% 99.8% 99.8% 
WFUEL 64.9% 65.6% 65.4% 64.9% 65.4% 65.5% 
WATER 88.5% 89.0% 88.8% 88.5% 88.8% 88.9% 
HEQUIP 56.9% 57.2% 57.3% 56.9% 57.4% 57.3% 
HFUEL 60.6% 61.3% 61.3% 60.6% 61.1% 61.3% 
OAFUEL 92.0% 92.2% 92.4% 92.0% 92.5% 92.3% 
NUMAIR 40.4% 40.2% 40.7% 40.4% 40.8% 41.0% 
AIR 71.9% 72.0% 72.1% 71.9% 72.2% 72.0% 
OARSYS 83.3% 83.1% 83.2% 83.3% 83.2% 83.2% 
FPLWK 69.7% 69.0% 69.7% 69.7% 69.8% 69.7% 
AFUEL 93.7% 93.6% 93.6% 93.7% 93.6% 93.7% 
AIRSYS 74.3% 74.1% 74.1% 74.3% 74.6% 74.7% 
BATHEXCLU 84.6% 86.7% 86.3% 84.6% 87.5% 90.0% 

Source: U.S. Census Bureau, 2017 American Housing Survey 
 
From Table 4, we see that our evaluation methods overall performed consistently with the 
current method in imputing the actual value. The WASH and DRY variables, representing 
whether the unit has a working washing machine and clothes dryer, respectively, were the 
only variables to show a significant increase in matches from the current method.  
 

6. Improvements using Auxiliary Variables 
 

This section contains potential improvements we found for Matrices A and E. While we 
saw in this paper that cluster-based methods could produce hot deck donor pools, the 
methods alone have not produced substantial improvements with respect to increasing the 
homogeneity within donor pools. We also need to consider alternative auxiliary variables. 
We explored the American Community Survey (ACS) as a source for auxiliary variables. 
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6.1. Matrix A - NUNITS 
We now discuss the differences between the distributions of the imputed and reported 
values of NUNITS. Recall we assumed a MAR process when we conditioned on vacancy 
status, tenure, and floors when developing hot deck donor pools. We surmise that the 
missingness mechanism may actually be related to the variable itself, as a respondent may 
have a more difficult time responding to the question ‘how many units are in this building’ 
if the building contains many units. 
This time we introduced a new variable to our models: block-level housing-type 
distributions calculated from the ACS. Using the ACS we produced block-level 
proportions of single-family detached units, single-family attached units, mobile units, 
units in 2-4 unit buildings, units in 5-9 unit buildings, units in 10-19 unit buildings, units 
in 20-49 units buildings and units in buildings with 50 or more units. Then we recoded 
these proportions into one categorical variable representing which type of unit constitutes 
the majority of the units in the block. This variable, called BLKUNIT, contains ten levels; 
one for each of the types given above, the ninth representing no clear majority, and the 
tenth represents a “don’t know” stratum. We need this “don’t know” stratum because we 
were not able to map the entire AHS sample to the ACS blocks. 
 
We also evaluated response propensity of NUNITS as a function of BLKUNIT. Table 5 
provides odd ratios comparing the eight levels of BLKUNIT that represent a majority in 
the block to level representing level I – no clear majority, modeling the probability of a 
response as a function of the levels of BLKUNIT. We used that subset that contained a 
block-level match to the ACS. 
 
Table 5: Response propensity by block housing-type composition, units in multiunit 
buildings 

BLKUNIT 
level, based on 
majority 

Respondents Non-
Respondents 

Estimate Lower 95 
percent 
Wald 

Upper 95 
percent 
Wald 

A – Single-
Detached 

1600 100 1.878 1.539 2.291 

B – Single-
Attached 

400 40 1.399 0.998 1.960 

C – Mobile 60 N < 15 2.531 0.790 8.109 
D – 2-4 units 1900 100 2.641 2.134 3.268 
E – 5-9 units 1400 80 2.284 1.806 2.888 
F – 10-19 units 1400 150 1.219 1.019 1.458 
G – 20-49 units 1000 150 0.918 0.763 1.105 
H – 50+ units 2800 700 0.558 0.499 0.623 
I – no majority 5800 800 N/A N/A N/A 

Source: U.S. Census Bureau, 2017 American Housing Survey 
 
Table 5 supports that units have a lower response propensity if they are in blocks that 
contain a majority of units in buildings with 50 or more units.  
 
