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Abstract
Multiple imputation has become one of the standard methods in drawing inferences in many in-

complete data applications. Applications of multiple imputation in relatively more complex settings
such as high-dimensional clustered data require specialized methods to overcome the computational
burden. Using mixed-effects models , we develop methods that can be applied to continuous, binary,
or categorical incomplete data. We overcome the computational burden by employing variational
Bayesian inference for sampling the posterior predictive distribution missing data. These methods
specifically target high-dimensional covariates and work with spike-and-slab priors, which force
the variables of importance to be in the imputation model. The individual regression computation is
then incorporated in an increasingly popular variable-by-variable imputation algorithm. Finally, we
use calibration-based algorithms to adopt these methods to multiply-impute categorical variables.
We present a simulation study to assess the performance of these methods in a repetitive sampling
framework.

Key Words: Clustered data, missing data, variational inference, multiple imputation,
sequential hierarchical regression imputation, calibration-based imputation, spike-and-slab
variable selection

1. Introduction

Missing data is typically seen as norma rather than exception in a wide range of areas rang-
ing from survey data analysis to signal processing, compressed sensing (Candès and Recht,
2009, Candes and Tao, 2010, Candes and Plan, 2010, Gross, 2011), collaborative filter-
ing, and recommendation systems (Koren et al., 2009). For example, in the Netflix Prize
competition, some movies which are not rated can be treated as missing. The participants
must predict grades on the entire qualifying set with the scores for half of the data. The
missing data problems also occur in the computer experiments and biomedical applications
because of equipment limitations (Bayarri et al., 2007). The analysis of numerous missing
data problems have been attracting an increasing attention.

To deal with missing data, statisticians have relied many imputation methods. How-
ever, a recurring problem of imputation is the impact on the statistical uncertainty. Mul-
tiple imputation (MI) aims to solve this aspect of imputation. A sensible strategy of MI
is to sample missing data from their underlying distribution, and by doing so, statisticians
hope to account for the uncertainty inherent to missing values in contrast to a single im-
putation (Rubin, 1987). The MI strategy is usually implemented within a fully Bayesian
model, which additionally incorporates the uncertainty in the unknown parameters. And
computational aspects are typically based on Markov Chain Monte Carlo techniques.

In this work, we are particularly interested in the problem of variable selection in linear
mixed-effect models in the presence of missing responses. Classically, variable selection in
general linear models was addressed by certain information-criterion-based model selection
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approaches, such as Akaike information criterion (AIC) (Akaike, 1974) and Bayesian in-
formation criterion (BIC) (Schwarz, 1978). These model selection approaches suffers from
computation inefficiency, which is exponential in the number of variables. The computa-
tion bottleneck of variable selection for linear models was successfully tackled by LASSO
(Tibshirani, 1996) and its variants (Zou, 2006, Zou and Hastie, 2005) through a collection
of seminal convex optimization approach.

These methods are frequentist by their nature and are not user-friendly from the per-
spective of missing data and MI. To address this issue, Li and Yucel (2020) proposed to ap-
ply the spike-and-slab prior for variable selection in the context of a fully Bayesian model,
such that simulation-based MI can be performed through sampling the posterior predictive
distribution of the missing responses. Theoretical properties of the spike-and-slab prior for
standard linear regression model with high dimensionality has been explored in Castillo
et al. (2015). However, as is commented in Castillo et al. (2015), high-dimensional vari-
able selection problems are out of scope of fully Bayesian models at the present time due to
the need to explore the entire space of all possible models is exponential in the number of
variables. This problem becomes particularly challenging when MCMC is implemented.

The main purpose of this work is to propose a computational efficient method that can
deal with high-dimensional variable selection problem in the linear mixed-effect model
and MI of missing responses. This is completed by an optimization-based approximate
inference method, referred to as the variational inference (Bishop, 2006). In contrast
to MCMC methods, which are simulation-based inference algorithms, and the resulting
Markov chains could be time-consuming to converge or exhibits poor mixing behavior,
variational inference is a collection of approximate Bayesian inference methods that are for-
mulated as a mathematical optimization problem. Specifically, we develop a computational-
efficient variational inference algorithm for approximate inference of high-dimensional lin-
ear mixed-effect model, which can be applied for MI of missing responses. In particular,
we combine the proposed variational inference method for variable selection with various
MI method, including the sequential hierarchical regression imputation (SHRIMP) (Yucel
et al., 2017) for continous data, and the calibration-based imputation (Yucel et al., 2008,
2011) for binary and ordinal data. The advantage of the proposed method is that it addresses
the computation bottleneck of variable selection problem in Bayesian models through ap-
proximate inference and also allows a collection of MI approaches that deal with missing
data.

The rest of this working paper is arranged as follows. In Section 2, we first briefly
review the high-dimensional linear mixed-effect model with missing responses, and then
elaborate on the Bayesian model with the spike-and-slab prior. In Section 3, we develop the
proposed variational inference algorithm with the spike-and-slab prior for variable selection
in the presence of missing responses. This section is the core of the entire work. Section 4
demonstrates how the variational inference algorithm serves as a building block that can be
embedded for different MI methods for missing responses, including the sequential hierar-
chical regression imputation method for continuous data and the calibration-based routine
for categorical data. The usefulness of the proposed methodology is empirically presented
in Section 5 through the analyses of simulated examples. We conclude the work with a
discussion in Section 6.

2. High-Dimensional Linear Mixed-effect Model with Missing Responses

Let us consider a linear mixed-effects model with random intercept only for continuous
response variable yij , which has also been considered in Yucel et al. (2017):

yij = xT
ijβ + ZT

ijbi + εij , i = 1, . . . ,m, j = 1, . . . , n, (1)
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where β ∈ Rp is the fixed-effect, b1, . . . ,bm
i.i.d.∼ N(0,Ψ) are the random effects, and

ε11, . . . , εmn
i.i.d.∼ N(0, σ2e) are the errors. The responses yij’s are either observed or missing, but the
missing portion can be imputed via the last cycle of the sequantial hierarchical regression
imputation (SHRIMP) strategy, as is suggested in Yucel et al. (2017). Finally, xij ∈ Rp’s
are the individual-level covariates that can also be either observed or missing, and the miss-
ing portion can be imputed using some other imputation method.

In this work we consider the scenario where the number of covariates p is compara-
ble or even larger than the sample size. The fixed-effect regression coefficient vector β
is assumed to be sparse, namely, the number of non-zero coordinates of β is compara-
bly smaller than the sample size. Consequently, the number of active covariates, namely,
those coordinates of xij’s corresponding the non-zero coordinates of β, is also significantly
smaller than the sample size presumably. The inference focus here is to “recover” the miss-
ing portion of the missing responses yij’s (i.e., multiple imputation with the appropriate
uncertainty) but also to account for the variable selection structure due to the sparsity of
β and recover the variable selection structure. Leveraging a fully Bayesian model, in Li
and Yucel (2020), the authors developed a Gibbs sampler to draw posterior samples from
the joint distribution of (β,b1, . . . ,bm, σbi , σe), as well as to draw samples of the missing
data y,is from the corresponding posterior predictive distribution. To select the variables
among xij1, . . . , xijp, a spike-and-slab prior distribution is assigned to the regression co-
efficient β, and this spike-and-slab variable selection approach has been broadly applied
to Bayesian variable selection. When we have to deal with the high dimensional model
where the dimension p of the regression coefficient vector β is comparable or significantly
larger than m or n, the variable selction process in the Markov Chain Monte Carlo can be
extremely slow because the algorithm requires randomly searching the model space with
2p probabilities. In what follows we develop an optimization-based variational inference
for variable selection in the presence of missing data.

2.1 Background on variational inference

We first briefly review the generic variational inference method, also referred to as vari-
ational Bayes. For a detailed description, we refer the readers to Chapter 10 of Bishop
(2006). It is a family of approximate Bayesian inference methods that differ from classical
simulation-based Bayesian inference method (e.g., MCMC or approximate Bayesian com-
putation). Compared with Markov Chain Monte Carlo samplers, the variational inference is
formulated as a mathematical optimization problem and is comparably faster than MCMC.

Specialized to the linear mixed-effect model of interest, the variational inference begins
with a fully Bayesian model by specifying appropriate prior distributions of the model
parameters. Since the linear mixed-effect model has the mixed-effect coefficient z1, . . . , zm
and the missing portion of the responses (denoted by Y(mis) generically) as latent variables
in addition to the model parameters (denoted by Θ generically), the posterior inference also
takes the latent variables into account and we shall denote the set of all latent variables and
parameters by Φ. Meanwhile we denote the set of all observed variables by Y(obs), and

Φ = {Y(mis),β,b1, . . . ,bn, τ,Ψ,V, ν, w, γ, σe, σ0, µ0}.

We first specificy the complete Bayesian model through the prior distribution p(Θ), and
our goal is to find a distribution q(Φ) as an approximation for the posterior distribution
p(Φ | Y). The distribution q is referred to as the variational distribution. To begin with, we
first observe the following decomposition of the log marginal distribution of the observed
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responses ln p(Y(obs)):
ln p(Y(obs)) = L(q) + KL(q‖p)

where L(q) is referred to as the evidence lower bound (ELBO) that can be written as

L(q) =

∫
q(Φ) ln

{
p(Y,Φ)

q(Φ)

}
dΦ,

and KL(q‖p) is the Kullback-Leibler (KL) divergence between the the variational distribu-
tion q and the posterior distribution p(Φ | Y(obs)) of Φ given Y(obs):

KL(q‖p) = −
∫
q(Φ) ln

{
p(Y,Φ)

q(Φ)

}
dΦ.

To obtain an approximation q for the posterior distribution, a reasonable choice is to mini-
mize the Kullback-Leibler divergence KL(q‖p), and this in turn is equivalent to maximize
the ELBO L(q).

