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Abstract 

We show how calibration weighting can be employed to combine a probability and a 
nonprobability sample of the same population in a statistically-defensible manner. This is 
done by assuming the probability of a population element being included in the 
nonprobability sample can be modeled as a logit function of variables known for all 
members of both samples. Estimating these probabilities for the members of the 
nonprobability sample with a calibration equation and treating their inverses as quasi-
probability weights is a key to creating composite weights for the blended sample. The 
WTADJX procedure in SUDAAN® is employed to generate those weights and then 
measure the standard errors or resulting estimated means and totals.  
 

Key Words: Selection model, outcome model, double protection, logit function, 
WTADJX. 
 

 
1. Introduction 

 
Nonprobability surveys samples – one whose members do not have known 

probabilities of sample inclusion – are everywhere and have considerable potential for 
bias.  See Baker et al. (2013) and the references therein.  It has become popular to attempt 
to remove the bias of an estimate derived from nonprobability sample by first combining 
that sample, denoted here by S0, with a probability sample S1 covering the same 
population U but with which it shares no members.  After that, one estimates the 
probability k that a population unit k in the blended sample S = S0  S1 was originally 
from the nonprobability sample given a vector of covariates zk available for members 
from both samples (when used here, “sample” always refers to a respondent sample). 
Valliant and Dever (2011) suggest that the inverse of this estimated probability  − which 
they, following much of the literature, call a “propensity” − can be used as a quasi-
probability sampling weight either directly, wk = 1/𝛾𝑘, or indirectly after some form or 
poststratification.  For example, Lee (2006) proposes sorting the  blended sample by their 
𝛾𝑘 values, then breaking the sample into cells of nearly equal size, and finally assigning 
the weight 𝑤𝑘 =  𝑁̂1𝑐/𝑛0𝑐 ,  where 𝑁̂1𝑐  is the estimated-from-the-probability-sample 
population size of cell c containing nonprobability-sampled unit k, and n0c is the number 
of members of S0 in c .  
 
Although estimating  k  = Pr(k  S0 | k  S ; zk)  by fitting a logistic regression on the 
unweighted blended sample is often treated as an estimate for Pr(k  S0 | zk),  Robbins et 
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al. (2020) argues that a better estimate for the quasi-probability that k is in the 
nonprobability sample when S0  S1 =  is  

                                𝑝0𝑘 = Pr(𝑘  𝑆0 | 𝐳𝑘) =   𝜋𝑘𝛾𝑘/(1 − 𝛾𝑘),  

where 𝜋𝑘 is the probability that k is chosen for the probability sample (which can include 
an adjustment for unit nonresponse when it is needed).   It is assumed 𝜋𝑘 is known for 
members in the population that is not in S1.   
 
To see how  𝑝0𝑘 = Pr(𝑘  𝑆0 | 𝐳𝑘) is derived,  start with 𝜋𝑘 =  Pr(k  S1 | k  S ; zk)  
Pr(k  S | zk),  and   Pr(𝑘  𝑆0| 𝐱𝑘)  =  Pr(k  S0 | k  S ; xk)  Pr(k  S | xk)),  then solve 
for Pr(𝑘  𝑆0 | 𝐳𝑘).  Elliott and Valliant (2017) make a similar point, suggesting a more 
sophisticated method could be used to estimate k. 
 
Robbins et al. goes on to offer methods for weighting the blended sample, but for now we 
assume there are survey items of interest collected in the nonprobability sample but not 
the probability sample so that a quasi-probability weights for those items are only needed 
for the members of S0. 
 
There are two critical assumptions underlying the use of 𝑝0𝑘.  One is that the probability 
and nonprobability sample have no member in common.  This can be assured by 
removing any member of S1 from the nonprobability sample.   The other is that Pr(k  S0 | 
k  S ; zk)  can be modeled, whether by a logistic function (as in Robbins et al.)  or some 
other functional form (as suggested by Elliott and Valliant).    We believe that it is more 
reasonable to assume that Pr(𝑘  𝑆0| 𝐳𝑘)  itself can be modeled by a logistic (or some 
other) function whether or not  S0  S1 = .   
 