We calculated MSE for our scenarios ranging from c=3 to 30 clusters. Figure 10 shows 
that for Ward’s method and CART, the BLKUNIT variable captured substantial between-
cluster variation, when compared with the current method, still denoted by the horizontal 
black line in the figure. We also note that K-means did not stabilize until c=10 clusters, 
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and some of those clusters only contained one initial donor pool that represented a single 
observation. 

 
Figure 10: Mean Square Error for NUNITS after adding BLKUNIT auxiliary variable for 
cluster=c. 
Source: U.S. Census Bureau, 2017 American Housing Survey 
 
Next, we imputed values using our test methods, specifying nine clusters for all methods. 
The cumulative distributions are given in Figure 11. We note that CART and Ward’s both 
produced distributions that represented a higher proportion of imputed values containing 
larger values of NUNITS than from the distribution of reported values. 
 

 
Figure 11: Cumulative distributions of imputed NUNITS values by method after including 
ACS block-level structure-type auxiliary information to cluster analysis, with reported 
values for comparison. 
Source: U.S. Census Bureau, 2017 American Housing Survey 
 
To test our surmise we simulated a NMAR mechanism in which we introduced missingness 
to our observed data at a variable rate depending on the number of units in the building. 
We estimated nonresponse rates using Table 5. For buildings with 2-4 units and 5-9 units, 
the rate was five percent; for buildings with 10-19 units, the rate was 10%; for buildings 
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with 20-49 units, the rate was 15%; and for buildings with 50+ units, the rate was 20%. We 
produced three simulations with different random seeds. Figure 12 provides the cumulative 
distributions from these simulations. We see from such simulations that while no method’s 
imputed values overlapped the cumulative distribution for the respondents, the distribution 
produced with the cluster-based imputations, using Ward’s method, was the closest to the 
distribution of the actual responses.  
 

 
Figure 12: Cumulative distributions of imputed and known values of NUNITS from 
simulations, after including ACS block-level structure-type auxiliary information to cluster 
analysis.  
Source: U.S. Census Bureau, 2017 American Housing Survey 
 
We also summarize the distributions of the differences between observed and imputed 
values from our three simulations in Table 6. We see that both the middle 50 percent of the 
distribution of those differences and the total sum of squared differences was smallest for 
the cluster-based hot deck. 
 
Table 6: Summary of differences between observed and imputed, from simulations 

Method Min Q1 Median Q3 Max Sum of 
Squared 
Differences 

Current -996 -8 7 53 996 144,000,000 
Cluster -996 -8 4 38 994 131,700,000 
Geo Sort -996 -6 8 62 996 150,300,000 

Source: U.S. Census Bureau, 2017 American Housing Survey 
 
6.2. Matrix E - Fuels 
We know from life experience that some localities’ infrastructures provide natural gas to 
their housing units and some do not. We surmised that this could help us to improve 
imputation of fuel variables, as most housing units use electricity and/or natural 
gas/propane to heat their homes, hot water, stovetops, etc. We calculated block-level 
proportions of housing units that use natural gas/propane as their heating fuel and mapped 
those proportions to the AHS. We produced a “don’t know” stratum where we did not have 
a block-level match. Then we created four more levels corresponding with less than ten 
percent using gas to heat the home, ten to 50 percent, 50 to 90 percent, and greater than 90 
percent. We call this variable BLKGAS. 
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Figure 13 below shows the distributions of the WFUEL variable produced with the current 
method, and with hierarchical clustering using BLKGAS, respectively. We produced both 
sets with the 13,000 observations with responses to all the Matrix E variables we discussed 
earlier. The increased between-cluster variability is visible after adding the BLKGAS 
auxiliary variable. 
 