2.2 Bayesian linear mixed-effect model with a spike-and-slab prior

To lay the foundation of the variational inference in the context of the linear mixed-effect
model with missing responses, we first specify the fully Bayesian model by assigning a
hiearchical prior distribution to Θ. First note that there are 9 sets of latent latent variables
in total:

{Y(obs),β,B, σ
2
e ,Ψ, µ0, σ

2
0, w, γ},

where B = [b1, . . . ,bm] ∈ Rl×m. Denote I(mis) = {(i, j) : yij is NA, i = 1, . . . ,m, j =
1, . . . , n} the set of indices (i, j) corresponding to Y(mis) and I(obs) the indices corre-
sponding to Y(obs). The sampling model of the complete data (Y(obs),Y(mis),B) can be
described as

p(Y(obs),Y(mis),Z | Θ) = p(Y(obs) | B,Θ)p(Y(mis) | B,Θ)p(B | Θ),

p(Y(obs) | B) =
∏

(i,j)∈I(obs)

p(yij | β,bi, σ2e),

p(Y(mis) | B) =
∏

(i,j)∈I(mis)

p(yij | β,bi, σ2e),

p(B | Ψ) =
n∏
i=1

p(bi | Ψ).

(2)

For each i = 1, . . . ,m and j = 1, . . . , n, we have

p(yij | β,bi, σ2e) = N(yij | xT
ijβ + zTijbi, σ

2
e) =

1√
2πσ2e

exp

{
−

(yij − xT
ijβ − zTijbi)

2

2σ2e

}

p(bi|Ψ) = N(bi | 0,Ψ) =
m∏
i=1

1

(
√

2π)l|Ψ|
1
2

exp

(
−1

2
bT
i Ψ−1bi

)
.

The key to enforce sparsity in the fixed-effect regression coefficient vector β lies in the
spike-and-slab prior distribution (Castillo et al., 2012, 2015). Specifically, for each coordi-
nate βk, k = 1, . . . , p, the spike-and-slab distribution allows βk to take zero with a strictly
positive probability w, and with probability 1−w, βk is generated from an absolutely con-
tinuous distribution supported on R (here we specifically take the continuous component
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to be a normal). Formally, given the zero selection probability w, an auxiliary component
assignment variable γk is generated from Bernoulli(1− w). The auxiliary variable γk has
the following interpretation: if γk = 0, then we set βk = 0, and if γk = 1, then we draw βk
from the continuous component of the spike-and-slab distribution. The prior samples each
coordinate β1, . . . , βp independently given the selection probability w. Consequently, the
conditional prior of β given w can be described as follows:

p(β|γk, µ0, σ20)dβ =

p∏
k=1

{N(βk|µ0, σ20)dβk}γk{δ0dβk}1−γk

=

p∏
k=1

[
1√

2πσ20
exp

{
− 1

2σ20
(βk − µ0)2

}
dβk

]γk
[δ0dβk]

1−γk ,

p(γk|w) =

p∏
k=1

wγk(1− w)1−γk ,

(3)

where (µ0, σ
2
0) are the hyperparameters. The complete hierarchical prior distribution is

completed by assigning the following hyperprior distributions to the hyperparameters as
well as σ2e for the sake of conjugacy:

p(w) = Beta(w | aw, bw) ∝ waw−1(1− w)bw−1,

p(σ2e) = IG(σ2e | a1, b1) =
ba11

Γ(a1)

(
1

σ2e

)a1+1

exp

{
− b1
σ2e

}
,

p(µ) = N(µ | 0, 1) =
1√
2π
e−µ

2/2,

p(σ20) = IG(σ20 | 1, 1) =

(
1

σ20

)2

exp

{
− 1

σ20

}
,

p(Ψ−1) =W(Ψ−1 | ν,V−1) ∝ |Ψ−1|
ν−l−1

2 exp

{
−1

2
tr(Ψ−1V−1)

}
.

(4)

Then the entire hierarchical Bayesian model is completed by the distributions (2), (3), and
(4).

3. Variational Inference With a Spike-and-Slab Prior

Leveraging the hierarchical Bayesian model in Section 2.2, in this section, we are now in
a position to describe the framework of variational inference in the context of the linear
mixed-effect model with missing responses. We follow the commonly-adopted mean-field
approximation assumption and set the variational distributions in the following factorized
form (Bishop, 2006):

q(Φ) = q(Y(mis))q(β, γ)q(B)q(σ2e)q(Ψ)q(µ0)q(σ
2
0)q(w). (5)

Here, γ = [γ1, . . . , γp]
T is the p-dimensional auxiliary variable that specify the sparsity of

β in the spike-and-slab distribution setup. Note, however, that the mathematical optimiza-
tion problem

max
q
L{q(Φ)} subject to q(Φ) satisfies constraint (5)

is an infinite-dimensional optimization problem because constraint (5) is still an infinite-
dimensional statistical manifold. Although an easy-to-implement coordinate-ascent vari-
ational algorithm can be obtained when the likelihood is in the exponential family form
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as suggested by Bishop (2006), our case brings additional computational bottleneck as we
introduce the spike-and-slab prior (3) for β with singularity. Alternatively, it is also rea-
sonable to posit certain parametric form of the variational distributions q such that (5) can
be further reduced to a finite-dimensional statistical manifold (see, for example, Blei et al.,
2003). Hence, we further assume the following parametric form of the variational distribu-
tions for the sake of conjugacy:

q(Y(mis) | (µ̂yij , σ̂2yij )(i,j)∈I(mis)
) =

∏
(i,j)∈I(mis)

N(yij | µ̂yij , σ̂2yij ),

q(β, γ | (θk, µ̂βk , σ̂
2
βk

)pk=1)dβ =

p∏
k=1

{
θkN(βk | µ̂βk , σ̂

2
βk

)dβk
}γk {(1− θk)δ0dβk}1−γk ,

q(B | µ̂b1 , Ψ̂1, . . . , µ̂bm , Ψ̂m) =

m∏
i=1

N(bi | µ̂bi , Ψ̂bi),

q(σ2e | âσ2
e
, b̂σ2

e
) = IG(σ2e | âσ2

e
, b̂σ2

e
),

q(Ψ−1 | Ψ̂)dΨ−1 = δ
Ψ̂−1(dΨ−1),

q(µ0 | µ̂µ0 , σ̂2µ0) = N(µ0 | µ̂µ0 , σ̂2µ0),

q(σ20 | âσ2
0
, b̂σ2

0
) = IG(σ20 | âσ2

0
, b̂σ2

0
),

q(w | âw, b̂w) = Beta(w | âw, b̂w) =
wâw−1(1− w)b̂w−1

B(âw, b̂w)
.

(6)

Note that we could use a Wishart variational distribution to approximate the posterior of the
precision matrix Ψ−1 for the random effect coefficient b1, . . . ,bm. Here we use a Dirac
point mass at Ψ̂−1 to indicate that a point estimator for Ψ is taken, and the resulting solution
is a maximum a posteriori estimator for Ψ. We also remark that the set of parameters

Ξ :=
{

(µ̂yij , σ̂
2
yij )i,j∈I(mis)

, (θk, µ̂βk , σ̂
2
βk

)pk=1, (µ̂bi , Ψ̂bi)
m
i=1,

(âσ2
e
, b̂σ2

e
), (âσ2

e
, b̂σ2

e
), Ψ̂, (µ̂µ0 , σ̂

2
µ0), (âw, b̂w)

}
.

are the variables to be learned by optimizing the objective function L(q). The the varia-
tional inference is implemented by iteratively maximizing the objective function L(q) with
respect to the variational parameters Ξ. Below, we present the complete variational infer-
ence algorithm. The detailed derivation is deferred to Appendix.

� Input:
Response matrix Y ∈ Rm×n (with potentially missing entries)

Fixed effect covariate tensor X = [xijk]m×n×p

Random effect covariate tensor Z = [zijt]m×n×l

1. Step 1: Randomly initialize the variational parameters

Ξ :=
{

(µ̂yij , σ̂
2
yij )i,j∈I(mis)

, (θk, µ̂βk , σ̂
2
βk

)pk=1, (µ̂bi , Ψ̂bi)
m
i=1,

(âσ2
e
, b̂σ2

e
), (âσ2

e
, b̂σ2

e
), Ψ̂, (µ̂µ0 , σ̂

2
µ0), (âw, b̂w)

}
.

and compute the following matrices related to the fixed-effect covariate tensor X:

D1(X) =
m∑
i=1

n∑
j=1

xijx
T
ij , D2(X) =

m∑
i=1

n∑
j=1

diag(x2ij1, . . . , x
2
ijp).
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2. Step 2: Loop until the objective function Ω converges:

• Update Ψ̂ by maximizing Ω with respect to Ψ̂: This yields

Ψ̂←− 1

(m+ ν − l − 1)

{
m∑
i=1

(µ̂biµ̂
T
bi

+ Ψ̂bi) + V−1

}

• Update µ̂yij , σ̂
2
yij for all (i, j) ∈ I(mis) using the following formula:

µ̂ij ←−
p∑

k=1

xijkθkµ̂βk + zTijµ̂bi , σ̂2yij ←−
âσ2

e

b̂σ2
e

.

• Update (θk, µ̂βk , σ̂
2
βk

) for all k = 1, . . . , p. This step is the major computation
bottleneck of the entire algorithm and we seek an updating rule that can be
vectorized. For all i = 1, . . . ,m and j = 1, . . . , n, we set

ŷij ←−

{
yij , if (i, j) /∈ I(mis),

µ̂yij , if (i, j) ∈ I(mis),
,

〈y2ij〉q ←−

{
y2ij , if (i, j) /∈ I(mis),

µ̂2yij + σ̂2yij , if (i, j) ∈ I(mis).

Set

v←−
m∑
i=1

n∑
j=1

xij(ŷij − zTijµ̂bi).