In Section 2, we describe in general terms how that assumption can be used to generate 
quasi-probability weights for a nonprobability sample given either population totals for 
the component of zk or their probability-sample-estimated analogues.  In our setup, when 
the population total is known for a component zk, it need not be collected on the 
probability sample (only the nonprobability sample).   
 
In Section 3,  using the WTADJX procedure in SUDAAN 11 we show how to estimate 
population means for variables collected from the nonprobability sample and from a 
blended sample composed of  a nonprobability and a probability sample drawn from the 
same population.   
 
Section 4 explores an example of estimated means based on blending a stratified simple 
random probability sample and a nonprobability sample drawn from the same population.  
Section 5 provides a brief discussion of unaddressed issues.  

  
2. Solving a Calibration Equation 

  
The model   
                                                               Pr(𝑘  𝑆0| 𝐳𝑘) = [1 + exp (𝐳𝑘

𝑇𝐠)]−𝟏                        (1) 
    
is a selection model.  If correctly specified, it models the probability that k  U is 
included in the the nonprobability sample S0 (which can involve self selection and 
response) as a logistic function of the vector zk with unknown parameter-vector g.   Kott 
(2019) point out that this selection model can often be estimated by solving a calibration 
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equation when each component of the population total Tz  =  ∑ 𝐳𝑘𝑘𝜖𝑈  is either known or 
consistently estimated from a probability sample, which itself can have been weighted to 
account for unit nonresponse (here “a consistent estimate” computed from a probability 
sample converges into the population parameter it estimates as the probability sample 
size and population sizes grow arbitrarily large).   
 
A calibration equation that can be used to estimate g in equation (1) is  
 
                                             ∑ [1 + exp (𝐳𝑘

𝑇𝐠̂)]𝑘𝜖𝑆0
𝐳𝑘 =  𝐓̂𝐳,                                          (2) 

 
where each component of  𝐓̂𝐳 is either assumed to be a known population quantity or a 
consistent estimate from a probability sample.  The solution for 𝐠̂ in equation (2), when it 
exists, can usually be found using Newton’s method.  That algorithm has been 
programmed into the SUDAAN 11(R) routines WTADJUST and WTADJX  (RTI 2012), 
the R routines ‘calib’ and ‘gencalib’ in ‘Sampling’ (Tille and Mattei, 2021),  and 
elsewhere.   In Section 3, we will describe how to use SUDAAN’s WTADJX  for our 
purposes.   Other software packages could be employed in a similar manner.   
When a solution to equation (2) exists, and we will assume here it does,  𝐠̂    is a 
consistent estimator for g under mild conditions we assume to hold.  The quasi-

probability weight for k S0 is  then 

                                             𝑤𝑘 = [1 + exp(𝐳𝑘
𝑇𝐠̂)].                                           (3) 

 

The theory supporting this use of an assumed selection model like that in equation (1) 
together with a calibration equation like (2) first to estimate consistently the parameters 
of the selection model and then to use those estimates in generating quasi-probability 
weights (asymptotically equal to the inverses of the sample members’ probabilities of 
inclusion into the nonprobability sample) with an equation like (3) is analogous to the 
quasi-random theory supporting the use and calibration-equation fitting of a selection 
model for the response/ nonresponse mechanism in a probability sample.  See, for 
example, Kott and Liao (2012).   
 
In the nonresponse-adjustment setting of a probability sample, S1  𝑆1

∗ , the selection 
(response) model  Pr(𝑘  𝑆1|𝐳𝑘;  𝑆1

∗) =  [1 + exp(𝐳𝑘
𝑇𝐠)]

−1
, where 𝑆1

∗  is the probability 
sample before unit nonresponse, replaces equation (1), and 𝑤𝑘 = 𝜋𝑘

−1[1 + exp (𝐳𝒌
𝑻𝐠̂)], 

replaces equation (3), where 𝜋𝑘 is the probability that k has been chosen for 𝑆1
∗. 

