
A Comparison of Two CHAID Packages for Modeling 
Survey Nonresponse 

Tien-Huan Lin1, Ismael Flores Cervantes1, Carlos Arieira1, Mike Kwanisai1 

1Westat, 1600 Research Blvd., Rockville, MD 20850 

Abstract 
When computing survey weights for use in analysis of complex sample survey data, it is 
common practice to mitigate bias due to unit nonresponse by modeling response propensity 
and adjusting weights to account for different response propensities. The CHAID (Chi-
square Automatic Interactive Detector) algorithm is commonly utilized to produce 
weighting classes for this purpose. We review two popular software packages that 
implement the CHAID algorithm: SI-CHAID and HPSPLIT. SI-CHAID is an interactive 
stand-alone graphical user interface that is easy to manipulate and produces informative 
graphical images of the decision tree but requires manual intervention and additional effort 
to incorporate into a code-based environment. HPSPLIT is a SAS code-based procedure. 
However, manipulation of the tree is less intuitive, and the graphical representation of the 
tree is less informative than SI-CHAID. We empirically evaluate the two packages in terms 
of the resulting empirical bias and variance of the weighted estimates using simulations. 
The simulations account for the complex survey sample design to examine the 
interchangeability of the two software packages so users can determine the software that 
best meets the analysis needs of their studies. 
 
Key Words: Survey weighting adjustments, weighting class, nonresponse, CHAID, SAS, 
HPSPLIT  
 
 

1. Introduction 

In survey research, it is a common practice to attempt to alleviate bias due to unit 
nonresponse by making weighting adjustments to the design weights that account for the 
sampled units’ unequal selection probabilities. When undertaking this task, researchers are 
faced with an array of methods and options to choose from to best adjust for nonresponse 
while minimizing their variance. Brick and Montaquila (2009) discuss several weighting 
methods for nonresponse adjustment. A method that is much utilized in surveys is the 
weighting class adjustment method (Lessler & Kalsbeek, 1992). The weighting classes are 
created either by fitting regression models to predict the response propensity and making 
cutpoints of the estimated propensity or by utilizing terminal nodes of classification or 
regression trees (Lohr, Hsu, & Montaquila, 2015). The nonresponse adjustment uses 
factors computed as the inverse of the weighted response rate in each weighting class 
(Brick & Kalton, 1996). In each weighting class, the nonresponse adjustment factors are 
applied to the survey respondents, consequently shifting the weights of the survey 
nonrespondents appropriately to the respondents, with the aim of reducing the bias from 
nonresponse (Lin et al., 2017).  
 
Over the past few years, researchers have made progress on the nonresponse weighting 
class method based on terminal nodes of classification trees fitted to the observed response 
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status (i.e., respondent and nonrespondent). Toth and Phipps (2014) studied the treatment 
of survey nonresponse by the use of regression trees. In the same year, Loh (2014) studied 
20 or more programs for classification trees and regression trees, reviewing the ideas 
behind these diverse algorithms. Lohr, Hsu, and Montaquila (2015) compared the estimates 
of nonresponse adjusted weights from various classification trees and random forest 
algorithms. Cecere et al. (2020) expanded on Lohr et al. (2015) by including additional tree 
algorithms such as the SAS procedure HPSPLIT to their comparison while simulating a 
mail survey with a simple random sample design. Jones et al. (2021) extended the 2020 
paper to evaluate the effect of the classification-tree-based methods on the reduction of 
nonresponse bias simulating a complex survey sample design featuring a two-stage cluster 
sample.  
 
The weighting class adjustment method models response propensity by identifying 
auxiliary variables correlated with response propensity alone and produces one set of 
nonresponse adjusted weights applicable for all analyses of the survey data. It does not 
utilize survey outcomes in the model fitting. Some researchers have pointed out that 
nonresponse adjustments should take into account both the probability of response and the 
survey outcomes in order to reduce bias while controlling for variance (Little & 
Vartivarian, 2005). Vartivarian and Little (2002), Morral, Gore, and Schell (2014), and Fay 
and Riddles (2017) have applied this approach to include predictions of the actual survey 
outcomes in adjusting for nonresponse, instead of modeling on auxiliary variables alone. 
Lin and Flores Cervantes (2019) compared nonresponse adjusted estimates based on this 
approach to the popularly utilized weighting class approach. They found little benefits in 
including predicted survey outcomes in nonresponse adjustment. 
 
This study builds on the work of Lin and Flores Cervantes (2019) and Jones et al. (2021) 
by targeting two Chi-square Automatic Interactive Detector (CHAID) software packages 
utilized to produce weighting classes for nonresponse adjustment of survey weights. The 
two software packages studied in the paper are SI-CHAID, created by Statistical 
Innovations Inc. (Magidson, 2005), and the SAS procedure HPSPLIT. They are compared 
empirically through a Monte Carlo simulation study in order to evaluate each package’s 
’effectiveness of nonresponse bias reduction and the balance between bias and variance of 
the estimates. Two response mechanisms are assessed: a high response rate and a low 
response rate. Within each response mechanism setting, two nonresponse patterns are 
established: missing at random and not missing at random. A brief discussion of these 
concepts is provided below. 
 