Next, we consider vectorized updating formula for θ, µ̂β, σ̂
2
β, where θ =

[θ1, . . . , θp]
T, µ̂β = [µ̂β1 , . . . , µ̂βp ]

T, and σ̂2
β = [σ̂2β1 , . . . , σ̂

2
βp

]T. Denote
1p = [1, . . . , 1]T ∈ Rp. For any function f : D ⊂ R → R, we denote f(x)
generically as the entrywise application of f to the elements of x, namely,
f([x1, . . . , xp]

T) := [f(x1), . . . , f(xp)]
T. Denote x1 ◦ x2 as the entrywise

product between two vector x1,x2 of the same dimension, and x1/x2 as the
entrywise ratio between x1 and x2. Finally, we use ψ(·) to denote the digamma
function ψ(x) = (d/dx) ln[Γ(x)], where Γ(·) is the Gamma function. Then θ
can be obtained by first computing the update for logit(θ):

logit(θ)←−
[
ψ(âw)− ψ(̂bw) +

1

2
ψ(âσ2

0
)− 1

2
ln(̂bσ2

0
)

]
1p +

1

2
ln(σ̂2

β) +
1

2
1p

− 1

2

(
âσ2

0

b̂σ2
0

)
[(µ̂βk − µ̂µ01p) ◦ (µ̂βk − µ̂µ01p) + σ̂2µ01p + σ̂2

β]

+ µ̂2
β ◦

(
1

σ̂2
β

)
−

(
âσ2

0

b̂σ2
0

)
µ̂βµ̂µ0 −

(
âσ2

0

b̂σ2
0

)
µ̂2
β

− 1

2

(
âσ2

e

b̂σ2
e

)
m∑
i=1

n∑
j=1

xij ◦ xij ◦ (µ̂β ◦ µ̂β + σ2
β).

Then θ can be directly obtained by taking θ ←− logit−1(logit(θ)). Set

Θ = diag(θ1, . . . , θp).
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We then compute the updates for µ̂β and σ̂2
β:

σ̂2
β ←−

 âσ2
e

b̂σ2
e

m∑
i=1

n∑
j=1

xij ◦ xij +
âσ2

0

b̂σ2
0

1p

−1 ,
µ̂β ←−

[(
âσ2

e

b̂σ2
e

)
D1(X)Θ +

(
âσ2

e

b̂σ2
e

)
D2(X)(Ip −Θ) +

âσ2
0

b̂σ2
0

Ip

]−1

×

(
âσ2

e

b̂σ2
e

v +
âσ2

0

b̂σ2
0

µ̂µ01p

)
.

Note that the above vectorized updating rules can be easily implemented in R,
MATLAB, or Python.

• Update (µ̂bi , Ψ̂bi) for all i = 1, . . . ,m:

µ̂bi ←− Ψ̂bi

 âσ2
e

b̂σ2
e

n∑
j=1

(ŷij − xT
ijβ)zij

 ,
Ψ̂bi ←−

 âσ2
e

b̂σ2
e

n∑
j=1

zijz
T
ij + Ψ̂−1

−1 .
• Update (âσ2

e
, b̂σ2

e
), (âσ2

0
, b̂σ2

0
), (âw, b̂w), (µ̂µ0 , σ̂

2
µ0):

SSR←−
m∑
i=1

n∑
j=1

〈y2ij〉q + zTij(µ̂biµ̂
T
bi

+ Ψ̂bi)zij +

(
p∑

k=1

xijkθkµ̂βk

)2


+
m∑
i=1

n∑
j=1

{
p∑

k=1

x2ijk[θk(1− θk)µ̂2βk + θkσ̂
2
βk

]

}

− 2
m∑
i=1

n∑
j=1

ŷij

(
p∑

k=1

xijkθkµ̂βk + zTijµ̂bi

)

+ 2
m∑
i=1

n∑
j=1

µ̂T
bi

zij

(
p∑

k=1

xijkθkµ̂βk

)
,

âσ2
e
←− a1 +

mn

2
, b̂σ2

e
←− b1 +

1

2
SSR,

âσ2
0
←− 1 +

1

2

p∑
k=1

θk, b̂σ2
0
←− 1 +

1

2

p∑
k=1

θk[(µ̂µ0 − µ̂βk)2 + σ̂2µ0 + σ̂2βk ],

âw = aw +

p∑
k=1

θk, b̂w = bw +

p∑
k=1

(1− θk)

σ̂2µ0 ←−

(
1 +

âσ2
0

b̂σ2
0

p∑
k=1

θk

)−1
, µ̂µ0 ←− σ̂2µ0

âσ2
0

b̂σ2
0

p∑
k=1

θkµ̂βk .

3. Step 3: Output variational parameters{
(µ̂yij , σ̂

2
yij )i,j∈I(mis)

, (θk, µ̂βk , σ̂
2
βk

)pk=1, (µ̂bi , Ψ̂bi)
m
i=1,

(âσ2
e
, b̂σ2

e
), (âσ2

e
, b̂σ2

e
), Ψ̂, (µ̂µ0 , σ̂

2
µ0), (âw, b̂w)

}
.
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4. Application in Multiple Imputation of Missing Data

In this section, we discuss the application of the variational inference algorithm developed
in Section 3 to mulitiple imputation of missing data. Although in Section 2 the response
variable yij’s are necessarily continuous and the sampling model of interest posits a linear
mixed-effect model with Gaussian noise, we will see next that the variational inference
algorithm is also valid even if the sampling model is misspecified. For example, in Section
4.2, the response variable is categorical but we can still apply a misspecified linear mixed-
effect model for variational inference. In this case, a calibration-based method due to Yucel
et al. (2008) and Yucel et al. (2011) can be applied improve the multiple imputation method
based on rounding continuous imputation method.

4.1 Sequential hierarchical regression imputation for continuous data

We first consider the case where the responses yij’s are continuous. Recall that the linear
mixed-effect model (1) assumes that the noise εij’s are Gaussian. Therefore, the responses
in the sampling model (1) is necessarily continuous, so that the variational inference algo-
rithm developed in Section 3 are directly applicable. Note, however, that the inference task
in Section 3 was to compute an approximation to the exact posterior distribution, referred to
as the variational distribution, by solving a mathematical optimization problem. In contrast,
the focus here is on the multiple imputation of the missing portion Y(mis) of the response
matrix Y. The two goals can be simultaneously accomplished when the MCMC is applied
for posterior computation. In an MCMC sampler, posterior samples of the model parame-
ters Θ are drawn from a Markov chain that converges to the exact posterior distribution of
Θ given Y(obs), whereas posterior predictive samples of the Y(mis) serves as the imputed
values of the missing portion of Y. In what follows, we slightly explore the strategy for
imputation of Y(mis) using the output of the variational inference algorithm in Section 3.

We follow the sequential hierarchical regression imputation (SHRIMP) strategy devel-
oped in Yucel et al. (2017), which has also been applied in Li and Yucel (2020). The basic
idea is that the response variables yij’s are sorted by columns according to the missing ratio.
The left-most column of Y after sorting has the least number of missing values, whereas
the right-most column of Y after sorting has the most number of missing values. Formally,
for a column j ∈ {1, . . . , n}, we define the missing ratio as the percentage of missingness:

R
(mis)
j :=

1

m

m∑
i=1

1(yij is NA).

Then SHRIMP relables the column indices [n] = {1, 2, . . . , n} as {j1, . . . , jn} such that
R

(mis)
jr

≤ R
(mis)
jr+1

for all r = 1, 2, . . . , n − 1. Namely, the ratio of the missing percentage
of a column in Y is always no greater than that of the next column after sorting. Then for
each fixed i, SHRIMP sequentially impute missing values of yij from j = j1 to j = jn.

Below, we outline the step-by-step procedure for imputation of Y(mis) using the output
of the variational inference algorithm.

� Input:

Response matrix Y ∈ Rm×n (with potentially missing entries)

Fixed effect covariate tensor X = [xijk]m×n×p

Random effect covariate tensor Z = [zijt]m×n×l

Number of MIs M ∈ N+
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1. Step 1: Run variational inference. Call the variational inference algorithm in Sec-
tion 3 to obtain the variational parameters{

(µ̂yij , σ̂
2
yij )i,j∈I(mis)

, (θk, µ̂βk , σ̂
2
βk

)pk=1, (µ̂bi , Ψ̂bi)
m
i=1,

(âσ2
e
, b̂σ2

e
), (âσ2

e
, b̂σ2

e
), Ψ̂, (µ̂µ0 , σ̂

2
µ0), (âw, b̂w)

}
.

2. Step 2: Sort column indices. For each column j = 1, . . . , n, compute the percent-
age of missingness

R
(mis)
j :=

1

m

m∑
i=1

1(yij is NA).

Order the column indices {1, 2, . . . , n} of the response matrix Y such that the sorted
indices {j1, . . . , jn} satisfy R(mis)

jr
≤ R(mis)

jr+1
for all r = 1, . . . , n− 1.

3. Step 3: Draw missing values. For t = 1, . . . ,M : Sample

(σ2e)
(t) ∼ IG(âσ2

e
, b̂σ2

e
),

β
(t)
k ∼ θkN(µ̂

(t)
βk
, (σ̂2βk)(t)) + (1− θ(t)k )δ0, k = 1, . . . , p.

For i = 1, . . . ,m, sample

bi ∼ N(µ̂bi , Ψ̂bi);

For r = 1, . . . , n: If (i, j) ∈ I(mis), sample

y
(t)
ijr
∼ N(xT

ijrβ
(t) + zTijrbi, (σ

2
e)

(t)).

End For

End for

Set Ỹ(t) = [ỹ
(t)
ij ]m×n, where

ỹ
(t)
ij =

{
yij , if (i, j) /∈ I(mis),

y
(t)
ij , if (i, j) ∈ I(mis)

4. Step 4: Output
Ỹ(1), . . . , Ỹ(M).

4.2 Calibration-based imputation for categorical data

We now turn to the case where the response variable yij’s are categorical. According to the
aforementioned linear mixed-effect model (1) with Gaussian noise εij’s, the response ma-
trix Y consists of continuous data. Here we adopt a technique, referred to as the calibration-
based imputation method (Yucel et al., 2008, 2011), that allows for the model misspecifica-
tion when the specified model is designed for continuous data but the actual data is categor-
ical. The technique is a quite general imputation method for missing categorical data. The
basic requirement is that there exists a surrogate imputation model p(YC) that generates
continuous data such that the categorical data Y can be viewed as a discretized version of
the continuous data YC generated from the surrogate imputation model p(YC).