 
The assumption that every member of the population has a probability of selection into 
the nonprobability sample equal to  Pr(𝑘  𝑆0| 𝐳𝑘) = [1 + exp (𝐳𝑘

𝑇𝐠)]−1   or any other 
monotonic differentiable function is a strong one.    
 
An alternative justification for using equations (1) through (3) in creating weights in 
estimating a total like Y = kU yk from a nonprobability sample of y-values follows.  
Suppose each  yk  U behaves like random variables with mean  zk for some unknown 
parameter   whether (or not) k  is in the nonprobability sample; that is, selection is 
ignorable in expectation with respect to this  prediction model, so called because the 
model predicts a value for yk (Royall, 1970).  Given 𝐓̂𝐳 and assuming equation (2) has a 
solution, if either this prediction model or the selection model holds among the members 
of the population,  estimating Y with   𝑌̂ = ∑ 𝑤𝑘𝑘∈𝑆0

𝑦𝑘   will be nearly unbiased in some 
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sense  (technically, 𝑌̂ is a predictor, not an estimator, for the random variable Y under the 
prediction model). The reader is again directed to Kott and Liao for a proof of this 
assertion. A similarly “doubly robust” approach can be found in in Chen et al. (2020). 
 
When one of more components of  𝐓̂𝐳 is consistently estimated from a probability sample, 
the near unbiasedness of   𝑌̂  requires the combination of probability-sampling inference 
(for 𝐓̂𝐳) and either the selection model or prediction model (for 𝑌̂|𝐓̂𝐳).  Nevertheless, we 
call the former the selection-model framework and the latter the prediction-model 
framework.  
 
Observe that ∑ 𝑤𝑘𝑘∈𝑆0

𝑦𝑘/ ∑ 𝑤𝑘𝑘∈𝑆0
 is a nearly unbiased predictor for the population 

mean 𝑦̅ =kU yk/kU 1, when  each  yk  U behaves like a random variables with mean  
zk, and 1 is either a component of zk  or the linear combination of the components of zk.  
 
As alluded to above, when selected members of a probability sample S1 have design 
weights {dk} before unit nonresponse, where dk = 𝜋𝑘

−1  , then we can weight the unit 
respondents with  
                                                𝑤𝑘 = 𝑑𝑘[1 + exp(𝐳𝑘

𝑇𝐠̂)],                                      (4)            
 

when response is a logistic function of zk (which need not be the same as the vector in 
equation (1)) , and 𝐠̂ (which likewise need not be the vector in equation (1)) satisfies the 
calibration equation  ∑ 𝑑𝑘[1 + exp (𝐳𝑘

𝑇𝐠̂)]𝑘𝜖𝑆1
𝐳𝒌 =  𝐓̂𝐳.       

 
Calibration weighting was originally proposed to reduce the standard error of an 
estimated total in the absence of nonresponse. It works when yk  can be approximated by 
a linear function of the components of  zk,  and the weight-adjustment function within the 
square brackets of equation (4) is replaced by exp(𝐳𝑘

𝑇𝐠̂),  where  𝐠̂  converges to 0 and 
consequently the wk to dk  as the probability sample grows arbitrarily large.   
 
Both weight adjustments are special cases of the following more general weight-
adjustment function: 

                                                           (𝜃) =
𝐿+exp (𝜃)

1+exp(𝜃)/𝑈
 ,                                                (5) 

 
where [L , U] is the range of (), and 0  L < U  .    Software packages that do 
calibration weighting via what has been called “the logit transformation” in equation (5) 
allow the user to set L and U.  Some packages (like ‘calib’ in Tille and Matei 2013) are 
only designed for probability samples with full response and restrict L to a value less than 
1.  When used to adjust for unit nonresponse or nonprobability selection, however, the 
range for the implicitly estimated probability of unit response or selection is [1/U, 1/L].   
Consequently, it is sensible to set L at either 1 or value greater than 1.   
                                                         

