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Abstract
Composite estimation in repeated surveys with rotating panels refers to methods of estimation

which exploit correlations in the data in the sample overlap between survey times to improve the
precision of current estimates. In this article a novel approach to composite estimation is proposed,
in which composite regression estimators of current totals for a number of key variables are gen-
erated from a simultaneous calibration of the sampling weights of the overlapping samples of the
current and previous survey time. In this procedure, in addition to the usual calibration to known
population totals, differences of estimates for the key variables based on the full sample and the com-
mon sample from the two consecutive times are calibrated to each other. The resulting multivariate
composite regression estimator is particularly efficient as the regression coefficients incorporate in-
formation from the samples of both survey times. Unlike other composite regression estimators, the
proposed estimator does not require micro-matching of data in the common sample, and, therefore,
is free of problems of estimation quality associated with it. It is also considerably more practical
than other composite regression estimators and the traditional AK-composite estimator.

Key Words: Composite calibration, composite regression estimator, AK-composite estimation,
MR-composite estimation, sample overlap.

1. Introduction

Some repeated surveys, typically the Labor Force Surveys, use a sampling design with ro-
tating panels for operational and statistical efficiency. Such design with large overlapping
sample between survey times can increase the precision of estimates, especially for those
variables for which there is a strong correlation between the values reported by the same
units in successive times. Composite estimation refers to estimation methods that use infor-
mation from the previous times to improve the precision of both the point-in-time (“level”)
estimates and estimates of change between successive times, by exploiting correlations in
the data of the overlapping sample.

The earliest composite estimation method, known as the “K-composite estimation”,
was introduced for the US Current Population Survey by Hansen et. al (1955), and ex-
tended later to the “AK-composite estimation” by Gurney and Daly (1965), and to the
“AK-composite weighting”; see Fuller (1990), Cantwell and Ernst (1992), Lent, Miller and
Cantwell (1994), Lent, Miller, Cantwell and Duff (1999).

Recently, a type of regression method of composite estimation, called modified regres-
sion (MR) composite estimation, and having certain advantages over the AK-method, was
developed for the Canadian Labor Force Survey; see Singh and Merkouris (1995), Singh
Kennedy and Wu (2001), Gambino, Kennedy and Singh (2001), Fuller and Rao (2001).

In this article, a novel approach to composite estimation is proposed, in which com-
posite regression estimators of current totals for a number of key variables are generated
from a simultaneous calibration of the sampling weights of the overlapping samples of the
current and previous survey time. In this procedure, in addition to the usual calibration to
known population totals of auxiliary variables, differences of estimates for the key variables
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based on the full sample and the common sample of the two consecutive surveys are cali-
brated to each other. The resulting multivariate composite regression estimators of current
totals and changes are particularly efficient because the regression coefficients incorporate
information from the samples of both current and previous survey time. Furthermore, the
simultaneous calibration of the samples of consecutive survey times facilitates greatly vari-
ance estimation by resampling methods.

Unlike the MR-composite method, the proposed method of composite regression esti-
mation does not require micro-matching of data in the common sample, and therefore is
free of problems of estimation quality associated with it. It is also considerably more prac-
tical than the MR-composite estimation and the traditional AK-composite estimation. The
merits of the proposed estimator are discussed in more detail in the last section.

2. Notation and Preliminaries

We consider the case of a repeated survey with a rotating panel design. Its sample is made
up of a number (say r) of subsamples (“panels”, or “rotation groups”) of equal size, each
one used for r consecutive survey times and then rotated out of the survey and replaced
by a newly selected panel. Each panel is a representative sample of units (e.g., dwellings),
and so can provide a separate estimate by a proper scaling up of its sampling weights. For
any two consecutive survey times there is a partial sample overlap of 100(r−1)/r percent,
defining the “matched sample”. The samples at times t and t − 1 are denoted by st and
st−1, respectively, and the vector of sampling weights at current time t is denoted by wt.