The key idea of the calibration-based imputation method can be loosely stated as fol-
lows. We generate two copies YC ,Y(dup),C using an imputation method based on the
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continuous surrogate model p(YC). Let Y(obs),C , Y(mis),C be the portion of YC cor-
responding to the observed or missing locations of Y(obs) or Y(mis) in Y, respectively,
and we define Y(obs,dup),C and Y(mis,dup),C for Y(dup),C similarly. Suppose the number
of total categories in Y is G and the categories are labeled as g = 1, 2, . . . , G. Then
the calibration-based imputation method proposes to compute a sequence of cut-off values
−∞ = c0, c1, . . . , cg−1 that can be determined as follows. For each (i, j) pair correspond-
ing to an observed yij , we let y(dup)ij = g if the (i, j)th element of Y(obs,dup),C lies in the
interval (cg−1, cg]. The cut-off values c1, . . . , cg−1 are selected such that for each category
g = 1, . . . , G, ∑

(i,j)∈I(obs)

1{y(dup)ij = g} =
∑

(i,j)∈I(obs)

1{yij = g}.

In other words, the proportions of different categories after applying the cut-off values
c0, c1, . . . , cg−1 to Y(obs,dup),C matches with the proportions of different categories in
Y(obs). These cut-off values can be computed explicitly using quantiles of Y(obs,dup),C .

We now describe the outline of the calibration-based imputation method using the out-
put of the variational inference algorithm developed in Section 3.

� Input:

Categorical response matrix Y ∈ Rm×n (with potentially missing entries)

Fixed effect covariate tensor X = [xijk]m×n×p

Random effect covariate tensor Z = [zijt]m×n×l

Number of MIs M ∈ N+

1. Step 1: Run variational inference. Call the variational inference algorithm in Sec-
tion 3 to obtain the variational parameters{

(µ̂yij , σ̂
2
yij )i,j∈I(mis)

, (θk, µ̂βk , σ̂
2
βk

)pk=1, (µ̂bi , Ψ̂bi)
m
i=1,

(âσ2
e
, b̂σ2

e
), (âσ2

e
, b̂σ2

e
), Ψ̂, (µ̂µ0 , σ̂

2
µ0), (âw, b̂w)

}
.

2. Step 2: Generate imputed data for missing responses.

For t = 1, . . . ,M :

Sample

(σ2e)
(t) ∼ IG(âσ2

e
, b̂σ2

e
),

β
(t)
k ∼ θkN(µ̂

(t)
βk
, (σ̂2βk)(t)) + (1− θ(t)k )δ0, k = 1, . . . , p.

For i = 1, . . . ,m, sample

bi ∼ N(µ̂bi , Ψ̂bi);

For j = 1, . . . , n: sample

(y
(dup),C
ij )(t) ∼ N(xT

ijβ
(t) + zTijbi, (σ

2
e)

(t)),

(yCij)
(t) ∼ N(xT

ijβ
(t) + zTijbi, (σ

2
e)

(t)).

End for

End for
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For each g = 1, 2, . . . , G− 1, compute

s(t)g =
1

|I(obs)|
∑

(i,j)∈I(obs)

1{yij ≤ g}.

Compute the s(t)g -sample quantile c(t)g of {y(t)(dup),C(i, j) : (i, j) /∈ I(mis)} such that

s(t)g =
1

|I(obs)|
∑

(i,j)∈I(obs)

1{(y(dup),Cij )(t) ≤ c(t)g }, g = 1, . . . , G− 1.

Set c(t)0 = −∞ and c(t)G = +∞. Set the tth imputed complete data to be Ỹ(t) =

[ỹ
(t)
ij ], where

ỹ
(t)
ij =

{
yij , if (i, j) /∈ I(mis),

g, if (i, j) ∈ I(mis) and (yCij)
(t) ∈ (c

(t)
g−1, c

(t)
g ].

3. Step 3: Output
Ỹ(1), . . . , Ỹ(M)

5. Numerical examples

5.1 Continuous data example

We first consider a well-specified example with continuous responses. The generative
model for the synthetic data is the same as (1):

yij = xT
ijβ + zTijbi + εij , εij

i.i.d.∼ N(0, σ2e), bi
i.i.d.∼ N(0l,Ψ),

where i = 1, . . . ,m, j = 1, . . . , n. We set m = 50, n = 20, p = 100, and l = 3. The
coordinates of the fixed-effect covariates xij’s are independently generated from N(0, 32)
for all i, j, and the coordinates of the random-effect covariances zij’s are independently
drawn from N(0, 1) for all i, j. The fixed-effect regression coefficient β is assumed to
have a weakly sparse structure. We adopt the “three-peak curve”example constructed in
Johnstone and Lu (2009) and set the coordinates of β = [β1, . . . , βp]

T ∈ Rp as follows:

βk =
0.7

20
Beta (k/p | 1500, 3000) +

0.5

20
Beta(k/p | 1200, 900)

+
0.5

20
Beta(k/p | 600, 160),

where Beta(t | a, b) is the density of the Beta(a, b) distribution evaluated at t ∈ [0, 1].
Figure 1 below visualizes the true values of βj as a function of j = 1, . . . , p, from which we
can see that a significant portion of the coordinates of β are rather close to 0, whereas only
several coordinates are bounded away from 0. The covariance matrix Ψ for the random
effect is set to be the 3× 3 identity matrix.

The response matrix Y ∈ Rm×n is contaminated by missing values. We consider the
missing at random mechanism, meaning that the distribution of the missingness depends
on the observed variables but not the missing values. To this end, we generate a collection
of binary random variables Γ = [γij ]m×n to assign missing values to Y. Specifically, we
take

γij ∼ Bernoulli(pij), wherelogit(pij) = αR + βmisxij1.
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Figure 1: True value of β = [β1, . . . , βp] in Section 5.1.

Here the parameters αR and βmis are tunned such that the overall missing percentage of Y
is approximately 27%, i.e., (1/mn)

∑m
i=1

∑n
j=1 γij ≈ 0.27. We then set yij to be NA if

γij = 1, and maintain the orignal value of yij if γij = 0.
The inference tasks here is two fold: Parameter estimation and multiple imputation. We

first focus on the performance of the parameter estimation for the fixed-effect regression
coefficient β in the presence of the potential missing values in the response matrix Y. To
this end, we implement the proposed variational inference algorithm in Section 3, together
with the classical lasso method (Tibshirani, 1996) implemented in the glmnet package,
and the pan package (Zhao and Schafer, 2013) for comparison. The entire experiment
is repeated for 1000 Monte Carlo replicates. For each replicate of the synthetic dataset,
we compute three types of estimation error for the estimate β̂ obtained from the three
methods: The 2-norm error ‖β̂−β‖2 = [

∑
k(β̂k−βk)2]1/2, the 1-norm error ‖β̂−β‖1 =∑

k |β̂k−βk|, and the infinity-norm error ‖β̂−β‖∞ = maxk |β̂k−βk|. Here β̂ represents a
generic estimate for β. For the variational inference method, β̂ is taken to be the variational
posterior mean; For the pan package, we take β̂ to be the posterior mean. Below, Figure
2 visualizes the boxplots of the three types of the estimation errors across the 1000 Monte
Carlo replicates for the three methods. We can see that in terms of the 2-norm errors and
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Figure 2: The boxplots of the 2-norm errors, the 1-norm errors, and the infinity-norm errors
for estimating β using the variational inference method, the lasso, and the pan package,
for the simulated example in Section 5.1.

the 1-norm errors, the variational posterior mean is significantly smaller than the other two
competitors. In terms of the infinity-norm errors, the variational posterior mean is slightly
better than the pan package, and both are also significantly better than the lasso estimate.
We also remark that both the variational inference method and the pan package provide
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natural environments for dealing with missing responses and are able to perform multiple
imputation. This part of the analysis demonstrates that advantage of the proposed method
in terms of the parameter estimation in the presence of missing responses and sparsity.
In addition, we also provide the visualization of the point estimates using the variational
inference method, the lasso, and the pan package in a randomly selected replicate in Figure
3 below. From the perspective of a single synthetic dataset, the performance of the lasso is
similar to the variational inference method, but the panpackage provides a worse estimate
because the sparsity structure of β is not captured.
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Figure 3: Visualization of the estimation for β using the variational inference method, the
lasso, and the pan package, for the simulated example in Section 5.1.

We next investigate the performance of the multiple imputation strategy elaborated on
Section 4.1. In preparation for doing so, we develop another layer of the conditional model
using the response matrix Y as the covariate. Specifically, we consider the following (con-
ditional) linear mixed-effect model:

uij = θ0 + θ1yij + vi + eij , v1, . . . , vm
i.i.d.∼ N(0, 1), eij

i.i.d.∼ N(0, 0.32),

i = 1, . . . ,m, j = 1, . . . , n, where we set the fixed-effect coefficient as θ0 = −2 and
θ1 = 4. Here, the matrix Y contains missing values but the response variable uij are
generated using the complete data before Y is contaminated by NA’s. The aforementioned
1000 Monte Carlo replicates are applied here to generate the corresponding second layer
responses uij’s, i = 1, . . . ,m, j = 1, . . . , n. For the imputation methods, we implement
the proposed SHRIMP strategy in Section 4.1, together with the pan package, for com-
parison. The number of imputation is set to M = 5. As the focus here is to evaluate the
performance of the multiple imputation methods, we choose to use the plain-vanilla lm
function in R to perform the regression analysis for θ0 and θ1. After obtaining the estimates
for θ0 and θ1 using the lm function in R, we apply the Rubin’s rule for combined analysis
(Rubin, 1987). Figure 4 below demonstrates the boxplots of the point estimates for θ0 and
θ1 based on the variational Bayes multiple imputation (VBMI) method developed in Sec-
tion 4.1, and the pan package imputation estimates. We can see that in terms of the point
estimates, the two methods provide similar peformance. Furthermore, Figure 5 presents the
widths of the confidence interval for θ0 and θ1 computed using the Rubin’s combined anal-
ysis across the 1000 Monte Carlo replicates. The performance here is also similar, with the
pan package producing some slightly wider confidence intervals. However, the key dif-
ference between the two methods is in the coverage probability of the confidence interval,
which are tabulated in Table 1 below. The covarage probabilities are comparatively smaller
than the nominal coverage probability 95% due to the model misspecification. Still, the
VBMI method outperforms the pan package with higher coverage probabilities for both
θ0 and θ1, demonstrating the power of the proposed method.
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Figure 4: Visualization of the boxplots of θ0 and θ1 using the variational Bayes multiple
imputation (VBMI) method and the pan package, for the simulated example in Section
5.1.
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Figure 5: Visualization of the boxplots of the confidence interval widths for θ0 and θ1
using the variational Bayes multiple imputation (VBMI) method and the pan package, for
the simulated example in Section 5.1.

