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Abstract

We consider the problem of integrating a small probability sample (ps) and a non-probability sample

(nps). By definition, for the nps, there are no survey weights, but for the ps, there are survey weights.

The key issue is that the nps, although much larger than the ps, can lead to a biased estimator of a finite

population quantity but with much smaller variance. We begin with a relatively simple problem in which

the population is assumed to be homogeneous and there are no common units in the ps and the nps. We

assume that there are covariates and responses for everyone in the two samples, and there are no covariates

available for nonsampled units. We use the nps to construct a prior for the ps, particularly in small area

estimation. We also introduce partial discounting to avoid a dominance of the prior. Inverse probability

weighted estimators are used to do Bayesian predictive inference of the finite population mean. We show

how to extend our procedure to cover estimation for small areas, where auxiliary information is much needed,

and the nps is used as the prior with partial discounting. In our illustrative example on body mass index and

our simulation study, we compare our procedures with inference from the ps only estimate. Our procedure

provides improved estimates over the ps only estimate.

Key Words: Big data, Covariates, Finite population mean, Inverse probability weighting, Power prior,

Selection bias, Small area, Surrogate samples

1. Introduction

Undoubtedly, probability sampling is the gold standard among all data collection procedures. It

is based on randomization, and leads to unbiased and consistent estimates when a proper estimation

procedure is implemented. Yet probability sampling schemes pose difficulties because of high

nonresponse rates causing them to lose their much-needed probabilistic structure. On the other

hand, nonprobability samples lack this probabilistic structure and hence are grossly inaccurate.

For one thing, they are not representative of the population from which they are drawn. However,

nonprobability samples are easy to collect and therefore very cheap to run. Faced with expensive

surveys, government agencies are left with no choice but to enormously reduce efforts and costs

in planning and fielding probability samples. Citro (2014) mentioned seven challenges for official

statistics and stated, “In my view, to respond adequately to one or more, let alone all seven, of these

challenges, official statistical offices need to move from the probability sample survey paradigm of

the past 75 years to a mixed data source paradigm for the future.”
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It is not clear whether nonprobability sampling can replace probability sampling but the sit-

uation is threatening because of time, cost and nonresponse constraints (e.g., Beaumont, 2020;

Rao 2020). Therefore, it is important to join scientists in trying to find a resolution to this prob-

lem. Beaumont (2020) reviewed some approaches that can reduce, or even eliminate, the use of

probability surveys while preserving valid statistical inference. All his approaches use data from

nonprobability samples, but in most approaches probability samples are also used. He particularly

discussed the design-based approach based on probability sample, which is nonparametric, and

therefore is not subject to the risk of bias due to a mis-specified model, but it can be inefficient.

Rao (2020) reviewed various probability survey methods that are used to make valid inferences

about finite population parameters. This allowed him to show how these models can be extended

to nonprobability samples that can lead to valid inferences by themselves or when combined with

probability samples.

It is possible to make inference about a finite population quantity using a single nonprobability

sample only; see Rao (2020) for a discussion. One approach uses poststratification via multi-level

regression and poststratification (MRP); see Wang et al. (2015). There are at least three prob-

lems with MRP and they are sparseness of the poststrata, weak covariates and nonexchangeability

of poststrata effects. Therefore, it is unlikely for MRP to eliminate the selection bias inherent in

nonprobability samples; see Valliant (2020) who demonstrated that MRP does not work well for

nonprobability samples when there are weak covariates. Another approach is to use propensity

scores to produce nps survey weights and then proceed as in a regular probability sample; see El-

liott and Valliant (2017) for an informative review of quasi-randomization and the super-population

approach. Chen, Li and Wu (2020) supplemented a nonprobability sample with a probability sam-

ple to estimate propensity scores. A full Bayesian approach in this direction is given by Nandram,

Cao, Xu and Bhadra (2019). A third approach is to use a nonignorable selection model to remove

the selection bias; see Smith (1983) for pioneering work in this direction. Xu and Nandram (2019)

and Xu (2020) used this approach to obtain full Bayesian analyses. The references in these pa-

pers provide a historical development of this area. It is difficult to make efficient inference from

a nonprobability sample with considerable selection bias. From our investigation, this appears to

be correct. After all, a probability sample is the gold standard (high quality), but a nonprobability

sample has low quality (large bias, large mean squared error but unrealistically small variance). In

this paper, within the Bayesian framework, we use both the quasi-randomization approach and the

super-population approach.