Let y be a vector of q key variables to be used in composite estimation, with vector of
current-time totals ty, and let x be a vector of p auxiliary variables used in calibration, with
vector of current-time known totals tx. Denote then the sample matrix of y, of dimension
nt × q, where nt is the sample size at time t, by Yt partitioned into the unmatched and
matched part of the sample, Yut and Ymt, respectively. Similar is the notation for the
previous survey time t−1. The sample matrix of x, of dimension nt×p, is denoted by Xt.

The current-time Horvitz-Thompson (HT) estimator of the total ty, based on the full
sample, is Ŷt = Y′twt, and X̂t = X′twt is the HT-estimator of tx. The estimator of ty
based on the matched sample is Ŷmt = RY′mtwmt, where R = r/(r − 1) is the inverse
proportion of matched sample size or a weighted version of it, and wmt is the subvector of
sampling weights of units in the matched sample.

The standard calibration of the weights of the current sample st to the population totals
tx generates the vector of calibrated weights

cxt = wt + WtXt(X
′
tWtXt)

−1(tx −X′twt), (1)

where Wt is the diagonal “weighting” matrix with diagonal elements the weights in the
vector wt. Then, the calibration estimator of ty is given by Y′cx, or in the form of (gener-
alized) regression estimator ŶR

t by

ŶR
t = Ŷt + B̂(tx − X̂t), (2)

where B̂ = Y′tWtXt(X
′
tWtXt)

−1 is the matrix of regression coefficients. By the cali-
bration property, X̂R

t = tx. The regression estimator of ty based on the matched sample,
to be used in composite estimation, is

ŶR
mt = Ŷmt + B̂m(tx − X̂t),

where B̂m = RY′mtWmtXmt(X
′
tWtXt)

−1, with the obvious notation for Wmt and
Xmt.
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3. Composite Estimation

3.1 Composite calibration

The proposed composite regression estimation employes an extended calibration scheme
which involves the samples of both current and previous survey times. This scheme is spec-
ified by the augmented regression matrix, the associated calibration totals and the weights
of both samples given, respectively, by

X =

(
Xt Ψt

0 −Ψt−1

)
, t =

(
tx
0

)
, w =

(
wt

w̃t−1

)
, (3)

where w̃t−1 is the vector of composite calibration weights of time t− 1, Ψt = (Y′ut, (1−
R)Y′mt)

′ and Ψt−1 = (Y′ut−1, (1 − R)Y′mt−1)
′. The vector of calibrated weights for the

combined sample st−1 ∪ st is given then by

c = w +WX (X ′WX )−1(t−X ′w), (4)

where W is the weighting matrix diag(Wt,W̃t−1) associated with w, and

X ′w =

(
X′twt

Ψ′wt −Ψ′t−1w̃t−1

)
=

(
X̂t

Ŷt − Ŷmt − (Ŷc
t−1 − Ŷc

mt−1)

)
.

Here Ŷc
t−1 = Y′t−1w̃t−1 and Ŷc

mt−1 = Y′mt−1w̃mt−1 are the full sample and matched
sample composite regression estimates for time t − 1. The vector c = (c′t, c

′
t−1)

′ satisfies
the calibration constraints X ′c = t, i.e., X′tct = tx and Ψ′tct = Ψ′t−1ct−1; the second
constraint means that the differences in full and matched sample estimates from previous
and current time are equated. The first time of employing composite calibration, the es-
timates Ŷc

t−1 and Ŷc
mt−1 are just the regression estimates ŶR

t−1 and ŶR
mt−1 for previous

time.

3.2 Estimates of Levels

Now set Y(t) = (Y′t,0
′)′. Then the extended calibration generates the composite calibra-

tion estimator Y′(t)c = Y′tct of ty, written in composite regression form as

ŶCR
t = Ŷt + B̂

(
t− X̂

)
, (5)

where X̂ = X ′w and B̂ = Y′(t)WX (X ′WX )−1 is the q × (p+ q) matrix of regression
coefficients. This can be decomposed in the standard and additional regression terms as

ŶCR
t = Ŷt + B̂x(tx − X̂t) + B̂c

t

[
Ŷc

t−1 − Ŷc
mt−1 − (Ŷt − Ŷmt)

]
, (6)

where B̂x and B̂c
t are the partial regression coefficients, components of B̂. Clearly, the esti-

mator ŶCR
t is recursive, carrying information from previous surveys to the current survey.