When dealing with unit nonresponse, it is necessary to discuss the potential pattern of 
missingness in the data. Following the terminology proposed by Rubin (1976) and Little 
and Rubin (2002), there are three assumptions of nonresponse: missing completely at 
random (MCAR), missing at random (MAR), and not missing at random (NMAR). The 
simplest and strongest assumption is MCAR, where it is assumed that nonresponse is 
unrelated to any variables in the data. It is the most restrictive assumption and is rarely 
satisfied in practice, and therefore is out of the scope of this simulation study. The most 
common assumption from which modern survey statistics are built upon is the MAR. MAR 
assumes that if covariates are observed for all sampled units, and if missing data occurs 
only in the outcome variable, the probability to respond depends only on the covariates. 
Under this assumption, covariates accessible in the data alone are sufficient in mitigating 
nonresponse bias. The importance of the final assumption, NMAR, has seen a steady 
increase in recent years due to the decline in response rates. Under this assumption, the 
probability to respond depends on unobserved data after conditioning on observed data. In 
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other words, key covariates necessary in reducing nonresponse bias cannot be accessed in 
the survey data. Since the data necessary for adjusting for nonresponse bias is not available, 
the existence and level of nonresponse bias is a natural concern. 
 
The rest of this paper is organized as follows. In Section 2, we describe the CHAID 
algorithm and the two implementations (SI-CHAID and HPSPLIT). Section 3 discusses 
the simulation setup. Section 4 presents the results. We conclude in Section 5 with a 
discussion of the results and thoughts for future research. 
 

2. The CHAID Algorithm and the Implementations 

The Chi-square Automatic Interaction Detector (Kass, 1980), commonly known as 
CHAID, is a decision tree technique, based on adjusted significance testing (Bonferroni). 
Rosenbaum and Rubin (1983) first introduced propensity score methods for analyzing how 
this method can be used to remove or reduce bias due to unit nonresponse. In survey 
research, CHAID is commonly utilized to produce weighting classes to reduce nonresponse 
bias or to identify pools of donors for hot-deck imputations techniques. Using statistical 
algorithms, the decision trees are split into branches, and the end nodes (or terminal cells) 
of the trees form the weighting classes for nonresponse adjustment or donor cells for hot-
deck imputation. This paper focuses on two implementations for nonresponse bias 
adjustment, with details of each implementation provided below. 
 
2.1 SI-CHAID 
SI-CHAID for Windows is a stand-alone program developed by Statistical Innovations 
Inc., specifically for the CHAID analyses. It has been utilized in multiple national or multi-
national large-scale survey research such as the Medical Expenditure Panel Survey and the 
Population-Based HIV Impact Assessment surveys, and its effectiveness in mitigating 
nonresponse bias in survey research has been studied and documented in various 
publications (see for example, Lin et al. 2017). The disadvantage of this implementation is 
the fact that all parameter settings are done manually, including the assignment of variable 
type, which can be labor intensive with large numbers of predictors. 
 
2.2 SAS: HPSPLIT 
The HPSPLIT procedure in SAS/STAT® software (2018) is a generalized classification 
and regression tree package. The procedure offers several options for partitioning criteria; 
three are commonly used. The first criterion maximizes reduction in node impurity as 
measured by the Gini index. The second uses entropy information for classification. The 
third type of criterion is based on a CHAID algorithm, which utilizes chi-square tests to 
partition the data into trees. The processing of this software is automatic, only requiring 
specifying and running the procedure in SAS. However, research on its effectiveness in 
survey nonresponse adjustment is limited and existing literature has not been focused on 
the CHAID algorithm (see, for example, Cecere et al., 2020). 
 
2.3 Features of Each Package 
Variable requirement 
SI-CHAID allows for two types of variables: ordinal (with or without missing data) or 
nominal. The implementation of ordinal variables is a special enhancement of this package 
(Magidson, 2005) that is not available in other CHAID implementations. It is not friendly 
to continuous variables, as there is a limit to the number of categories a variable can contain 
(i.e., 31). If the limit is violated, the package will arbitrarily group the categories into 15 or 
fewer levels.  
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HPSPLIT allows for categorical and continuous variables. However, it does not recognize 
the hierarchical order of ordinal categorical variables. 
 
Missing data 
In SI-CHAID, missing categories are combined with the most similar node in terms of 
percentage of respondents. 
 
Four options are available for the handling of missing data in HPSPLIT: 1) to omit, 2) to 
create an extra branch for missing data, 3) to collapse with the most popular mode, or 4) to 
collapse with the most similar node. To maximize the comparableness between the two 
packages, the last option was applied in the simulation study. 
 
Weights 
When a variable is provided in the “weight” parameter, SI-CHAID implements the 
weighted log-linear modeling (WLM) algorithm by default. The weight variable is treated 
as a sampling weight and can be any positive value. The use of a weight variable provides 
unequal treatment to the observations in a data set, whereby an observation is weighted 
according to the number of population units that it represents in the analysis sample. With 
complex sampling designs, the WLM algorithm should always be employed. 
 