3.  Calibration Weighting a Blended Sample  

  
Suppose we have a probability and a nonprobability sample both chosen from the same 
population.  We again denote them by S1 and S0, respectively.  At first, suppose both 
collect a variable yk with the intention of estimating its population mean.  The probability 
sample is a stratified multistage sample which may suffer from some unit nonresponse.  
If used by itself, a vector z1k of variables including 1 with known population totals can be 
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employed to generate calibration weights for the probability sample rendering estimates 
for the population mean using those weights both nearly unbiased with respect to the 
selection model (probability sampling is a type of selection model) and with respect to 
the linear prediction model: E(yk) = z1k

T1.   If there is any unit nonresponse, the selection 
model assumes that the probability of unit response is correctly specified by the inverse 
of a weight-adjustment function of the components of z1k, while the linear prediction 
model assumes unit nonresponse is ignorable in expection.  
 
Similarly, a vector z0k of variables including 1 with known population totals can be used 
to generate calibration weights for the nonprobability sample rendering estimates for the 
population mean using those weights both nearly unbiased with respect to the selection 
model when the probability of selection into the nonprobability sample is correctly 
specified by the inverse of a weight-adjustment function of the components of z0k and 
with respect to the linear outcome model: E(yk) = z0k

T0 assuming selection into S0 is 
ignorable in expection.  
 
Many of the components of z1k and z0k  may coincide.   We do not require that the two 
samples be disjoint, but they must be selected independently.  
 
The WTADJUST procedure in SUDAAN can be used to create weights and estimate the 
population means as described above so long as the weight-adjustment function in 
equation (5) is used for both samples. WTADJUST allows L and U to differ across the 
members of a sample. Here, one can set values L1 and U1 for every member of S1 and 
values L0 and U0 for every member of S1. When Uf , f = 0 or 1, is unspecified, it is treated 
as virtually infinite (1020) and a finite centering parameter Cf  needs to be added to 
WTADJUST for the members of Sf ; say, max{1, 2Lf}, but the choice (so long as it is 
finite) has no impact on the results.   
 
WTADJUST will also estimate standard errors that are nearly unbiased under the 
selection-model framework (variance estimation under the prediction-model framework 
is discussed in the final section).  Moreover, any linear combination of the two estimates 
is also a nearly unbiased estimator of the population mean and has a standard error can be 
estimated (under the selection-model framework) using WTADJUST.  
 
To this end, let S be the union of S1 and S0.  A sample member may be in S twice, with 
each such member treated as two separate members of the blended sample S.  We treat 
the H design strata of S1 and the entire nonprobability sample as the H + 1 design strata of 
the blended sample S.  Let zk

T = (z1k
T   z0k

T),  where the components of z1k
T are z1k for 

members originally from S1 and 0 for the members orginally z0k.  The components of  z0k
T  

are defined conformally.  The L and U parameters are the same for all members of S1 and 
they are the same for all member of S0, but the former and latter pairs may differ.  
 
Consider the following  calibration equation,  which can be used to crease quasi-
probability weights: 
      

∑ 𝜋𝑘
−1α1(𝐳1𝑘

𝑇 𝐠̂1)
𝑘𝜖𝑆1

𝐳1𝑘
𝑇 + ∑ α0(𝐳0𝑘

𝑇 𝐠̂0)
𝑘𝜖𝑆0

𝐳0𝑘
𝑇 = 𝐓𝐳𝟏

𝑇 + 𝐓𝐳𝟎
𝑇  

or                                       ∑ 𝑑𝑘𝑘∈𝑆 α(𝐳𝑘
𝑇𝐠̂)𝐳𝑘 = 𝐓𝐳()                                         (6)  
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where   is some positive value,  α𝑓(𝐳𝑓𝑘
𝑇 𝐠̂𝑓) is weight-adjustment function for Sf  (f = 0 or 

1),  𝐠̂𝑇 = (𝐠̂1
𝑇  𝐠̂2

𝑇), α(𝐳𝑘
𝑇𝐠̂) = α𝑓(𝐳𝑓𝑘

𝑇 𝐠̂𝑓) for kSf, 

                                                        dk = kk
-1 + (1− k),  

k  = 1 when k was originally from S1 and 0 otherwise, and zk
() = z1k +  z0k .  Observe that 

the relative contribution of the probability sample when estimating  𝑦̅  is /(1+ ). 
WTADJUST estimates both 𝑦̅  with the weights implied by equation (6) and the standard 
error of that estimate.      
 