Partitioning the matrix X by the column submatrices in (3) as X = (X,Ψ), the vector
c can be decomposed (Merkouris 2004) as

c = cx + LxΨ
(
Ψ′LxΨ

)−1 (
0−Ψ′cx

)
, (7)

where cx = w + WX(X′WX)−1(tx − X̂t) is the vector of calibrated weights based
on the regression matrix X, so that X′cx = tx, and Lx = W(I − Px), with Px =
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X(X′WX)−1X′W . Note that Ψ′c = 0, this being the partial calibration constraint asso-
ciated with the differences in the last term of (6).

The vector cx can be written analytically as

cx =

(
cxt

cxt−1

)
=

(
wt + WtXt (X

′
tWtXt)

−1
(
tx − X̂t

)
w̃t−1

)
. (8)

Then, with reference to (7), straightforward calculations give

Y′(t)cx = ŶR
t (9)

and
Ψ′cx = ŶR

t − ŶR
mt − (Ŷc

t−1 − Ŷc
mt−1), (10)

where ŶR
t and ŶR

mt are respectively the full sample and matched sample regression esti-
mators defined in Section 2.

Now, using (7) and (8) the composite calibration estimator Y′(t)c can be expressed in
the (alternative to (6)) composite regression form

ŶCR
t = ŶR

t + B̂c
t

(
Ŷc

t−1 − Ŷc
mt−1 − (ŶR

t − ŶR
mt)
)
, (11)

where B̂c
t = Y′(t)LxΨ (Ψ′LxΨ)−1 is the partial regression coefficient in (6). A more

explicit expression of B̂c
t is derived upon noting that

Lx =

(
Lxt 0

0 W̃t−1

)
, (12)

where Lxt = Wt(I − Pxt), and Pxt = Xt(X
′WtXt)

−1X′tWt. It follows then that

B̂c
t = Y′tLxtΨt

(
Ψ′tLxtΨt + Ψ′t−1W̃t−1Ψt−1

)−1
.

Expression (11) of the composite regression estimator ŶCR
t allows a direct compari-

son with the current-time regression estimator ŶR
t , separating the effect of incorporating

previous-time information. We can write (11) alternatively, in a more interpretative form,
as

ŶCR
t = (I− B̂c

t)Ŷ
R
t + B̂c

t

(
Ŷc

t−1 + ŶR
mt − Ŷc

mt−1

)
. (13)

Equation (13) shows that the composite regression estimator ŶCR
t is a linear combina-

tion of the current-time regression estimator and the previous-time composite regression
estimator updated with the change estimator based on the matched sample.

The simultaneous calibration of the two samples results also in an updated estima-
tor for the previous time, incorporating information from current time. Setting Y(t−1) =
(0′,Y′t−1)

′, we obtain the updated calibration estimator Y′(t−1)c in the composite regres-
sion form, similar to (13),

ŶCR
t−1 = (I− B̂c

t−1)Ŷ
c
t−1 + B̂c

t−1

(
ŶR

t −
(
ŶR

mt − Ŷc
mt−1

))
, (14)

where B̂c
t−1 = Y′t−1W̃t−1Ψt−1

(
Ψ′tLxtΨt + Ψ′t−1W̃t−1Ψt−1

)−1
. This shows that the

updated composite regression estimator ŶCR
t−1 is a linear combination of the initial previous-

time composite regression estimator and the current-time regression estimator reduced by
the change estimator based on the matched sample.