Table 1: Coverage probability of the confidence intervals for θ0 and θ1 using the varia-
tional Bayes multiple imputation (VBMI) method and the pan package, for the simulated
example in Section 5.1.

θj VBMI coverage probability pan coverage probability
θ0 86.6% 82.9%
θ1 89.6% 75.3%
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5.2 Categorical data example

We next consider examples with categorical responses. Unlike the setup in Section 5.1,
the sampling model (1) is doomed to be misspecified because the responses yij’s are nec-
essarily continuous. Nevertheless, the misspecified model (1) is still valid as a continuous
approximation to the underlying categorical model, and can be particularly useful for mul-
tiple imputation when combined with the calibration-based routine, as discussed in Section
4.2. Specialized to the synthetic data analysis in this section, we consider the following two
simulation setups:

• Setup 1: Binary responses. The generative model of the synthetic data is a logistic
mixed-effect model:

yij ∼ Bernoulli(pij), logit(yij) = xT
ijβ + zTijbi, b1, . . . ,bm

i.i.d.∼ Nl(0l,Ψ),

where i = 1, . . . ,m, j = 1, . . . , n, m = 50, n = 20, p = 100, l = 3, and
Ψ = Il. We follow the setup in Section 5.1 and generate the coordinates of xij from
N(0, 32) and the coordinates of zij from N(0, 1), independently. The fixed-effect
regression coefficient β is generated as follows: We first generate the coordinates
of α = [α1, . . . , α10]

T independently from N(0, 0.12), and then set βk = αk/‖α‖2
with k = 1, . . . , 10, and βk = 0 for k = 11, . . . , p = 100.

• Setup 2: Categorical responses with 5 categories. The generative model of the
synthetic data is a multiclass logistic mixed-effect model:

P(yij = s | β1, . . . ,βK ,B) =
exp(xT

ijβs + zTijbi)∑K
t=1 exp(xT

ijβt + zTijbi)
,

where i = 1, . . . ,m, j = 1, . . . , n, K = 5 is the number of categories, m = 50,
n = 20, p = 100, l = 3, and Ψ = Il. The setup here is similar to Setup 1
above: The coordinates of xij are generated from N(0, 32) and the coordinates of zij
are simulated from N(0, 1), independently. The fixed-effect regression coefficients
βs = [βs1, . . . , βsp]

T for s = 1, . . . ,K are set similar to the β in Setup 1 above: We
first draw the coordinates of αs = [αs1, . . . , αs,10]

T independently from N(0, 0.12),
and then set βsk = αsk/‖αs‖2 with k = 1, . . . , 10, and βsk = 0 for k = 11, . . . , p =
100. The generative process is repeated independently for each s = 1, 2, 3, 4, 5.

For the two simulation setups above, the response matrix Y is also contaminated by missing
values, where the distribution of the missingness is the missing at random (MAR). Specif-
ically, missingness mechanism is set the same as in Section 5.1 to ensure that the overall
missing percentage of the response matrix Y is approximately 27%. The entire experiment
for each setup above is repeated for 1000 Monte Carlo replicates.

As the generative model of the synthetic data differs from the working model (1) em-
ployed here (i.e., model misspecification), we turn our focus to the performance of the
multiple imputation methods rather than the parameter estimation. To this end, we follow
the idea in Section 5.1 and use the response matrix Y as the covariate to construct a second
layer linear model. Specifically, given Y, we consider

u = Yθ + e, e ∼ Nm(0m, 5
2Im). (7)

Here, the second layer response variable u = [u1, . . . , um]T is generated from the complete
data Y, but the observable Y is contaminated by the missing values. The regression coef-
ficient θ is gnerated from Nn(0n, 5

2In). We then apply the aforementioned 1000 Monte
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Carlo replicates for Y to further generate the second layer model (7). Since the observed
second layer covariate matrix Y contains missing values and the generative model for Y
can be approximated by the continuous working model (1), we apply the imputation method
elaborated on Section 4.2. For comparison, we consider the pan package and the rounding
to the nearest integer strategy based on pan package adopted in Yucel et al. (2011). The
number of imputation datasets is set as M = 5, followed by the Rubin’s combined analysis
for inference on θ.

Below, Figure 6 and Figure 7 present the boxplots of the 2-norm errors, the 1-norm er-
rors, and the infinity-norm errors for estimating θ using different imputation methods under
setup 1 and setup 2, respectively. It is clear that estimation error using the VBMI method
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Figure 6: The boxplots of the 2-norm errors, the 1-norm errors, and the infinity-norm errors
for estimating θ using the VBMI method, the rounding strategy, and the pan package, for
the simulated example (setup 1) in Section 5.2.

is significantly smaller than the other two competitors in both setups for all three types of
errors. Furthermore, Figure 8 and Figure 9 visualize the empirical coverage probabilities of
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Figure 7: The boxplots of the 2-norm errors, the 1-norm errors, and the infinity-norm errors
for estimating θ using the VBMI method, the rounding strategy, and the pan package, for
the simulated example (setup 2) in Section 5.2.

the confidence intervals across the 1000 Monte Carlo replicates using the three imputation
methods for setup 1 and setup 2, respectively. We can see that the coverage probabilities
of the confidence intervals using the proposed VBMI method is consistent and satisfactory
in comparison with the other two competitors. In particular, the pan package the round-
ing strategy is rather inconsistent and produces confidence intervals that are not reliable
because the coverage probabilities are significantly lower than the nominal coverage 95%.
Therefore, through empirical demonstration via the analyses of synthetic datasets, we show
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Figure 8: Coverage probabilities of the confidence intervals for θ using the variational
Bayes multiple imputation (VBMI) method, the pan package, and the rounding strategy,
for the simulated example (setup 1) in Section 5.2.

that the proposed VBMI method is powerful and robust in terms of the imputation for cat-
egorical responses even when the model is misspecified.
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Figure 9: Coverage probabilities of the confidence intervals for θ using the variational
Bayes multiple imputation (VBMI) method, the pan package, and the rounding strategy,
for the simulated example (setup 2) in Section 5.2.

6. Discussion

In this work, we developed a variational inference method for approximate Bayesian in-
ference of the high-dimensional linear mixed-effect model in the presence of missing re-
sponses. The sparsity structure of the regression coefficient vector can be modeled by a
spike-and-slab prior on the coordinates of the regression coefficient. The computation al-
gorithm is easy-to-implement, efficient, and can be faster than the classical Markov chain
Monte Carlo samplers because of the vectorized updating formula for β, circumventing
the need to explore the entire model selection space with exponential possibilities. The
variational inference method can be further incorporated with the sequential hierarchical
regression imputation strategy for continuous data and the calibration-based imputation
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strategy for categorical data to improve the performance of imputing missing values, which
is quite flexible and powerful.

There are, however, some future extensions. The linear mixed-effect model only serves
as a continuous approximation to the categorical model, and this step of the approximation
can be rather sloppy in high-dimensions. The underlying reasons is that the categorical
model could be potentially highly nonlinear and the working model (1) may not be rich
enough to capture the nonlinearity happening inside the categorical model. It would be in-
teresting to further expand the model structure of (1) by considering a nonparametric com-
ponent, so that it can provides a better approximation to the black-box categorical data in
practice. This step can be further optimized by coping with the variational inference algo-
rithm, so that an easy-to-implement, computationally efficient, and sufficient sophisticated
methodology can be developed to deal with the complex missing data scheme happening
in the contemporary statistics world. We defer this topic to the future research direction.

APPENDIX: Detailed derivation of the variational inference
algorithm in Section 3

In this Appendix, we provide the step-by-step derivation of the updating formulas for the
variational inference algorithm outlined in Section 3. Recall that the objective function is
given by

L(q) = Eq
[
ln
p(Y(obs),Y(mis),B,Θ)

q(Y(mis),B,Θ)

]
,

where p(Y(obs),Y(mis),B,Θ) is given by the joint model (2), (3), and (4), and q(Y(mis),B,Θ)
is the variational distribution

q(Y(mis),B,Θ)dY(mis)dBdΘ = q(Y(mis) | (µ̂yij , σ̂2yij )(i,j)∈I(mis)
)dY(mis)

× q(β, γ | (θk, µ̂βk , σ̂
2
βk

)pk=1)dβ

× q(B | µ̂b1 , Ψ̂1, . . . , µ̂bm , Ψ̂m)dB

× q(σ2e | âσ2
e
, b̂σ2

e
)dσ2eq(Ψ

−1 | Ψ̂)dΨ−1

× q(µ0 | µ̂µ0 , σ̂2µ0)dµ0q(σ
2
0 | âσ2

0
, b̂σ2

0
)dσ20

× q(w | âw, b̂w)dw.

The specific form of q is given in (6). The computation of the entire objection function
L(q) is tedious and unnecessary for deriving the coordinate-ascent variational inference
updating formula for each block of the variational parameters. Instead, when focusing on
the derivation of a fixed block of the variational parameter, we only need to consider the
likelihood involving the latent variable and its variational distribution. Below, we discuss
each updating rule separately.