WTADJUST  has one glaring limitation, however.  It can not be used to estimate 
standard errors when the probability of selection into the nonprobability sample includes 
variables with unknown population totals that need to  be estimated by the probability 
sample.   For that, one needs WTADJX (or something like it;  Chen et al., 2020, discuss 
another  approach.) 
 
For our purposes, the equation for the quasi-weights in S using WTADJX is  
 

    𝑤𝑘 = 𝑑𝑘
𝐿𝑘+exp (𝐱𝑘

𝑇𝐠̂)

1+exp(𝐱𝑘
𝑇𝐠̂)/𝑈𝑘

 ,                                            (7) 
 

where Lk = L1k + L0(1−k)  and Uk = U1k + U0(1−k), and the model variable xk  is a 
vector with the same number of components as the vector of values on which we are 
calibrating, such as the zk.in equation (1).   (When xk = zk, WTADJUST can be used in 
place of WTADJX.) 
 
Let  qk denote a vector of variables included in the nonprobability sample’s selection 
model,  

                                            Pr(𝑘  𝑆0| 𝐳0𝑘) =
1+exp(𝒛0𝑘

𝑇 𝒈𝟎+ 𝒒𝑘
𝑇𝒈𝒒)/𝑼𝟎 

𝐿0+exp(𝒛0𝑘
𝑇 𝒈𝟎+ 𝒒𝑘

𝑇𝒈𝒒) 
, 

 
but have unknown population totals that need be estimated by the probability sample.  
With     xk

T
 =  (z1k

T   z0k
T   [1−k ]qk

T) and zk
T

 = (z1k
T   z0k

T  {1− k[ 1 + 1/]}qk
T),  WTADJX 

can be used to estimate the population mean 𝑦̅  by finding the  𝐠̂  satisfying: 
 

                                      ∑ 𝑑𝑘𝑘∈𝑆
𝐿𝑘+exp (𝐱𝑘

𝑇𝐠̂)

1+exp(𝐱𝑘
𝑇𝐠̂)/𝑈𝑘

𝐳𝑘 =(
∑ 𝐳1𝑘𝑘𝜖𝑈

∑ 𝐳0𝑘𝑘𝜖𝑈

𝟎

) ,                                 (8) 

  
where 0 has as many components as 𝐪𝑘 (so that  ∑ 𝑤𝑘𝐪𝑘 = 𝑘𝜖𝑆0

 ∑ 𝑤𝑘𝐪𝑘) .𝑘𝜖𝑆1
  One can 

vary the choice of  in an attempt to find the optimal value that minimizes the standard 
error of the estimated mean.  (Recall that every chose for  results in nearly unbiased 
estimation.)   
 
To estimate the population total  Y = kU yk the quasi-weights described above need to be 
divided by 1+. 
 
After choosing , the components of the vector on the right-hand side of equation (8) are 
known before sampling.  Because of this, WTADJX can estimate the standard error of an 
estimated total or mean (under the selection-model framework) assuming the indictators 
of selection into the nonprobability sample are independent of each other.  When there is 
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unit nonresponse in the probability sample, an analogous assumption in made about the 
indicators unit response.    
 