HPSPLIT: The variable in the weight statement is used as a frequency. If this statement is 
not included, all observations will have a weight of one (see version 15.1 of the User’s 
Guide; SAS Institute, 2018). 
 
Pruning 
SI-CHAID uses maximum iterations and epsilon in conjunction with WLM to set the limit 
of iterations. Users can also control the level of branches by specifying the depth of the 
tree and minimum cell size. This implementation allows for users to combine categories of 
a predictor variable in any way that seems appropriate. 
 
Four pruning options are available for classification trees in HPSPLIT. The default pruning 
method is Cost Complexity (Breiman et al., 1984, Quinlan, 1987, Zhang & Singer, 2010). 
Another method is C4.5, which is based on the upper confidence limit for the error rate 
(Quinlan, 1993). A third method is reduced-error pruning (Quinlan, 1987), which is based 
on minimizing the error rate in the validation partition at each pruning step and then in the 
overall subtree sequence. A fourth method is the misclassification pruning, available as 
one of the options in the “by metric” pruning method (SAS/STAT® 12.3 User’s Guide, 
2013). It chooses the leaf that has the smallest change in the misclassification rate.  
 
Outputs 
When processing the analyses in SI-CHAID, results can be displayed simultaneously in 
the form of an intuitive tree diagram, as cross-tabulations, and as a gains chart summary. 
Users can request the displays be output with customized information into a pdf. Users can 
also request SPSS code or C++ code that can be transformed into SAS code to be integrated 
into other programming environments.  
 
HPSPLIT outputs a data set with leaf assignments and predicted values for observations. 
Users can request code and plots to be output as well. The default plot is a high-level tree 
image with limited node information. Additional plots may be requested: option CVCC 
produces cross validation plots (default with cost-complexity pruning); PRUNEUNTIL 
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produces a plot of the metric used to select the final subtree; ROC produces the receiver 
operating characteristic curve; WHOLETREE produces a plot to visualize the entire tree; 
and ZOOMEDTREE produces a plot to visualize a portion of the tree. 
 

3. Simulation 

3.1 Population and Sample Design 
A one-time simple random sample of 200,000 households (excluding group homes) of the 
2013-2017 American Community Survey (ACS) Public Use Microdata Sample File 
(PUMS) was treated as the population for the simulation study. The population frame 
included 43 variables. Of those variables, 39 were household-level characteristics, while 
the remaining 4 were person-level characteristics derived by summarizing to the household 
level the corresponding person-level variables. The 43 predictors included 4 continuous 
variables and 39 categorical variables. The categorical variables were recoded such that the 
smallest category contained at least 5 percent of the households in the population.  
 
From this fixed population, repeated samples were selected with a two-stage stratified 
cluster design, with census region defined as stratum. Within each stratum, primary 
sampling units (PSUs) were formed using public use microdata areas (PUMAs) or 
combined PUMAs with each PSU containing at least 300 households. Twenty-five PSUs 
were sampled from each stratum with probability proportional to size sampling, using 
number of households as the measure of size. Within each sampled PSU, a simple random 
sample of 100 households was selected, summing up to a total of 10,000 households in one 
simulation run. This sample selection is repeated 5,000 times for a single scenario.  
 
Two variables were selected as the outcomes in the simulation study as listed in Table 1. 
The empirical study compared estimates of means and proportions of these outcome 
variables.  
 

Table 1: Outcome Estimates 

Dependent variable Description Type Values 
HINS Indicator flag for all members in the 

household to have health insurance 
coverage. The flag was created and 
summarized from the person-level health 
coverage indicator from the ACS person-
level file). 

Binary 1: yes  
0: no  

HINC Household income for the past 12 months Continuous  
 
3.2 Response Scenarios 
Two response-generating mechanisms were studied in the simulation: a high mechanism 
(Rhigh) averaging a 70 percent response rate, and a low mechanism (Rlow) averaging a 30 
percent response rate; within each response mechanism, the tree models were altered to 
create a MAR nonresponse pattern and a NMAR nonresponse pattern.  
 
The response mechanisms were generated in three steps. In the first step, a binary ACS 
response status (i.e., response vs. nonresponse) was assigned based on a household’s 
survey mode in the ACS PUMS frame. For the high response mechanism, web and mail 
participants were grouped together to create the “response” category and CATI/CAPI 
participants were assigned to the “nonresponse” category. For the low-response 
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mechanism, mail participants were assigned to the “response” category, and web and 
CATI/CAPI participants were grouped together to create the “nonresponse” category. A 
generalized linear model was then fit separately to the two versions of ACS response status 
with all 43 frame variables. The generalized linear model allowed us to identify the 
covariates significant in predicting ACS response status. In the second step, the two 
versions of ACS response status were each fit to a logistic regression using the top six most 
important covariates identified in step 1 along with all potential interactions. Covariates or 
interactions not statistically significant based on the p-value < .05 criteria were removed 
from the logistic regressions until all covariates and interactions were statistically 
significant. In the final step, the two logistic regression models developed in step 2 were 
applied to the entire frame to compute the synthetic high (Rhigh) and low (Rlow) response 
propensities for every sampling unit. The synthetic response propensities generated in this 
process had almost no correlation with design weights; for Rhigh the correlation to design 
weights is -0.04, and for Rlow is -0.03. On the other hand, the synthetic response propensities 
are virtually not correlated with the outcome estimate HINS (health insurance coverage) 
but somewhat highly correlated to the outcome estimate HINC (household income). For 
Rhigh the correlation to HINS was -0.18 and to HINC it was 0.40; for Rlow the correlation 
was -0.05 for HINS and -0.32 for HINC. The different level of correlation between the 
synthetic response propensities, design weights, and outcome estimates will have bearing 
on the interpretation of simulation results.  
 