A. Updating Ψ

By construction, we have

arg max
Ψ̂

L(q) = arg max
Ψ̂

[
p(Ψ̂) +

m∑
i=1

ln p(bi | Ψ̂)

]
:= arg max

Ψ̂

Ω(Ψ̂),
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where

Ω(Ψ̂) = −m
2

ln |Ψ̂| − 1

2

m∑
i=1

Eq[bT
i Ψ̂−1bi] +

ν − l − 1

2
ln |Ψ̂|−1 − 1

2
tr(Ψ̂−1V−1)

=
m+ ν − l − 1

2
ln |Ψ|−1 − 1

2
tr(Ψ−1(V−1 +

∑
i

Eq[bibT
i ])).

Maximizing Ω(Ψ̂) over the positive definite cone in Rl×l yields that

Ψ̂ =
1

m+ ν − l − 1

(
m∑
i=1

Eq[bibT
i ] + V−1

)

=
1

m+ ν − l − 1

{
m∑
i=1

(µ̂biµ̂
T
bi

+ Ψ̂bi) + V−1

}
.

B. Updating variational parameters for Y(mis)

We first fix the index (i, j). This reduces to solving the problem

arg max
(µ̂yij ,σ̂

2
yij

)

L(q) = arg max
(µ̂yij ,σ̂

2
yij

)

Eq

[
ln
p(yij | β,bi, σ2e)
q(yij | µ̂yij , σ̂2yij )

]
.

Observe that

Ω(µ̂yij , σ̂
2
yij ) := Eq

[
ln
p(yij | β,bi, σ2e)
q(yij | µ̂yij , σ̂2yij )

]

= −1

2
ln(2π)− 1

2
Eq
[
ln(σ2e)

]
− Eq

[
1

2σ2e

]
Eq
[
(yij − xT

ijβ − zTijbi)
2
]

+
1

2
ln(2π) +

1

2
ln(σ̂2yij ) +

1

2σ̂2yij
Eq
[
(yij − µ̂yij )2

]
= −

âσ2
e

2b̂σ2
e

[
Eq(y2ij)− Eq(yij)Eq(xT

ijβ + zTijbi)
]

+
1

2
ln(σ̂2yij ) + constant

= −
âσ2

e

2b̂σ2
e

[
µ̂2yij + σ̂2yij − µ̂

2
yij

(
p∑

k=1

xijkθkµ̂βk + zTijµ̂bi

)]

+
1

2
ln(σ̂2yij ) + constant.

Now we proceed to solve

∂

∂µ̂yij
Ω(µ̂yij , σ̂

2
yij ) = 0 =⇒ µ̂yij =

p∑
k=1

xijkθkµ̂βk + zTijµ̂bi ,

∂

∂σ̂2yij
Ω(µ̂yij , σ̂

2
yij ) = 0 =⇒ σ̂2yij =

â2σe

b̂2σe
.

C. Updating variational parameters for β

This part is the most challenging part as there does not exist a closed-form updating formula
when we optimize with regard to θ = [θ1, . . . , θp]

T. Denote µ̂β = [µ̂β1 , . . . , µ̂βp ]
T and
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σ̂2
β = [σ̂2β1 , . . . , σ̂

2
βp

]T. First write

Ω(θ, µ̂β, σ̂
2
β) = Eq

[
ln
p(Y | β,B, σ20)p(β,γ | w, µ0, σ0)dβ

q(β,γ | θ, µ̂β, σ̂
2
β)dβ

]

= Eq
[
ln p(Y | β,B, σ20)

]
+ Eq

[
ln
p(β,γ | w, µ0, σ0)dβ
q(β,γ | θ, µ̂β, σ̂

2
β)dβ

]
.

We first consider the expected value of the log-likelihood. Write

Eq
[
ln p(Y | β,B, σ20)

]
= −1

2

(
âσ2

e

b̂σ2
e

)
m∑
i=1

n∑
j=1

Eq[(yij − xT
ijβ − zTijbi)

2] + constant.

The keystone computation is the quadratic form Eq[(yij−xT
ijβ−zTijbi)

2]. When we focus
on the parameter θ, µ̂, σ̂2

β, we have

Eq[(yij − xT
ijβ − zTijbi)

2] = Eq(βTxijx
T
ijβ)− 2Eq(β)TxijEq(yij − zTijbi) + constant

= tr
{
xijx

T
ijEq(ββT)

}
− 2Eq(β)TxijEq(yij − zTijbi)

+ constant.

Let Θ = diag(θ) and U = diag(µ̂β). By definition of q(β | θ) =
∑

γ q(β,γ | θ), we
have

Eq(ββT) = Θ(I−Θ)U + Θdiag(σ̂2
β) + UθθTUT.

It follows that

tr
{
xijx

T
ijEq(ββT)

}
=

(
p∑

k=1

xijkθkµ̂βk

)2

+

p∑
k=1

x2ijk[θk(1− θk)µ̂2βk + θkσ̂
2
βk

]

=

(
p∑

k=1

xijkθkµ̂βk

)2

+

p∑
k=1

θkx
2
ijk(µ̂

2
βk

+ σ̂2βk)−
p∑

k=1

θ2kx
2
ijkµ̂

2
βk

= (xT
ijUθ)2 − θTUdiag(x2

ij)Uθ + (σ̂2
β + µ̂2

β)Tdiag(x2
ij)θ.

Therefore, we obtain:

Eq[(yij − xT
ijβ − zTijbi)

2] = (xT
ijUθ)2 − θTUdiag(x2

ij)Uθ + (σ̂2
β + µ̂2

β)Tdiag(x2
ij)θ

− 2θTUxij(〈yij〉 − zTijµ̂bi).

Here we set

ŷij =

{
yij , if (i, j) /∈ I(mis),

µ̂yij , if (i, j) ∈ I(mis).

Hence, we obtain

Eq
[
ln p(Y | β,B, σ20)

]
= −1

2

(
âσ2

e

b̂σ2
e

)
m∑
i=1

n∑
j=1

(xT
ijUθ)2

+
1

2

(
âσ2

e

b̂σ2
e

)
m∑
i=1

n∑
j=1

θTUdiag(x2
ij)Uθ

− 1

2

(
âσ2

e

b̂σ2
e

)
m∑
i=1

n∑
j=1

(σ̂2
β + µ̂2

β)Tdiag(x2
ij)θ

+

(
âσ2

e

b̂σ2
e

)
m∑
i=1

n∑
j=1

θTUxij(〈yij〉 − zTijµ̂bi) + constant.

(8)
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We then compute the second term in Ω(θ, µ̂β, σ̂
2
β):

Eq

[
ln
p(β,γ | w, µ0, σ20)dβ

q(β,γ | θ, µ̂β, σ̂
2
β)dβ

]

=

p∑
k=1

θk

{
[ψ(âw)− ψ(âw + b̂w)]− 1

2
ln(2π) +

1

2
[ψ(âσ2

0
)− ln(̂bσ2

0
)]

}

−
p∑

k=1

Eq
[

(βk − µ0)2

2σ20
γk

]
+

p∑
k=1

(1− θk)[ψ(̂bw)− ψ(âw + b̂w)]

−
p∑

k=1

θk

[
ln θk −

1

2
ln(2π) +

1

2
ln

1

σ̂2βk

]
+

p∑
k=1

Eq

[
(βk − µ̂βk)2

2σ̂2βk
γk

]

−
p∑

k=1

(1− θk) ln(1− θk)

=

p∑
k=1

θk

{
[ψ(âw)− ψ(âw + b̂w)]− 1

2
ln(2π) +

1

2
[ψ(âσ2

0
)− ln(̂bσ2

0
)]

}

−
p∑

k=1

âσ2
0

2b̂σ2
0

θk[(µ̂βk − µ̂µ0)2 + σ̂2µ0 + σ̂2βk ] +

p∑
k=1

(1− θk)[ψ(̂bw)− ψ(âw + b̂w)]

−
p∑

k=1

θk

[
ln θk −

1

2
ln(2π) +

1

2
ln

1

σ̂2βk

]
+

p∑
k=1

θk
2
−

p∑
k=1

(1− θk) ln(1− θk)

(9)

� We first optimize over (µ̂β, σ̂
2
β). This step is relatively straightforward because of

the closed-form solution to the stationary point. It is straightforward to obtain the
derivative of µ̂βk using (8) and (9):

∂Ω

∂µ̂β
= −1

2

(
âσ2

e

b̂σ2
e

)
m∑
i=1

n∑
j=1

2ΘxijxijΘµ̂β

+
1

2

(
âσ2

e

b̂σ2
e

)
m∑
i=1

n∑
j=1

2Θdiag(x2
ij)Θµ̂β

− 1

2

(
âσ2

e

b̂σ2
e

)
m∑
i=1

n∑
j=1

2Θdiag(x2
ij)µ̂β

+

(
âσ2

e

b̂σ2
e

)
m∑
i=1

n∑
j=1

(〈yij〉 − zTijµ̂bi)Θxij .

Setting the gradient to 0 yields

µ̂β =

 âσ2
e

b̂σ2
e

m∑
i=1

n∑
j=1

[xijx
T
ijΘ + diag(x2

ij)(I−Θ)] +
âσ2

0

b̂σ2
0

Ip


−1

×

 âσ2
0

b̂σ2
0

µ01p +
âσ2

e

b̂σ2
e

m∑
i=1

n∑
j=1

(ŷij − zTijµ̂bi)xij

 .
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We also take the gradient with regard to σ2
β to obtain

∂Ω

∂σ̂2
β

= −1

2

(
âσ2

e

b̂σ2
e

)
m∑
i=1

n∑
j=1

diag(x2
ij)θ −

1

2
θ ◦

(
1

σ̂2
β

)
−

âσ2
0

2b̂σ2
0

θ ◦ 1p.