It is worth emphasizing that in the simultaneous calibration of the previous and current
time samples that generates the composite estimator, the differences in estimates based on
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full and matched samples from previous and current time (see 11) are calibrated to each
other. This is due to the partial calibration constraint Ψ′c = 0 noted above. Writing
Ψ′c = Ψ′tct −Ψ′t−1ct−1 we easily verify that

Ψ′tct = Ψ′t−1ct−1 = (I− B̂c
d)
(
ŶR

t − ŶR
mt

)
+ B̂c

d

(
Ŷc

t−1 − Ŷc
mt−1

)
, (15)

where B̂c
d = Ψ′tLxtΨt

(
Ψ′tLxtΨt + Ψ′t−1W̃t−1Ψt−1

)−1
. This shows that the calibra-

tion equates both differences ŶR
t − ŶR

mt and Ŷc
t−1 − Ŷc

mt−1 to their combination in (15).
Since Ψ′tct = ŶCR

t − ŶCR
mt and Ψ′t−1ct−1 = ŶCR

t−1 − ŶCR
mt−1, the composite calibration

results in the equality
ŶCR

t − ŶCR
mt = ŶCR

t−1 − ŶCR
mt−1. (16)

3.3 Estimates of Change

It follows from (16) that

ŶCR
t − ŶCR

t−1 = ŶCR
mt − ŶCR

mt−1, (17)

which means that the estimate of change based on the full samples st, st−1 is equal to the
estimate of change based on the matched sample. Interestingly,

ŶCR
t = ŶCR

t−1 + ŶCR
mt − ŶCR

mt−1,

which shows that the composite regression estimate at time t is simply the updated compos-
ite regression estimate at time t− 1 plus the change estimate based on the matched sample
at times t and t− 1.

The change estimate in (17) involves the updated previous-time estimates ŶCR
t−1 and

ŶCR
mt−1. On the other hand, if the initial previous-time estimates Ŷc

t−1 and Ŷc
mt−1 are

used, then it follows easily from (13) that the estimate of change ŶCR
t − Ŷc

t−1 can be
expressed as the combination of full-sample and matched-sample estimates of change

ŶCR
t − Ŷc

t−1 =
(
I− B̂c

t

)(
ŶR

t − Ŷc
t−1

)
+ B̂c

t

(
ŶR

mt − Ŷc
mt−1

)
,

and conveniently obtained as Y′tct −Y′t−1w̃t−1.

3.4 Special Cases of Composite Estimation

Expression (13) gives the composite regression estimator ŶCR
t in multivariate form for all

components of the vector y. It follows easily from (13) that for any of the q components of
y, say yg, the composite regression estimator of its total is

Ŷ CR
gt = (1− β̂cg)Ŷ R

gt + β̂cg

(
Ŷ c
gt−1 + Ŷ R

gmt − Ŷ c
gmt−1

)
+ β̂

c
ḡ

(
Ŷc

ḡt−1 + ŶR
ḡmt − Ŷc

ḡmt−1

) , (18)

where β̂cg is the g-th diagonal element of B̂c
t , β̂

c
ḡ is the g-th row vector of B̂c

t without the g-th
element, and the quantities in the last bracket of (18) are the indicated vector estimators for
the other q−1 components of y. Thus, although the composite estimator Ŷ CR

gt incorporates
all information on yg available in the two overlapping samples, in the manner indicated by
the linear combination in the first two terms of (18), the additional third term suggests
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that Ŷ CR
gt may realize additional efficiency due to correlation of yg with the rest of the

components of y. Of course, Ŷ CR
gt can be conveniently obtained as calibration estimator

Y′g(t)c, where Y′gt is the g-th column of Y′(t).
Let now z be any other single variable, with total tz and current-sample matrix Zt of

dimension nt×1. Setting Z(t) = (Z′t,0
′)′ and using (7) we obtain the composite calibration

estimator Z′(t)c of tz in composite regression form, analogous to (11), as

ẐCR
t = ẐR

t + B̂c
z

(
Ŷc

t−1 − Ŷc
mt−1 − (ŶR

t − ŶR
mt)
)
, (19)

where B̂c
z = Z′(t)LxΨ (Ψ′LxΨ)−1 = Z′tLxtΨt

(
Ψ′tLxtΨt + Ψ′t−1W̃t−1Ψt−1

)
, and

ẐR is the regression estimator of the form (2). It is clear that the efficiency of the composite
regression estimator ẐCR

t relative to the standard regression estimator ẐR
t depends on the

strength of correlation of z with y.