Table 2 lists the variables from the 2013-2017 ACS PUMS data identified in the three-step 
procedure used to generate the two response mechanisms. 
 

Table 2: Variables Used from ACS PUMS for Response Models 
and Nonresponse Patterns 

Variable name Variable description Rhigh Rlow 
HHHISP At least one person in HH is Hispanic   
HHRACE At least one HH member is not white alone   
INSP Fire, hazard, flood insurance (yearly amount)    

BROADBND Broadband (high-speed) Internet service such as cable, 
fiber optic, or DSL service   

LAPTOP Laptop or desktop   
WATP Hot and cold running water   
HHBACH At least one person in HH graduated from college   

HISPEED Broadband (high-speed) Internet service such as cable, 
fiber optic, or DSL service   

FULP  Fuel cost (yearly cost for fuels other than gas and 
electricity)   

SMARTPHONE Smartphone   

R60 Presence of persons 60 years and over in household 
(unweighted)   

 
To generate the empirical response status, in each repeated sample the empirical 
respondents were drawn using the Poisson sample design, where the selection probability 
was proportional to the synthetic response propensity (Rhigh or Rlow). 
 
Within each response mechanism, the tree models used to predict the empirical response 
propensities were altered to create MAR nonresponse patterns (rmar) and NMAR 
nonresponse patterns (rnmar). The MAR nonresponse patterns were simply created by 
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supplying all 43 frame variables, including the six covariates used to develop the 
underlying response mechanism to the tree models. In contrast, the NMAR nonresponse 
patterns were created by dropping key covariates in the tree models. For rnmar/high, 
BROADBND and LAPTOP, along with variables highly correlated to the two covariates, 
were dropped from the pool of potential predictors available to the tree models. For rnmar/low, 
FULP, SMARTPHONE, and R60 and any variables highly correlated to the three 
covariates were dropped from the pool of potential predictors available to the tree models. 
The covariates to be withheld from tree modeling were determined based on their 
correlation to R. For the high response mechanism, BROADBND and LAPTOP had the 
highest overall absolute correlation to the inverse of Rhigh, with the values being 0.68 and 
0.65, respectively. For the low response mechanism, the correlation to the inverse of Rlow 
were generally low. The highest absolute values were 0.54 and 0.52. However, these 
variables did not appear on the list of top 25 significant covariates described in the first 
step of the response mechanism creation and were not used to develop the underlying 
response mechanism. Within the set of covariates used to develop the response mechanism, 
FULP showed the highest positive correlation to the inverse of Rlow at 0.24, and R60 and 
SMARTPHONE showed the highest negative correlation at -0.30 and -0.29, respectively. 
These three covariates were further corroborated as they presented the largest Wald Chi-
Square values in the logistic regression described in the second step of the response 
mechanism creation. The low correlation observed for Rlow in general could potentially lead 
to unforeseen effects on the simulation. 
 
The four response combinations will be denoted as follows for the remainder of this paper: 
MAR under high response mechanism (rmar/high), NMAR under high response mechanism 
(rnmar/high), MAR under low response mechanism (rmar/low), and NMAR under low response 
mechanism (rnmar/low). 
 
The final component to the response scenarios is the correlation between the covariates 
used to derive the synthetic response mechanisms and the outcomes estimates, as the 
correlation will also have bearing on the interpretation of simulation results. Table 3 
provides this information. For HINS (i.e., household insurance), low correlations are 
observed for all covariates, regardless of response mechanism. For HINC (i.e., household 
income), under Rhigh, two outliers are observed in the two covariates that are dropped to 
create the Rnmar/high nonresponse pattern: BROADBND (i.e, -0.36) and LAPTOP (i.e., -
0.38). The remaining covariates are virtually not correlated or mildly correlated to HINC. 
Under Rlow, the correlation of HINC to the covariates is spread out more evenly compared 
to Rhigh: relatively high levels of absolute correlation can be observed in HHBACH (i.e, -
0.29), HISPEED (i.e., -0.24), and SMARTPHONE (i.e, -0.24). Thus, although 
SMARTPHONE will be dropped to model Rnmar/low, the impact on simulation results will 
be contained. 
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Table 3: Correlation of Covariates to Outcome Estimates 

Variable name HINS HINC 
Rhigh Rlow Rhigh Rlow 

HHHISP -0.18  0.04  
HHRACE -0.11  0.07  
INSP 0.09  -0.11  
BROADBND 0.05  -0.36  
LAPTOP 0.07  -0.38  
WATP -0.03 -0.01 0.21 0.17 
HHBACH  0.10  -0.29 
HISPEED  0.06  -0.24 
FULP   -0.03  0.03 
SMARTPHONE  -0.01  -0.24 
R60  -0.13  -0.03 

 
3.3 Tree Models 
Tree models were fit separately to the four sets of 5,000 repeated samples, one set for each 
response mechanism/nonresponse pattern combination, with either the entire collection of 
43 frame variables or the restricted set of variables to predict empirical response 
propensities using the two CHAID software packages discussed in Section 2. Each 
software package contains unique sets of parameters to control for tree fitting. Special 
effort was made to apply global settings among the two packages to minimize subjective 
differences in result evaluation.  
 