Therefore, setting the gradient to 0 yields

σ̂2
β =

( âσ2
e

b̂σ2
e

)
m∑
i=1

n∑
j=1

diag(x2
ij) +

âσ2
0

2b̂σ2
0

1p

−1

� We next consider optimizing over θ, which is comparably more challenging. In this
case, we can view µ̂β, σ̂

2
β as constants. Invoking (8) and (9), we write

Ωµ̂β,σ̂
2
β
(θ) := Ω(θ, µ̂β, σ̂

2
β)

=

p∑
k=1

θk

{
[ψ(âw)− ψ(âw + b̂w)] +

1

2
[ψ(âσ2

0
)− ln(̂bσ2

0
)] +

1

2
ln(σ̂2βk)

}

+

p∑
k=1

θk

{
1

2
−

âσ2
0

2b̂σ2
0

θk[(µ̂βk − µ̂µ0)2 + σ̂2µ0 + σ̂2βk ]

}
−

p∑
k=1

θk ln θk

+

p∑
k=1

(1− θk)[ψ(̂bw)− ψ(âw + b̂w)]−
p∑

k=1

(1− θk) ln(1− θk)

− 1

2

(
âσ2

e

b̂σ2
e

)
θTU


m∑
i=1

n∑
j=1

[xijx
T
ij − diag(x2

ij)]

Uθ

− 1

2

(
âσ2

e

b̂σ2
e

)
m∑
i=1

n∑
j=1

(µ̂2
β + σ̂2

β)Tdiag(x2
ij)θ

+

(
âσ2

e

b̂σ2
e

)
m∑
i=1

n∑
j=1

xij(〈yij〉 − zTijµ̂bi)x
T
ijUθ.

The technical challenge in optimizing the function above over θ is that the stationary
point cannot be explicitly computed in a closed-form formula. This is due to the
quadratic function

g(θ) = θT∆U, where ∆ = U


m∑
i=1

n∑
j=1

[xijx
T
ij − diag(xij ◦ xij)]

U.

We borrow the idea of Huang et al. (2016) and consider the following linear approx-
imation of the quadratic function g at the last updated value θ(old):

g(θ) ≈ g(θ(old)) + 2(θ(old))T∆(θ − θ(old))

= 2(θ(old))T∆θ + g(θ(old))− 2(θ(old))T∆θ(old).

Namely, we can approximate Ωµ̂β,σ̂
2
β
(θ) by

Ωµ̂β,σ̂
2
β
(θ) ≈

p∑
k=1

θk

{
[ψ(âw)− ψ(âw + b̂w)] +

1

2
[ψ(âσ2

0
)− ln(̂bσ2

0
)] +

1

2
ln(σ̂2βk)

}
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+

p∑
k=1

θk

{
1

2
−

âσ2
0

2b̂σ2
0

θk[(µ̂βk − µ̂µ0)2 + σ̂2µ0 + σ̂2βk ]

}
−

p∑
k=1

θk ln θk

+

p∑
k=1

(1− θk)[ψ(̂bw)− ψ(âw + b̂w)]−
p∑

k=1

(1− θk) ln(1− θk)

−

(
âσ2

e

b̂σ2
e

)
(θ(old))TU


m∑
i=1

n∑
j=1

[xijx
T
ij − diag(xij ◦ xij)]

Uθ

− 1

2

(
âσ2

e

b̂σ2
e

)
m∑
i=1

n∑
j=1

(µ̂2
β + σ̂2

β)Tdiag(xij ◦ xij)θ

+

(
âσ2

e

b̂σ2
e

)
m∑
i=1

n∑
j=1

xij(〈yij〉 − zTijµ̂bi)x
T
ijUθ + constant.

Here θ(old) is the last iterate of the θ value that can be treated as a constant. Let
1p = [1, . . . , 1]T ∈ Rp be the p-dimensional vector of all ones. Hence, we take the
gradient to obtain

∂

∂θ
Ωµ̂β,σ̂

2
β
(θ) ≈

{
[ψ(âw)− ψ(âw + b̂w)] +

1

2
[ψ(âσ2

0
)− ln(̂bσ2

0
)]

}
1p +

1

2
ln(σ̂2

β)

+
1

2
1p −

âσ2
0

2b̂σ2
0

[(µ̂β − µ̂µ01p)2 + σ̂2µ01p + σ̂2
β]− 1p − logit(θ)

− [ψ(̂bw)− ψ(âw + b̂w)]1p + 1p

− 1

2

(
âσ2

e

b̂σ2
e

)
m∑
i=1

n∑
j=1

x2
ij ◦ (µ̂2

β + σ̂2
β)

+

(
âσ2

e

b̂σ2
e

)
m∑
i=1

n∑
j=1

(ŷij − zTijµ̂bi)(xij ◦ µ̂β)

−

(
âσ2

e

b̂σ2
e

)
U


m∑
i=1

n∑
j=1

[xijx
T
ij − diag(xij ◦ xij)]

Uθ(old).

We now focus on the last two lines of the preceeding display. We use the updating
formula for µ̂β obtained earlier to write

m∑
i=1

n∑
j=1

(ŷij − zTijµ̂bi)xij ◦ µ̂β −U


m∑
i=1

n∑
j=1

[xijx
T
ij − diag(xij ◦ xij)]

Uθ(old)

=

m∑
i=1

n∑
j=1

Uxijx
T
ijΘµ̂β +

m∑
i=1

n∑
j=1

Udiag(x2
ij)(I−Θ)µ̂β −

âσ2
0
b̂σ2
e

b̂σ2
0
âσ2

e

µ̂µ0UIp

+

m∑
i=1

n∑
j=1

Udiag(x2
ij)Θµ̂β −

m∑
i=1

m∑
j=1

Uxijx
T
ijΘµ̂β +

b̂σ2
e
âσ2

0

âσ2
e
b̂σ2

0

µ̂2
β

=
m∑
i=1

n∑
j=1

Udiag(x2
ij)µ̂β −

âσ2
0
b̂σ2
e

b̂σ2
0
âσ2

e

µ̂µ0UIp

=

m∑
i=1

n∑
j=1

x2
ij ◦ µ̂2

β −
âσ2

0
b̂σ2
e

b̂σ2
0
âσ2

e

µ̂µ0µ̂β +
b̂σ2
e
âσ2

0

âσ2
e
b̂σ2

0

µ̂2
β
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=
b̂σ2
e

âσ2
e

(
µ̂2
β ◦

1

σ̂2
β

−
âσ2

0

b̂σ2
0

µ̂µ0µ̂β

)
.

This allows us to remove the last iterate θ(old) and hence, leads to the following
approximation of the gradient

∂

∂θ
Ωµ̂β,σ̂

2
β
(θ) ≈

{
[ψ(âw)− ψ(âw + b̂w)] +

1

2
[ψ(âσ2

0
)− ln(̂bσ2

0
)]

}
1p +

1

2
ln(σ̂2

β)

+
âσ2

0

2b̂σ2
0

[(µ̂β − µ̂µ01p)2 + σ̂2µ01p + σ̂2
β] +

1

2
1p − logit(θ)

− [ψ(̂bw)− ψ(âw + b̂w)]1p −
1

2

(
âσ2

e

b̂σ2
e

)
m∑
i=1

n∑
j=1

x2
ij ◦ (µ̂2

β + σ̂2
β)

+ µ̂2
β ◦

1

σ̂2
β

−
âσ2

0

b̂σ2
0

µ̂µ0µ̂β.

Now setting the gradient to 0 gives rise to

logit(θ) =

{
[ψ(âw)− ψ(âw + b̂w)] +

1

2
[ψ(âσ2

0
)− ln(̂bσ2

0
)]

}
1p +

1

2
ln(σ̂2

β)

+
âσ2

0

2b̂σ2
0

[(µ̂β − µ̂µ01p)2 + σ̂2µ01p + σ̂2
β] +

1

2
1p

− [ψ(̂bw)− ψ(âw + b̂w)]1p −
1

2

(
âσ2

e

b̂σ2
e

)
m∑
i=1

n∑
j=1

x2
ij ◦ (µ̂2

β + σ̂2
β)

+ µ̂2
β ◦

1

σ̂2
β

−
âσ2

0

b̂σ2
0

µ̂µ0µ̂β

D. Updating variational parameters for B

We now move on to the updating formula for the variational parameters for the random
effect B. This part still requires some work but is significantly simpler than the previous
set of parameters (θ, µ̂β, σ̂

2
β). To begin with, we first compute the expected value of the

quadratic form (yij −xT
ijβ− zTijbi)

2 and view the variational parameters of yij , β, and σ2e
as constants:

Eq[(yij − xT
ijβ − zTijbi)

2] = tr[zijz
T
ijEq(bibT

i )]− 2Eq(bi)Tzij(ŷij − xT
ijΘµ̂β)

+ constant

= µ̂T
bi

zijz
T
ijµ̂bi + zTijΨ̂bizij − 2µ̂T

bi
zij(ŷij − xT

ijΘµ̂β)

+ constant.