Ignoring finite population correction (as we will), the key to nearly unbiased variance 
estimation via linearization is the near (i.e., asymptotic) equality of S wkek  =                 
S dk(𝐱𝑘

𝑇𝐠̂)ek  and S dk(𝐱𝑘
𝑇𝐠)ek,  where 

  
                            ek = yk − 𝐳𝑘

𝑇[∑ ′(𝐱𝑗
𝑇𝐠̂) 𝐱𝑗𝐳𝑗

𝑇
𝑆 ]

−1
∑ ′(𝐱𝑗

𝑇𝐠̂)𝐱𝑗𝑦𝑗𝑆 ,                              (9) 
 
The inclusion of the ′(𝐱𝑗

𝑇𝐠̂)  terms in ek allows us to avoid directly accounting for 𝐠̂  
itself being an estimate in large-sample variance estimation.  For more theoretical details 
on variance estimation for a one-step calibrated estimator when xk  zk, see Kott and Liao 
(2015).   
 
When there are many variables for which one needs to estimate a population mean from 
the blended sample, the optimal  will likely vary across the variables.  Consequently, a 
compromise will be needed if one desire a single  to be used for all variables.   
 
Estimation from the Nonprobability Sample  

Suppose y-values are only collected from the nonprobability sample.  We can treat 
whether (or not) an element of the blended sample was originally a member of the 
nonprobability sample as a class variable in WTADJX  and then estimate 𝑦̅  and the 
standard error of that estimate with WTADJX.  The estimates of 𝑦̅ based on the blended 
sample and for the class defined as the probability sample will be missing, while the 
estimate for the class defined by the nonprobability sample will be a nearly unbiased 
estimate for  𝑦̅.  A nearly unbiased estimate for its standard error will accompany it.  The 
selection of    no longer matters; setting  = 1 is a  straightforward choice.   
 

4. An Example 

 

Benoit-Bryan and Mulrow (2021) describe a simulated population of 113,549 (N) 
individuals created from the Culture and Community in a Time of Crisis survey of 
behavior and attitudes before and during the Covid-19 crisis.  Both 10,000 stratified 
simple random probability samples of 1,000 persons and vaguely-described 
nonprobability samples 4,000 persons were drawn from the population.  For our 
purposes, we will focus on a single probability and a single nonprobability sample.  Our 
goal is to estimate population means for 14 survey variables of interest (that were chosen 
by Benoit-Bryan and Mulrow) using information from 32 not-of-interest (NOI) survey 
variables (chosen by us) as well as variables for which the population means are known.  
The last group includes 9 region indicators (with no missing values),  3 levels of 
urbanization,  an Hispanicity indicator, 6 race categories, 4 age categories, and 7 
education-level categories.  For all categorical variables except region, a missing survey 
response  is treated as an additional category.  
 
Most of the survey variables of interest and NOI variables are yes/no (1/0) with a missing 
response treated as a “no” (0).  Two of the survey variables of interest were originally on 
a five-point Likert scale.  Missing responses are placed in the least-interested levels with 
the remaining four levels treated as four separate yes/no variables.    Thus, we have for 
analytical purposes 20 variables of interest whose proportion of  1’s we are trying to 
estimate.     

 
1625



The survey variables are described and given variable names (e.g., q7_22) below: 
 
Variables of Interest 

 
q7_22  Attended classical music in 2019 
q_10  Missed experiencing artwork, performances 
q_11  Offered online exhibitions or galleries 
q25_11  Will see a play or musical when able in short term 
q1_15  Participated in a live interactive event in past 30 days 
q6_9  Want more fun in life 
q11_4  Offered online materials or activities for kids 
q10_3  Miss celebrating cultural heritage 
q7_4  Attended community festival in 2019       
q6_1   Want more hope in life  
q1_6  Watch movie of tv series in past 30 days 
q25_13  Will take art, music, or dance class when able in short term 
 
The two five-level original variables of interest (and their replacments) 
q17  During Covid, how important are arts and cultural organizations 
q18  Before Covid, how important were arts and cultural organizations 
     _2  Slightly         (e.g.,  q17 = 2 becomes q17_2 = 1) 
     _3  Moderately 
     _4  Important 
     _5  Very  
 