  
Figure 13. Distributions of Water Fuel donor pools using current method and hierarchical 
clustering – including BLKGAS variable, respectively. 
Source: U.S. Census Bureau, 2017 American Housing Survey 
 
We recalculated chi-square statistics from section 5.3, after introducing the BLKGAS 
auxiliary variable to hierarchical clustering and CART. We compare their relative amounts 
of between-cluster variability to the current method in Table 7. 
 
Table 7: Chi-Square statistics calculated for each variable after including BLKGAS 
auxiliary variable, by evaluation method and input-data scenario. 

 13,000 observations 62,500 observations 
Variable current cluster CART current cluster CART 
COOK 189 372 474 3,625 3,994 4,373 
BURNER 49 52 82 277 260 327 
OVEN 45 55 74 445 403 480 
CFUEL 455 2,709 2,775 2,043 9,453 9,279 
REFR 318 665 847 7,439 7,746 8,606 
SINK 112 319 538 2,060 2,248 2,673 
DISH 1,896 2,206 2,329 10,740 11,360 11,650 
WASH 1,906 2,378 2,428 19,530 23,040 22,780 
DFUEL 270 1,020 1,004 1,226 5,102 4,568 
DRY 1,987 2,457 2,494 19,390 22,750 22,200 
HOTPIP 106 329 428 3,816 4,977 5,696 
TUB 25 69 122 364 674 1,081 
TOILET 27 57 125 379 769 1,174 
BSINK 26 58 130 379 727 1,114 
WFUEL 398 3,607 3,801 3,705 16,610 16,130 
WATER 1,241 1,800 3,341 4,127 5,390 6,113 
HEQUIP 1,077 2,850 2,767 6,683 14,150 11,410 
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 13,000 observations 62,500 observations 
HFUEL 1,142 5,230 4,784 6,098 18,400 17,160 
OAFUEL 54 67 114 34 111 190 
NUMAIR 1,295 574 1,256 1,526 1,217 1,703 
AIR 380 1,000 982 2,311 3,449 2,007 
OARSYS 70 62 178 938 537 611 
FPLWK 1,471 1,998 2,121 14,860 15,390 15,260 
AFUEL 104 217 333 193 514 626 
AIRSYS 369 1,290 1,220 3,114 5,211 4,844 
BATHEXCLU 19 18 18 56 61 62 

Source: U.S. Census Bureau, 2017 American Housing Survey 
 
We see in Table 7 that by adding auxiliary information related to home heating fuel, we 
increased the between-cluster variability for most of our fuel variables. This increase in 
between-cluster variability is demonstrated for water fuel in Figure 13 above. 
 
Table 8: Results of imputation simulations for each variable after adding BLKGAS 
variable, by evaluation method and input-data scenario: Proportion of imputed values that 
match the actual value. Significant differences in bold. 