SI-CHAID 
The following parameters were set to equal for all trees: 
 
• Mingrp: the minimum number of observations in a terminal node was set to 50.  
• Depth: the maximum level a tree could be grown was set to 5. 
• Iteripf: 100000. (maximum iterations for the WLM method) 
• Epsipf: 0.000001. (epsilon limit for the WLM method) 
• Prune: no pruning was implemented beyond the default settings. 
 
The following factors were varied: 
 
• Weight: weight = 1 for all observations or weight = design weight. 
 
All other parameters were set to their default values.  
 
SAS HPSPLIT 
The following parameters were set equal for all trees: 
 
• Minleafsize: the minimum number of observations in a terminal node was set to 50.  
• Maxdepth: the maximum level a tree could be grown was set to 5. 
 
The following factors were varied: 
 
• Weight: weight = 1 for all observations or weight = design weight. 
• Prune: misclassification (n <= 100) or reduced error (metric = MISC).  
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All other parameters were set to their default values.  
 
The fitted empirical response propensity models were then used to compute weighting 
classes and nonresponse adjustment factors to adjust for design weights.  
 

4. Simulation Results 

In this section, we assess the simulation results with three measures. The first two measures 
include a comparison of the number of weighting classes produced by each tree model and 
an examination of the set of variables selected by each tree model for the creation of the 
weighting classes. These two measures are an indication of the homogeneity/heterogeneity 
of the trees produced by each tree model. The third measure assesses the empirical 
nonresponse bias and variance by computing the final weighted estimates of mean or 
proportions adjusted for unbalanced sample selection and nonresponse for the two outcome 
estimates discussed above and comparing against the true values from the population.  
 
4.1 Number of Weighting Classes 
Figure 1 shows the number of weighting classes produced by each tree model among 5,000 
repeated samples, separately for the four simulation scenarios. Statistics provided in the 
table include the lowest, highest, and median number of weighting classes created by each 
tree model. 
 

  

Figure 1: Number of Weighting Classes Produced by Each Tree Model 
 
Overall, the SI-CHAID model produced more weighting classes than the HPSPLIT models 
regardless of simulation scenario, with the median number of weighting classes around 30-
35. Between the two HPSPLIT models, the composition of weighting classes by the 
misclassification pruning method was closer to the SI-CHAID model, with the median 
number of weighting classes around 20-30, while the composition of weighting classes by 
the reduced error pruning method appeared drastically different from the misclassification 
method as well as SI-CHAID, with the median number of weighting classes around 10. 
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Among response mechanisms, all three tree models seemed to produce slightly more 
classes with the low response mechanism. Within response mechanism, nonresponse 
patterns appeared to have minimal impact on the number of weighting classes produced by 
each tree model. Not much difference was observed between the unweighted vs. weighted 
trees for all three models.  
 
4.2 Variables Identified to Be Predictive of Response Propensity 
Figure 2 and Figure 3 summarize the top 20 variables identified to be predictive of response 
propensity by the three tree models over 5,000 repeated samples. Figure 2 provides the 
summary of the percent of times each of the 20 variables used from ACS PUMS to create 
Rhigh (i.e., Table 2) were selected in 5,000 repeated samples, separately for rmar/high and 
rnmar/high, and Figure 3 provides the equivalent for rmar/low and rnmar/low. 
 
SI-CHAID is generally consistent and effective in identifying the correct set of covariates 
predictive of response propensity. In the rmar/high setting, both the unweighted and weighted 
trees selected all six covariates used to create the underlying response mechanism, and only 
the six covariates, almost 100 percent of the time. In the rnmar/high setting, both sets of SI-
CHAID trees accurately identified the four covariates available for modeling 100 percent 
of the time (BROADBND and LAPTOP were not supplied to the tree modeling). The same 
observations can be made for the rmar/low and rnmar/low settings. All six covariate were chosen 
100 percent of the time except for FULP under the rmar/low setting, and under the rnmar/low 
setting the three covariates available for tree modeling were chosen almost 100 percent of 
the time. The consistency in findings between rhigh and rlow suggests that SI-CHAID 
performs consistently under different response rates. 
 