NOI Variables 

In 2019, did you attend or participate in  … 
q7_1  Art museum 
q7_2  Children’s museum 
q7_3  Art gallery/fair 
q7_4   Botanical garden 
q7_5  Zoo or aquarium 
q7_6  Science of technology museum 
q7_7  Natural history museum 
q7_8  Public park 
q7_9  Architectual tour 
q7_10  Public/street art 
q7_11    Film festival 
q7_12  Music festival 
q7_13   Perfomring arts festival  
q7_15   Craft or design fair 
q7_16  Read books/literature 
q7_17  Food and drink experience 
q7_18  Nonmusical play 
q7_19  Musical 
q7_20  Variety or comedy show 
q7_21  Popular music 
q7_23  Jazz music 
q7_24   Opera 
q7_25  World music 
q7_26  Contemporary dance 
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q7_27   Ballet 
q7_28  Regional dance 
q7_29  Historic attraction/museum 
q7_30   Television program 
q7_31  Movies/film 
q7_32  Library 
q7_33  Cultural center 
q7_34  Video games/online gaming  
 
There were 18 strata in the stratified simple random probability sample.  We assign each 
member of that sample to Domain 1 and the members of the nonprobability sample to 
Domain 2 and to Stratum 19.  Implicitly assuming  =1, both domains are at first 
calibrated separately to 30 population variables defined by region, urbanization, race, 
hispanicity,  age, and education level using WTADJUST with the weight-adjustment-
function parameters in equation (5) set at L = 0 and U = 1020 (virtually infinity).    
 
An attempt an intial weight of 1 and set L = 1 with for the nonprobability sample failed 
for technical reasons related to how the SUDAAN program runs rather than the 
underlying theory.   One thing to try (which we have not yet done) is to set the intial 
weight for each member of the nonprobability sample at 25 (which is slightly less than  
N/n0 = 113,549/4,0000 = 28.38725, what we actually set as the initial weight for each 
member) and L at 1/25 = 0.04.  That is mathematically equivalent to assuming the 
probability on inclusion is a logistic function (because 1 + exp(𝐱𝑗

𝑇𝐠) =  25 (1/25 + 
exp(𝐱𝑗

𝑇𝐠∗), where only the coefficients of the intercepts for g and g*, or their equivalents, 
differ) .  
 
Table 1 displays differences in the estimated means (the proportion of 1’s expressed as a 
percent) for the variables of interest and the NOI variables.  Using a conservative 
Bonferroni correction because there are so many differences being measured, only those 
in yellow are deemed significant at the 0.1 level.  One variable of intereset has a 
significant difference as do four NOI variables.   Adding those four NOI variables for the 
selection model for the nonprobability sample and using WTADJX as described in the 
previous section,  produces the differences on the right-hand side of Table 2 for the 
variables of interest.  None are signficant at the 0.1 level after Bonferroni correction.         
 
We did not have time to investigate what  to choose.  We did look at  = 1 and 
compared the estimated t-values ((𝑝̂ − 𝑝)/𝑣1/2) for the means for the 20 variables of 
interest computed from the WTADJX-calibrated blended sample with those computed 
from the WTADJUST-calibrated probability sample.  These are displayed in Table 3.  
For both sets, only one 1 out of 20 of the estimated t-values is greater than 2 in absolute 
value, as we would expect.   Table 3 reveals that there are four such when computed from 
the WTADJUST-calibrated blended sample.   
 