The key problem of a non-probability sample is that it is very likely to lead to seriously biased

estimates of finite population quantities. Therefore, the large well-documented literature on selec-

tion bias is pertinent in the study of non-probability samples; these articles are too numerous to

mention here. But see Xu, Nandram and Manandhar (2020) and Choi, Nandram and Kim (2021)

for recent applications, and the references therein.

It becomes necessary to combine the two sampling processes. There are efforts to combine

both probability and nonprobability samples to produce a single inference that compensates for

the limitations of each process. Elliott and Haviland (2007) evaluated a composite estimator to

supplement a standard probability sample with a nonprobability sample. They showed that the
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estimator, based on a linear combination of both sample processes and a bias function, can produce

estimates with a smaller mean squared error (MSE) relative to a probability-only sample. Elliott

(2009) proposed a pseudo-design-based estimation procedure that uses a probability sample to

estimate pseudo-inclusion probabilities for elements of a nonprobability sample. Both samples are

then combined to derive estimates that are shown to have improved accuracy and smaller MSE

compared with those derived from a probability-only sample. See Elliott and Valliant 2017) for an

informative review. A limitation of these studies is the necessity of a large probability sample to

produce robust calibration weights or pseudo-inclusion probabilities.

Sakshaug, Wisniowski, Ruiz and Blom (2019), hencefort SWRB, and Wisnioski, Sakshaug,

Ruiz and Blom (2020), henceforth WSRB, gave very clear comparisons of probability sample

and nonprobability sample. SWRB stated, “Given the advantages of both sampling schemes, it

makes sense to devise a strategy to combine them in a way that is beneficial from both a cost and

error perspective.” In their conclusion, SWRB stated, “In conclusion, it is interesting to know that

probability and nonprobability samples can be integrated in a way that exploits their advantages

to compensate for their weaknesses and improve estimation of model parameters.” We are in

concordance with these authors.

There are many approaches to make inference about a population using a nonprobability sam-

ple only or a nonprobability sample integrated with a probability sample. In the latter case, it is

not clear which should be used to supplement the other. SWRB and WSRB, using the Bayesian

approach, supported the situation where the nonprobability sample should be used to supplement

the probability sample. We concur with these authors. However, it is possible, albeit with less qual-

ity, a nonprobability sample only can be used with some calibration (benchmarking) of covariates

to make inference about a finite population from the nonprobability sample only; evidently this is

risky. Meng (2018) argued that a small bias in big data can be catastrophic; see also Rao (2020) for

a review and an interpretation of Meng (2018) relevant to nonprobability samples. As pointed out

by SWRB and WSRB, it will be better to use a nonprobability sample to supplement a probability

sample.

While both SWRB and WSRB use the Bayesian framework to combine a nonprobability sam-

ple and a probability sample, we believe that this is the right way to go. Indeed, as they correctly

pointed out, data integration is a big strength of the Bayesian framework. Unlike other methods,

we can account for variability with virtually no additional effort. In a non-Bayesian framework,

one would need to appeal to other constructs (e.g., variance functions, bootstrapping or asymp-

totics that understate variability), thereby adding a degree of subjectivity or inconsistency. WSRB

provided an improved Bayesian analysis over SWRB. Both SWRB and WSRB are mainly inter-

ested in inference about regression coefficients. On the other hand, we are primarily interested in

inference about a finite population quantity especially in the presence of a nonprobability sample.