 

 

Figure 2: Variable Selection for High Response Mechanism 
 

ST 

ST 
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Figure 3: Variable Selection for Low Response Mechanism 
 
HPSPLIT:misclassification appeared to be slightly less effective and contained more 
inconsistencies compared to SI-CHAID. Under the rmar/high setting, for both the unweighted 
and weighted trees only four covariates were selected over 90 percent of the time among 
5,000 repeated samples. The covariates LAPTOP and BROADBND were selected at 
relatively low rates. Interestingly, ST (state abbreviation) was selected almost 100 percent 
of the time for both the unweighted and weighted trees. This variable contains the most 
number of categories among class variables and is virtually not correlated to response 
propensity (i.e., -0.04 for the high response rate setting). The rnmar/high setting seemed to 
inadvertently reduce noise for the tree model, with all covariates being selected at 100 
percent, along with the variable ST. Results under the rlow settings were even less effective 
than the rhigh settings: all covariates were selected at lower rates for both rmar/low and rnmar/low, 
and two covariates (i.e., SMARTPHONE and R60) were never selected under rmar/low. Once 
again, ST was selected at an extremely high rate even though it is virtually not correlated 
to response propensity (i.e., -0.02), for both rmar/low and rnmar/low. 
 
HPSPLIT:reduced error was the least effective among the three tree models in identifying 
the covariates used to generate the response mechanisms. Similar to 
HPSPLIT:misclassification, SMARTPHONE and R60 were ignored under rmar/low, noise 
was inadvertently reduced with rnmar, and ST was selected at high rates in most settings.  
 
4.3 Empirical Bias and Variance 
In this section, we compare the estimates from each tree model in terms of bias and mean 
square error. 
 

ST 

ST 
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Ultimately, any nonresponse adjustment is a balancing act between bias and variance. The 
evaluation tools used in this section are relative bias and relative root mean squared error, 
with relative bias defined as 
 
 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐵𝐵𝑅𝑅𝑅𝑅𝐵𝐵:𝑅𝑅𝐵𝐵�𝑌𝑌�𝐸𝐸�% = 100 × 𝐵𝐵−1 ∑ 𝑌𝑌�𝐸𝐸,𝑏𝑏−𝑌𝑌

𝑌𝑌
𝐵𝐵
𝑏𝑏=1 , 

and relative root mean squared error (RRMSE) defined as 
 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑅𝑅𝑆𝑆 𝐸𝐸𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆:𝑅𝑅𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = �𝑀𝑀𝑀𝑀𝐸𝐸(𝑌𝑌�𝐸𝐸)
𝑌𝑌2

 , 

where 𝑀𝑀𝑆𝑆𝐸𝐸�𝑌𝑌�𝐸𝐸� = ∑ (𝑌𝑌�𝐸𝐸,𝑏𝑏−𝑌𝑌)2𝐵𝐵
𝑏𝑏=1

𝐵𝐵
. 

 
Table 4 and 5 show the RB(ŶE)% and RRMSE for the nonresponse adjusted estimates of 
HINS and HINC, respectively, for each of the tree models. The two tables also include the 
Horvitz-Thompson (HT) estimator,  which is computed as the baseweighted estimate of all 
sampled units and the baseweighted estimate of respondents (RESP). The former should 
be unbiased according to the theory, which can be confirmed for both outcome estimates 
as RB(ŶE)% ≤ .01 in all settings. The latter provides an indication of the level of empirical 
nonresponse bias: under rhigh, RB(ŶE)% = 9.71 for HINS and RB(ŶE)% = 14.73 for HINC, 
and under rlow, RB(ŶE)% = 5.84 for HINS and RB(ŶE)% = 8.85 for HINC. 
 

Table 4: Household Insurance (HINS) 

 rmar/high rnmar/high rmar/low rnmar/low 
Estimates RB(ŶE) 

(%) 
RRMSE 

(%) 
RB(ŶE) 

(%) 
RRMSE 

(%) 
RB(ŶE) 

(%) 
RRMSE 

(%) 
RB(ŶE) 

(%) 
RRMSE 

(%) 
HT 0.01 <0.01 0.01 <0.01 0.02 <0.01 0.02 <0.01 

RESP 9.71 0.01 9.71 0.01 5.84 0.01 5.84 0.01 

SI-CHAID 
(u) 

0.38 0.93 0.42 0.93 -0.04 1.12 0.86 1.40 

SI-CHAID 
(w) 

0.38 0.93 0.42 0.93 -0.04 1.12 0.86 1.40 

HPSPLIT: 
MISC (u) 

0.56 1.07 0.56 1.07 0.09 1.24 0.85 1.46 

HPSPLIT: 
MISC (w) 

0.60 1.09 0.54 1.05 0.15 1.25 0.90 1.50 

HPSPLIT: 
R.ERROR 
(u) 

0.80 1.21 0.61 1.03 0.26 1.51 2.12 2.51 

HPSPLIT: 
R.ERROR 
(w) 

0.77 1.18 0.61 1.03 0.41 1.59 2.11 2.50 
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Table 5: Household Income (HINC) 

 rmar/high rnmar/high rmar/low rnmar/low 
Estimates RB(ŶE) 

(%) 
RRMSE 

(%) 
RB(ŶE) 

(%) 
RRMSE 

(%) 
RB(ŶE) 

(%) 
RRMSE 

(%) 
RB(ŶE) 