If the 20 estimated means were unbiased and independent, then the sample mean and 
standard deviation of their t-values would be 0 and 1 respectively.  They are not 
independent; still Table 3 computes those values.  They are close to perfect for the 
WTADJUST-calibrated probability sample (0.052 and 1.01), which we know produces 
nearly unbiased estimates.  They are not that good for the WTADJUST-calibrated 
blended sample (0.380 and 1.36), which we suspect somerimes produces biased estmates.  
They are much closer for the WTADJX-calibrated blended sample (0.164 and 1.13), 
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which we hope produces nearly unbiased estimates or, at least, estimates with relatively 
small biases. 
The average effective sample sizes (𝑝(1 − 𝑝)/𝑣 ), assuming heroically that all three 
methods are unbiased, is approximately 739 for the WTADJUST-calibrated probability 
sample (which we know is unbiased), over three time higher, approximately 2,390, for 
the WTADJUST-calibrated blended sample (which evidence suggests is biased), and a bit 
lower than that, approximatley 2,481, for the WTADJX-calibrated blended sample 
(which we have reason to believe is either unbiased or has a greatly-reduced bias).  This 
suggest there are gains to be made from incorporating probability and nonprobability 
samples using WTADJX as described in the previous section.   

   
5. Some Concluding Remarks 

 

There remains much to be done, such as choosing a  for the samples under investigation, 
assessing how well the method described in the text works for the remaining 9,999 
simulated probability and nonprobability samples in the data sets described in Benoit-
Bryan and Mulrow (2021),  exploring ways to improve the model for inclusion into the 
nonprobability sample (e.g., by including more NOI variables estimatable from the 
probability sample, adding interaction terms, or setting bounds on the logit function).   
There was no probability-sample nonresponse in the data set investigated but the theory 
develop herein describes how to handle that possibility.   
 
One thing that is not yet discussed is variance estimation under the linear-prediction-
model framework.   When there is no estimated variable totals from the probability 
sample used in estimating the probability of inclusion into the nonprobability sample,  
and one assumes the errors in the linear models for the probability and nonprobability 
samples are independent across sample members, the near independence of the residuals 
in equation (9) suggest the variance estimator developed in the test is nearly unbiased 
under the prediction-model framework so long as the probability and nonprobability 
samples are distinct.  If not, a delete-a-group jackknife variance estimator (Kott, 2001) 
may be used with group membership of any repeatedly sample member the same for both 
its appearances.   We can show that this remains true when there are estimated variable 
totals from the probability sample used in estimating the probability of inclusion into the 
nonprobability sample, although the revised prediction model assumes E(yk) is a linear 
function of the components of xk rather than zk as in Kott and Chang (2010) (and the 
expected value of each component of zk is a linear function of the components of xk). The 
proof of this assertion is beyond the scope of this paper.  
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Table 1.  Differences in Estimated Domain Means (as Percents) Using 
WTADJUST  
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Table 2.  Differences in Estimated Domain Means (as Percents) Among the 

Variables of Interest:  Comparing Using WTADJUST to WTADJXT 
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Table 3.   t-values for the Estimated Means of the Variables of Interest Computed 
Three Ways 
 

Variable 

Probability Sample 

WTADJUST 
Blended Sample 

WTADJUST 

(=1) 

Blended Sample 
WTADJX 

(=1) 
q10_1 -0.99065 0.67878 0.50094 

q11_1 1.00639 2.89611 2.16935 

q25_1 0.20710 0.88154 1.13134 

q1_15 -1.19463 0.25967 -0.09930 

q6_9 1.67386 0.43554 0.34664 

q11_4 1.02645 2.24001 1.25431 

q10_3 -0.79613 -0.48440 -0.66086 

q7_14 -0.08139 -0.13219 -1.32624 

q7_22 -0.99647 1.28732 0.77016 

q6_1 0.95140 1.43630 1.31127 

q1_6 0.81299 0.38169 0.06789 

q25_13 -0.50996 -0.01880 -0.60255 

q17_2 -0.45649 -1.66936 -1.46063 

q17_3 -1.34542 -2.25072 -1.71539 

q17_4 2.29803 1.48587 1.66113 

q17_5 -0.90640 1.04816 0.42534 

q18_2 0.33557 -0.34277 -0.07007 

q18_3 -0.22834 -2.16198 -1.65571 

q18_4 0.58373 -0.08872 0.08769 

q18_5 -0.35780 1.72005 1.14356 

Mean 0.052 0.380 0.164 

Standard 

Deviation 

1.01 1.13 1.36 
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