We combine the nonprobability sample and the probability sample, where one of them is used to

construct the prior. The question we ask is which one of these two approaches is better. We also

show how to discount the information provided by the prior in either case. While SWRB did not

use survey weights, WSRB did include the calibrated survey weights as a covariate. A major part

of our work is to incorporate survey weights into the likelihood.
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Like SWRB and WSRB, we use a multiple regression model for the finite population of N

units,

yi | β
˜
,σ 2 ind∼ Normal(x

˜

′
iβ
˜
,σ 2), i = 1, . . . ,N,

with appropriate priors on model paramets, β
˜

and σ 2, to obtain a fully Bayesian approach. We

assume priors on both parameters that are completely improper and noninformative. That is,

π(β
˜
,σ 2) ∝

1

σ 2
,β

˜
∈ Rp,σ 2 > 0.

Models of this form provide proper posterior distributions provided that the matrix of covariates is

full rank. This model holds for all units in the population and so it is called a population model.

Within the Bayesian approach, once a full model is written down, it is not subject to change; nothing

else should be considered when it is fit using MCMC or other sampling-based methods, otherwise it

becomes incoherent. However, for both sampling processes, probability sample and nonprobability

sample, we need to make the necessary adjustments to the population model to accommodate the

two processes with survey weights and discounting; see Pfeffermann (1993) for an adjustment to a

population model to account for departures (e.g., selection bias) from the sampling model.

We observe a probability sample that has survey weights due to the selection of the sample;

survey weights carry the selection bias that we want to remove. When a non-probability sample

is taken, there are no survey weights and therefore the selection mechanism is not available. Our

main problem is to construct a prior based on the ps (nps) when the actual data come from the nps

(ps). In the nps, the sample size is n1 and in the ps the sample size is much less, say n2. Our ps is

small and n2 is about 10-20% of n1.

There are three problems; see Rao (2020).

1. Responses are available in both the ps and the nps. In this case, one might use either the ps

or the nps as the actual sample. We will need to calibrate the nps to the ps.

2. Responses are not observed in the ps. In this case, we might prefer to use the ps to construct

the weights for the nps and use the nps as the actual sample. Again, we will need to calibrate

the nps to the ps.

3. Only the nps is available. We assume that population totals are available from a census or

administrative records. This can be handled as in Nandram, Cao, Xu and Bhadra (2019) and

Xu and Nandram (2019, 2020) and Zhiqing (2020).

To focus our development, we study body mass index (BMI) as the variable of interest with

covariates, age, race and sex, from eight counties in California, based on a probability sample. The

covariates, responses (BMI) and survey weights are all known. We construct two examples out of

these data, one is a single sample example and the other is a small area example.

First, we use six (6) counties as the nps and the remaining two (2) as the ps. The weights of

the nps are discarded, and assumed to be unknown. The population is assumed to be set where the

ps is taken, so that the population size is roughly the sum of the survey weights for the ps. The
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population size is assumed to be roughly the sum of the survey weights for the ps, and we also

assume that both the ps and nps are sampled from this population. The covariates and responses

in the nps are (x
˜

1i,y1i), i = 1, . . . ,n1. The covariates, responses and survey weights for the ps

are (x
˜

2i,y2i,w2i), i = 1, . . . ,n2. The weights are missing from the nps, but we denote them by

w1i, i = 1, . . . ,n1. We will call this the single area example.

Second, we construct two samples from each of the eight (8) counties. We take about 80%

for nps and 20% for the ps. Again, we discarded the weights from the nps and they are assumed

unknown. The population size of each county is roughly the sum of the survey weights in the

ps. We will call this the small area example. Here, the covariates, responses and survey weights

in the nps are respectively (x
˜

1i j,y1i j,w1i j), i = 1, . . . , ℓ, j = 1, . . . ,n1i and covariates, responses and

survey weights of the ps are (x
˜

2i j,y2i j,w2i j), i = 1, . . . , ℓ, j = 1, . . . ,n2i; the survey weights w1i j are

unknown in the nps.