(%) 
RRMSE 

(%) 
HT 0.01 2.51 0.01 2.51 0.01 2.51 0.01 2.51 
RESP 14.73 14.84 14.73 14.84 -8.85 9.29 -8.85 9.29 
SI-CHAID 
(u) 0.54 2.66 2.34 3.48 -0.60 3.34 -1.11 3.45 
SI-CHAID 
(w) 0.54 2.66 2.34 3.49 -0.60 3.34 -1.11 3.45 
HPSPLIT: 
MISC (u) 0.95 2.81 2.91 3.93 -1.52 3.71 -1.85 3.82 
HPSPLIT: 
MISC (w) 0.98 2.80 2.87 3.89 -1.40 3.68 -1.78 3.79 
HPSPLIT: 
R.ERROR 
(u) 1.38 3.02 3.23 4.14 -2.79 4.37 -1.83 3.89 
HPSPLIT: 
R.ERROR 
(w) 1.34 3.00 3.22 4.13 -2.61 4.23 -1.81 3.89 

 
Overall, all three tree models appeared to be successful in reducing empirical nonresponse 
bias and minimal empirical differences were observed between unweighted tree models vs. 
weighted tree models. More detailed evaluation of empirical nonresponse bias examines if 
the absolute relative bias for each estimate follows two patterns, as stated by the literature: 
1) the absolute relative bias under rmar should be close to those of HT (in other words, 
unbiased); and 2) the absolute relative bias under rnmar should be somewhat higher than 
those of rmar, but should show improvement from the values by RESP.  
 
1. The absolute relative bias under rmar should be unbiased. This can be observed for 

SI-CHAID, with .04 ≤ absolute RB(ŶE)% ≤ .60. It can be observed in some, but not 
all, settings of HPSPLIT: misclassification, with.09 ≤ absolute RB(ŶE)% ≤ 1.52; the 
higher bias tends to occur with the HINC estimates. More departure from this pattern 
can be observed for HPSPLIT: reduced error. The absolute RB(ŶE)% for HINS 
estimates are within the range of .26 to .80, which are higher than those observed for 
SI-CHAID and HPSPLIT: classification but still within reasonable range. However, 
the absolute RB(ŶE)% for HINC estimates are all above 1.0, and can be as high as 
2.79. 

2. The absolute relative bias under rnmar should be somewhat higher than those of rmar, 
but should show improvement from the values by RESP. The former part of this 
statement, ““the absolute relative bias under rnmar should be somewhat higher than 
those of rmar”,” can be largely observed for SI-CHAID and HPSPLIT: 
misclassification. For SI-CHAID, the absolute RB(ŶE)% of rmar vs. rnmar for HINS 
were .38 vs. .42 for the high response mechanism and .04 vs. .86 for the low response 
mechanism. For HINC, the rates were .54 vs. 2.34 for the high response mechanism 
and .60 vs. 1.11 for the low response mechanism. The equivalent numbers for 
HPSPLIT: misclassifications were HINS|rhigh: ~.60 vs. ~.60, HINS|rlow: ~.10 vs. ~.90, 
HINC|rhigh: ~1.0 vs. ~2.9, and HINC|rlow: ~1.50 vs. ~1.8. Inconsistent patterns were 
observed for HSPLIT: reduced error. The trend of HINS|rlow and HINC|rhigh was in 
agreement with the expectation, with the rates for rmar vs. rnmar being ~0.3 vs. ~2.1 for 
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HINS|rlow and ~1.4 vs. ~3.2 for HINC|rhigh. On the contrary, the trend of HINS|rhigh 
and HINC|rlow was in violation of the expectation. The rates for rmar vs. rnmar were 
~0.8 vs. ~0.6 for HINS|rhigh and ~2.7 vs. ~1.8 for HINC|rlow. In terms of the latter part 
of the statement, “should show improvement from the values by RESP,” all three tree 
models were successful. For HINS|rhigh, over 8 percent of bias was removed (i.e., 
9.71% vs. <1.0%) for all tree models regardless of nonresponse pattern. For 
HINS|rlow, over 4 percent of bias was removed (i.e., 5.84 vs. <1.0) regardless of 
nonresponse pattern except for HPSPLIT: reduced error, rnmar/low where the bias 
reduction was approximately 3.7 percent (i.e., 5.84% vs. 2.1%). For HINC|rhigh, the 
bias reduction ranged from 13.4 to 14.2 percent depending on the tree model under 
the missing at random nonresponse pattern and from 11.5 to 12.4 percent under the 
not missing at random nonresponse pattern. For HINC|rlow, the bias reduction ranged 
from 6.0 to 8.2 percent depending on the tree model under the missing at random 
nonresponse pattern and from 7.0 to 7.7 percent under the not missing at random 
nonresponse pattern.  

 
Another evaluation that could be of potential interest is the impact of response rate on the 
three tree models. All three tree models presented similar reactions to the impact of 
response rate; however, inconsistent patterns were observed among the nonresponse 
patterns and outcome estimates.  
 