Hence, we can proceed to write

Ω(µ̂bi , Ψ̂bi) = Eq

[
ln
p(Y | β,B, σ2e)p(bi | Ψ̂)

q(bi | µ̂bi , Ψ̂bi)

]

=

n∑
j=1

Eq[ln p(yij | β,bi, σ2e)] + Eq[ln p(bi | Ψ̂)]− Eq[ln q(bi | µ̂bi , Ψ̂bi)]
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+ constant

= −Eq
(

1

2σ2e

) m∑
j=1

Eq[(yij − xijβ − zijbi)
2]− 1

2
Eq(bT

i Ψ̂−1bi)

+
1

2
ln det Ψ̂i +

1

2
Eq[(bi − µ̂bi)

TΨ̂−1bi
(bi − µ̂bi)] + constant

= −1

2

âσ2
e

b̂σ2
e

n∑
j=1

{µ̂T
bi

zijz
T
ijµ̂bi + zTijΨ̂bizij − 2µ̂T

bi
zij(ŷij − xT

ijΘµ̂β)}

− 1

2
tr(Ψ̂−1Ψ̂bi)−

1

2
µ̂T

bi
Ψ̂−1µ̂bi +

1

2
tr(Ψ̂−1bi

Ψ̂bi) +
1

2
ln det Ψ̂bi

+ constant

Optimizing over µ̂bi , we obtain

∂Ω

∂µ̂bi

= −
âσ2

e

b̂σ2
e

n∑
j=1

[zijz
T
ijµ̂bi − (ŷij − xT

ijΘµ̂β)ẑij ]− Ψ̂−1µ̂bi = 0

=⇒ µ̂bi =

 âσ2
e

b̂σ2
e

n∑
j=1

zijz
T
ij + Ψ̂−1

−1  âσ2
e

b̂σ2
e

n∑
j=1

(yij − xT
ijβ)zij

 .
Optimizing over Ψ̂bi in the positive definite cone in Rl×l, we obtain

Ψ̂bi =

 âσ2
e

b̂σ2
e

n∑
j=1

zijz
T
ij + Ψ̂−1

−1 .
E. Updating variational parameters for σ2e

The updating formula for âσ2
e

and b̂σ2
e

involves a delicate and complete computation of the
expected value of the quadratic form Eq[(yij − xT

ijβ − zTijbi)
2]. Write

Eq[(yij − xT
ijβ − zTijbi)

2]

= Eq[(yij)2] + tr[zijz
T
ijEq(bibT

i )] + tr[xijx
T
ijEq(ββT)]

− 2Eq(yij)[xT
ijEq(β) + zTijEq(bi)] + 2Eq(β)TxijEq(bi)Tzij

= 〈y2ij〉+ (zTijµ̂bi)
2 + zTijΨ̂bizij + (xijΘµ̂β)2 + x2

ijΘ(Ip −Θ)µ̂2
β + x2

ijΘσ̂2
β

− 2ŷij [x
T
ijΘµ̂β + zTijµ̂bi ] + 2µ̂T

βΘxijµ̂
T
bi

zij .

Namely, by setting

SSR =

m∑
i=1

n∑
j=1

Eq[(yij − xT
ijβ − zTijbi)

2]

=
m∑
i=1

n∑
j=1

{
〈y2ij〉+ (zTijµ̂bi)

2 + zTijΨ̂bizij

}
+

m∑
i=1

n∑
j=1

{
(xijΘµ̂β)2 + x2

ijΘ(Ip −Θ)µ̂2
β + x2

ijΘσ̂2
β

}
− 2

m∑
i=1

n∑
j=1

ŷij [x
T
ijΘµ̂β + zTijµ̂bi ] + 2

m∑
i=1

n∑
j=1

µ̂T
βΘxijµ̂

T
bi

zij ,
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we can write

Ω(âσ2
e
, b̂σ2

e
) = Eq

[
ln p(Y | β,B, σ2e)

]
+ Eq[ln p(σ2e | a1, b1)]− Eq[ln q(σ2e | âσ2

e
, b̂σ2

e
)]

=
mn

2
Eq
[
ln

(
1

σ2e

)]
− 1

2
Eq
(

1

σ2e

)
SSR+ (a1 − 1)Eq

[
ln

(
1

σ2e

)]
− b1Eq

(
1

σ̂2e

)
+ ln Γ(â2σe)− âσ2

e
ln(̂bσ2

e
)

− (âσ2
e
− 1)Eq

[
ln

(
1

σ2e

)]
b̂σ2
e
Eq
(

1

σ̂2e

)
=
(mn

2
+ a1 − âσ2

e

)
[ψ(âσ2

e
)− ln(̂bσ2

e
)]−

âσ2
e

b̂σ2
e

[
1

2
SSR + b1 − b̂σ2

e

]
+ ln Γ(âσ2

e
)− âσ2

e
ln(̂bσ2

e
).

We now optimize over (âσ2
e
, b̂σ2

e
) by taking the derivative of Ω and setting them to zero:

∂Ω

∂âσ2
e

=
(mn

2
+ a1 − âσ2

e

)
ψ′(âσ2

e
)− 1

b̂σ2
e

(
1

2
SSR + b1 − b̂σ2

e

)
,

∂Ω

∂b̂σ2
e

= −
(mn

2
+ a1 − âσ2

e

) 1

b̂σ2
e

+
âσ2

e

b̂σ2
e

(
1

2
SSR + b1 − b̂σ2

e

)
,

∂Ω

∂âσ2
e

=
∂Ω

∂b̂σ2
e

= 0 =⇒ âσ2
e

= a1 +
mn

2
, b̂σ2

e
=

1

2
SSR + b1.

F. Updating the rest of the variational parameters

The updating formulas for the rest of the variational parameters can be obtained using
routine methods. Write

Ω(âσ2
0
, b̂σ2

0
)

= Eq

[
ln

p(β,γ | w, µ0, σ20)p(σ20)

q(β,γ | θ, µ̂β, σ̂
2
β)q(σ20 | âσ2

0
, b̂σ2

0
)

]

=
1

2

p∑
k=1

θk[ψ(âσ2
0
)− ln(̂bσ2

0
)]

−
âσ2

0

2b̂σ2
0

p∑
k=1

θk
{

(µ̂2µ0 + σ̂2µ0)(1− θk) + [(µ̂µ0 − µ̂βk)2 + σ̂2µ0 + σ̂2βk ]θk
}

+ 2[ψ(âσ2
0
)− ln(̂bσ2

0
)]−

âσ2
0

b̂σ2
0

− (âσ2
0

+ 1)[ψ(âσ2
0
)− ln(̂bσ2

0
)] + âσ2

0

+ ln Γ(âσ2
0
)− âσ2

0
ln b̂σ2

0
.

Setting the derivatives to zero yields

∂Ω

∂âσ2
0

=
∂Ω

∂b̂σ2
0

= 0 =⇒

âσ2
0

= 1 +
1

2

p∑
k=1

θk,
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b̂σ2
0

= 1 +
1

2

p∑
k=1

θk{(µ̂2µ0 + σ̂2µ0)(1− θk) + [(µ̂µ0 − µ̂βk)2 + σ̂2µ0 + σ̂2βk ]θk}.

For (âw, b̂w), we have

Ω(âw, b̂w) = Eq

[
ln
p(β,γ | w, µ0, σ20)p(w | aw, bw)

q(β,γ | θ, µ̂β, σ̂
2
β)q(w | âw, b̂w)

]

=

p∑
k=1

Eq[γk]Eq[lnw] +

p∑
k=1

Eq[1− γk]Eq[ln(1− w)] + (aw − 1)Eq[lnw]

+ (bw − 1)Eq[ln(1− w)]− (âw − 1)Eq[lnw]− (̂bw − 1)Eq[ln(1− w)]

+ ln Γ(âw) + ln Γ(̂bw)− ln Γ(âw + b̂w)

=

p∑
k=1

θk[ψ(âw)− ψ(âw + b̂w)] +

p∑
k=1

(1− θk)[ψ(̂bw)− ψ(âw + b̂w)]

+ (aw − 1)[ψ(âw)− ψ(âw + b̂w)] + (bw − 1)[ψ(̂bw)− ψ(âw + b̂w)]

− (âw − 1)[ψ(âw)− ψ(âw + b̂w)]− (̂bw − 1)[ψ(̂bw)− ψ(âw + b̂w)]

+ ln Γ(âw) + ln Γ(̂bw)− ln Γ(âw + b̂w)

=

(
p∑

k=1

θk + aw − âw

)
ψ(âw)

−

[
p∑

k=1

θk +

p∑
k=1

(1− θk) + aw + bw − âw − b̂w

]
ψ(âw + b̂w)

+

[
p∑

k=1

(1− θk) + bw − b̂w

]
ψ(̂bw) + ln Γ(âw) + ln Γ(̂bw)

− ln Γ(âw + b̂w).

Now we optimize over âw and b̂w by taking the derivatives and setting them to zero:

∂Ω

∂âw
=

(
p∑

k=1

θk + aw − âw

)
ψ′(âw)− ψ′(âw + b̂w)

(
p+ aw + bw − âw − b̂w

)
,

∂Ω

∂b̂w
=

[
p∑

k=1

(1− θk) + bw − b̂w

]
ψ′(̂bw)− ψ′(âw + b̂w)

(
p+ aw + bw − âw − b̂w

)
,

∂Ω

∂âw
=

∂Ω

∂b̂w
= 0 =⇒ âw =

p∑
k=1

θk + aw, b̂w =

p∑
k=1

(1− θk) + bw.

Finally, for (µ̂µ0 , σ̂
2
µ0), we have

Ω(µ̂µ0 , σ̂
2
µ0) = Eq

[
ln

p(β,γ | w, µ0, σ20)p(µ0)

q(β,γ | θ, µ̂β, σ̂
2
β)q(µ0 | µ̂µ0 , σ̂2µ0)

]

= −1

2
Eq
[

1

σ20

] p∑
k=1

Eq[γk]Eq[(βk − µ0)2]−
1

2
Eq[µ20]

+
1

2σ̂2µo
Eq[(µ0 − µ̂µ0)2] + constant
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= −
âσ2

0

2b̂σ2
0

p∑
k=1

θk{(µ̂2µ0 + σ̂2µ0)(1− θk) + [(µ̂µ0 − µ̂βk)2 + σ̂2µ0 + σ̂2βk ]θk}

− 1

2
(σ̂2µ0 + µ̂2µ0)− 1

2
ln

1

σ̂2µ0
+ constant.

Setting the derivative to zero, we have

∂Ω

∂µ̂µ0
= −

âσ2
0

2b̂σ2
0

p∑
k=1

θk(µ̂µ0 − θkµ̂βk)− µ̂µ0 ,
∂Ω

∂σ̂2µ0
= −

âσ2
0

2b̂σ2
0

p∑
k=1

θk
2
− 1

2
+

1

2σ̂2µ0
,

∂Ω

∂µ̂µ0
=

∂Ω

∂σ̂2µ0
= 0⇒

µ̂µ0 =

(
1 +

âσ2
0

b̂σ2
0

p∑
k=1

θk

)−1(
âσ2

0

b̂σ2
0

p∑
k=1

θ2kµ̂βk

)
, σ̂2µ0 =

(
1 +

âσ2
0

b̂σ2
0

p∑
k=1

θk

)−1
.
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