 13,000 observations 62,500 observations 
Variable current cluster CART current cluster CART 
COOK 96.1% 96.2% 96.1% 96.1% 96.2% 96.3% 
BURNER 73.8% 75.9% 72.0% 73.8% 77.0% 77.1% 
OVEN 73.3% 73.1% 64.4% 73.3% 72.0% 73.7% 
CFUEL 65.3% 66.5% 65.9% 65.3% 66.8% 66.2% 
REFR 97.3% 97.3% 97.2% 97.3% 97.3% 97.4% 
SINK 98.9% 98.9% 98.9% 98.9% 98.9% 98.9% 
DISH 69.9% 68.0% 69.1% 69.9% 69.5% 69.9% 
WASH 80.4% 80.9% 80.5% 80.4% 81.3% 81.5% 
DFUEL 76.0% 76.7% 76.1% 76.0% 76.5% 76.0% 
DRY 79.5% 79.7% 79.4% 79.5% 80.3% 80.1% 
HOTPIP 98.5% 98.5% 98.5% 98.5% 98.5% 98.5% 
TUB 99.7% 99.7% 99.7% 99.7% 99.7% 99.8% 
TOILET 99.8% 99.8% 99.8% 99.8% 99.8% 99.8% 
BSINK 99.8% 99.8% 99.7% 99.8% 99.8% 99.8% 
WFUEL 64.9% 67.0% 67.3% 64.9% 67.9% 67.4% 
WATER 88.5% 88.8% 88.8% 88.5% 89.0% 89.0% 
HEQUIP 56.9% 57.3% 57.5% 56.9% 57.5% 57.5% 
HFUEL 60.6% 62.6% 62.9% 60.6% 62.9% 62.6% 
OAFUEL 92.0% 92.6% 92.3% 92.0% 92.7% 92.4% 
NUMAIR 40.4% 40.6% 40.0% 40.4% 40.5% 40.6% 
AIR 71.9% 71.5% 71.3% 71.9% 72.0% 71.1% 
OARSYS 83.3% 83.0% 83.0% 83.3% 83.0% 83.2% 
FPLWK 69.7% 68.0% 69.4% 69.7% 69.5% 69.8% 
AFUEL 93.7% 93.6% 93.5% 93.7% 93.7% 93.6% 
AIRSYS 74.3% 73.8% 73.3% 74.3% 74.3% 74.3% 
BATHEXCLU 84.6% 81.3% 82.1% 84.6% 85.4% 88.8% 

Source: U.S. Census Bureau, 2017 American Housing Survey 
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Next, we reran our simulations from section 5, this time including the BLKGAS auxiliary 
variable. We highlighted in bold where the standardized difference between the proportions 
of correct matches produced with the current method and the evaluation method was 
greater than 1.645. Table 8 provides the updated results. 
 
From Table 8 we see that our evaluation methods overall improved the imputations in the 
fuel variables CFUEL, WASH, DRY, WFUEL, and HFUEL; or, cooking fuel, washing 
machine, clothes dryer, hot water fuel, and heating fuel, respectively. We saw some 
decreases in the quality of the imputation for OVEN, DISH, FPLWK, and AIRSYS; 
microwave oven, dishwasher, working fireplace and central air conditioner, respectively, 
when we produced clusters with the 13,000 responses to all module questions and mapped 
those clusters back to the 62,500 respondents to the equipment module questions. Those 
differences did not exist in the latter dataset. We note that the 13,000 cases did not represent 
all possible combinations of our auxiliary variables from the data set of 62,500; there were 
therefore cases dumped into a “don’t know” stratum. 
 

7. Conclusions 
 
Cluster analysis can help us develop hot deck cells, though the reductions in within-pool 
variation we observed from clustering are similar to the current methods. All methods’ 
clusters converge to the variability within the lowest level in our clusters, so improvements 
arise when we find auxiliary variables that reduce the within-cluster variability. The 
American Community Survey provided us with block-level estimates that we could modify 
into useful auxiliary variables. We found compelling evidence to suggest the imputation of 
number of units in multifamily buildings and fuels used in the housing unit can be 
improved, and consider it as an opportunity for future research to confirm these findings. 
 
Whether clustering one variable at a time with CART, one module at a time, or several 
modules together, cluster analysis produced donor pools that are similar in usefulness as 
our current method. We had slightly more success iteratively grouping many clusters into 
one with hierarchical clustering than assigning cases to the nearest cluster with K-means. 
We did identify a potential pitfall of clustering several modules together, as our pool of 
eligible cases for clustering is smaller due to our need for 100 percent response to all 
variables. For the same auxiliary variables, multiple imputation overall imputed more 
reasonable values of the number of units in multifamily buildings than what cluster analysis 
produced. We observed differences in the number of bedrooms distributions of imputed 
values obtained by the clustering and multiple imputation methods for which we could not 
account. 
 
Clustering methods can produce clusters with only one element. This can be a problem 
when we use the clusters to produce donor pools, because we would produce a pool that 
had only one donor. Recall we clustered on summaries, and applied the cluster assignments 
to all units. We need to ensure the final donor pools contain an adequate number of 
observations. 
 
Any views expressed are those of the authors and not necessarily those of the U.S. Census 
Bureau or the Bureau of Labor Statistics. 
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