For HINS, all tree models presented the pattern of rmar/high > rmar/low and rnmar/high < rnmar/low 
in absolute RB(ŶE)%. Contrarily, for HINC, for all tree models the pattern was rmar/high < 
rmar/low and rnmar/high > rnmar/low. The interpretation of results can be convoluted since the 
response mechanisms are confounded by the correlation between outcome estimates and 
key covariates. In Section 3 we provided the correlation between the response mechanisms 
and outcome estimates: the correlation of HINS|Rhigh is -0.18 and HINC|Rhigh is 0.40; the 
correlation of HINS|Rlow is -0.05 and HINC|Rlow is -0.32. Table 3 also provided the 
correlation between the outcome estimates to key covariates. Since HINS has an extremely 
low correlation to Rlow, and since one of the key variables for rlow (i.e., R60) can potentially 
be used for indirect modeling of HINS, it is reasonable that the RB(ŶE)% of rmar/low suggests 
virtually no bias. In the rnmar/low setting, however, since R60 is dropped from modeling, it 
is reasonable that the values of RB(ŶE)% are higher than the rmar/low counterparts.  
 
Correlation can also help explain the slightly higher bias observed in rmar/high. Since HINS 
has a higher correlation to Rhigh, it is not unreasonable to assume the key covariates 
available for modeling cannot fully predict for HINC. On the other hand, since the two key 
covariates dropped for rnmar/high modeling (i.e., BROADBND and LAPTOP) are virtually 
not correlated to HINS, it is within expectation that not much change in bias is observed. 
The same analysis can be performed on HINC. HINC has a much higher correlation to both 
Rhigh and Rlow; thus, it is expected that the relationship to key covariates would have a 
stronger impact on bias outcomes. Under rhigh, the two key covariates highly correlated to 
HINC were not available for modeling of rnmar/high, and therefore the relatively highest 
increase in bias; under rlow, the correlation to HINC was spread among three key covariates: 
HHBACH, HISPEED, and SMARTPHONE, and therefore although SMARTPHONE was 
removed for rnmar/low modeling, the impact to bias outcome was limited. 
 
With regard to empirical variance, the RRMSE for HINS were generally lower than HINC 
given that HINS is a binary estimate whereas HINC is a continuous estimate. For both 
HINS and HINC, and under all response mechanism and nonresponse pattern settings, SI-
CHAID appeared to produce the lowest RRMSE, followed by HPSPLIT: misclassification, 
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followed by HPSPLIT: reduced error. The only exception is with HINS, rnmar/high, where 
HPSPLIT: misclassification produced RRMSE values that were marginally higher than 
HPSLIT: reduced error. 
 
In conclusion, SI-CHAID and HPSPLIT: misclassification appeared to be closely in 
agreement with the literature and showed great effectiveness in mitigating empirical 
nonresponse bias while limiting empirical variance. HPSPLIT: reduced error was 
successful in reducing empirical nonresponse bias, though to a slightly lesser degree 
compared to SI-CHAID and HPSPLIT: misclassification. HPSPLIT: reduced error was 
also slightly less effective in limiting empirical variance and occasionally departed from 
the literature in showing moderate biased estimates with rmar as well as inconsistent patterns 
of bias reduction between rmar and rnmar. 
 

5. Discussion 

Using the 2013-2017 ACS PUMS data as a pseudo-population, we investigated the use of 
two implementations of the CHAID algorithm: SI-CHAID and the SAS procedure 
HPSPLIT. For HPSPLIT, we included two pruning methods: misclassification and reduced 
error. Our simulation selected repeated samples drawn from a fixed population with a two-
stage stratified cluster design with census region serving as the sampling strata; PSUs (i.e., 
PUMAs or combination of PUMAs) were selected at the first stage, and addresses (i.e., 
households) were selected at the second stage. We synthetically generated two response 
mechanisms, a high response rate and a low response rate, and with each response 
mechanism we generated a “missing at random” nonresponse pattern and a “not missing at 
random” nonresponse pattern. Using the ACS PUMS as our fixed population and 
generating synthetic response mechanisms allowed us to compare between estimates and 
true population values, and to isolate potential causes for discrepancy.  
 
Our results showed minimal differences for bias and RMSE for the two outcome variables 
chosen for the simulation study; SI-CHAID may be the most effective in reducing 
nonresponse bias and restricting the amount of variance associated with bias mitigation, 
followed by HPSPLIT: misclassification, but the differences were not statistically 
significant. However, the composition of trees generated by each tree model was quite 
different. SI-CHAID had an extremely high accuracy rate in identifying the covariates used 
to create the underlying response mechanisms and also produced the most number of 
weighting classes. HPSPLIT: misclassification produced comparable results to SI-CHAID, 
with a slightly lower accuracy rate in variable identification. HPSPLIT: reduced error 
produced the least desirable results of the three options. 
 
Not much difference was observed between the unweighted and weighted tree models. 
Although Lohr et al. (2015) suggest that design weights do not provide a benefit when 
modeling response propensity, we suspect that the lack of improvement from weighted tree 
models is due to the ignorable nature of our design weights. A further step would be to test 
these tree models with a sample design that allows for non-ignorable design weights. 
 
Another limitation to our simulation study is the interpretation of comparison between 
response mechanisms being confounded by the correlation of response propensity to 
outcome estimates and correlation of key covariates. A different response mechanism 
designed would be needed to allow for direct response rate comparison. 
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