4. Discussion

This section presents a summary of properties and relative merits of the proposed approach
to composite estimation.

The proposed composite estimators for levels and changes derive their efficiency from
the fact that the coefficient B̂c

t incorporates information from both previous-and-current
time samples. Supporting this argument is the observation that the variance minimizing
coefficient in (11) is a function of estimates from both survey times. Note that replacing
in equation (5) the weighting matrix W in B̂ by the estimated variance V̂ar(w) gives the
optimal (asymptotically variance minimizing) coefficient B̂o

= Ĉov(Ŷt, X̂ )[V̂ar(X̂ )]−1,
which clearly is a function of data from both survey times. The regression coefficient B̂ –
and more specifically the partial regression coefficient B̂c

t – as approximation to the optimal
coefficient is also a function of data from both survey times. In contrast, the MR-composite
regression estimator is generated by a calibration in which current-time estimates are cali-
brated to previous-times estimates, the latter being treated as constants in calibration, and
thus the regression coefficient incorporates information from current time only. An empir-
ically chosen tuning constant α ∈ (0, 1), multiplying B̂c

t , could provide a balance between
the improvement of level and change estimates for important variables, by giving more
weight to one of the two terms of (13).

The proposed composite estimation is free of problems with the matching of the sam-
ple between two consecutive times at the individual record level, as required in the MR-
composite estimation. These problems arise when, for a given matched sample, data is
available only for one survey time. This may occur due to nonresponse in either survey
time or when a move or change in scope has taken place between the two consecutive
survey times; see Gambino et. al. (2001). Biases that remain after the treatment of these
problems, and which can be accumulated over time due to the recursive nature of the com-
posite estimator, are avoided in the proposed estimation procedure. The proposed method
is also free of operational complexities of the MR-composite estimation, which include the
extra calibration of past-month data to the current-month population totals, and the cum-
bersome variance estimation by resampling methods due to the random calibration totals;
see Statistics Canada (2017).

The composite regression estimator (11) has the form of the traditional K-composite
estimator, with the time-dependent regression coefficient B̂c

t in place of the coefficient K.
In K-composite and AK-composite estimation, values of A and K that are optimal over time
in the sense of minimum variance of the estimator are empirically chosen for each variable
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of interest. In contrast, the proposed composite estimator, with the time-dependent matrix
coefficient B̂c

t , is multivariate and thus the efficiency of estimation for each of the com-
ponents of y may be enhanced by the correlation with other components, as indicated by
(18). Also unlike AK-composite estimation, in which only the most important estimates are
true composite estimates, the proposed composite calibration generates composite regres-
sion estimates for any variable, as shown in (19). Operationally, unlike the AK-estimation,
where weighting to satisfy known population totals and composite estimation are separate
steps, calibration weighting in the proposed composite regression estimation is done in one
step, i.e., simultaneously with weighting to satisfy the standard calibration constraints.

An extension of the composite regression estimator ŶCR
t , analogous to the extension

of the K-composite to the AK-composite estimator, could involve the additional regression
term Ŷut−Ŷmt in (6), where Ŷut = rY′utwut is the estimate of ty based on the unmatched
(“birth”) panel at time t. This is done by augmenting the matrix X in (3) by the column
(Ψ̄′t,0

′)′, where Ψ̄t = −rΨt, and using the vector of calibration totals (tx′,0′,0′)′. The
extended calibration corresponding to this extended regression estimation will result in
ŶCR

ut = ŶCR
mt , which may help to reduce the birth rotation bias due to the usual difference

of the birth panel from the other panels.
The performance of the proposed composite regression estimator can be assessed through

an extensive empirical study using actual data from a repeated survey with rotating panels
(e.g., data from a Labour Force Survey). This estimator should be evaluated for a number of
survey characteristics using data over a sufficient period of time, and its advantages should
be judged not only on its statistical efficiency but also on its impact on various time series,
with respect to their stability and seasonal adjustment.
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