Chen, Li and Wu (2020) used a ps and a nps to obtain survey weights in the nps. There was

no study variable in the ps and so this is really a very limited data integration problem. Actually

their method cannot be extended to accommodate a study variable in the ps. Also, their method

uses logistic regression to construct the propensity scores and then the survey (design) weights are

obtained by taking reciprocals. A summary of this method is given in appendix A. Chen, Li and

Wu (2020) did not calibrate the nps to ps. We have winsorized the estimated survey weights in both

directions: if they are smaller than 1 or they are extremely large. We have described the calibration

and winsorizing (trimming) procedure of the nps in Appendix B; see Haziza and Beaumont (2017)

for a review. For small area estimation, the computational procedure of Chen, Li and Wu (2020) is

unstable, so we had to do this procedure for the entire ensemble at once, not each area at a time.

Nandram, Choi and Liu (2021) considered a problem similar to the one discussed here, and

they have used the BMI data as an illustrative example. However, they did not use the method of

Chen, Li and Wu (2020) to estimate the propensity scores (nps weights). Rather they used record

linkage via the covariates to fuse the survey weights of the ps to the nps; the survey weights are

calibrated to the population size, estimated via the ps. This method avoids the logistic regression

(not robust) on the selection indicators, but it borrows the survey weights, albeit not the best idea.

As there is no model for the participation variable, the issue of double robustness is null and void.

Both Bayesian methods and non-Bayesian methods (least squares together with the bootstrap) are

used.

In the single area example, we consider five scenarios (models) to make inference about the

finite population mean when we have a probability sample and/or a nonprobability sample. It is

possible to ignore the nps altogether, and use only the ps. However, if we have only the nps, we

have to make do with what we have; fielding a small parallel ps may be costly for some agencies.

It is possible to use only the nps, but this has the risk of large bias and the misleading feeling of

small variance just because of its large size. Using only the ps can provide unbiased estimates, but

the mean squared error will be large if the sample size of the ps is small. However, the ps gives

a good sense of what the point estimate should be. Therefore, when combining the ps and the

nps, although with a relatively small sample size, the ps can at least help to guide the estimation

procedure of the nps.
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As a summary, the novelty of our approach is three-fold. First, we provide a full Bayesian

method to combine two likelihoods, one based on the probability sample and the other based on

the nonprobability sample, incorporating the survey weights. One of these is used as the prior.

Second, the “prior” data are partially discounted using a “power prior”, thereby preventing the

prior data, ps (nps), to dominate the actual data, nps (ps). Third, we adjust the survey weights

to get an effective sample size. This sample size is smaller than the original sample size, thereby

accounting for reduced variability induced by the design features in drawing the ps. These traits

make our approach novel, more coherent than SWRB and more competitive than WSRB.

This paper has six sections, including this one. In Section 2, we review preparatory materials

in the context of data integration on a more informative review of Sakshaug et al. (2019), the use of

the power prior, and a review of Meng (2018) for Big Data. In Section 3, we describe our Bayesian

methodology that uses discounting and adjusted survey weights for a single area. In Section 4, we

discuss an application on body mass index and we specifically describe the five scenarios (models).

We also describe a simulation study to make further comparisons of the five scenarios. In Section 5,

we discuss small area estimation using a unit-level model together with a numerical example as we

described above. Section 6 provides some concluding remarks. The appendices provide technical

details on propensity scores, calibration and computational details associated with the single area

example and small area example.

2. Preparatory Materials

In this section, we provide a brief review of of data integration as presented by Sakshaug et al.

(2019), the power prior and Big Data as in Meng (2018).

2.1 A Quick Review of Sakshaug et al. (2019)

SWRB used a large non-probability sample to supplement a relatively much smaller probability

sample (a simple random sample). Essentially, under the Bayesian paradigm, they have used the

non-probability sample to provide a prior for the probability sample. They are interested in super-

population parameters, but not really finite populations. Also, survey weights are not studied in

their work. Therefore, they have studied how well the regression coefficients in the model are

estimated. They have also looked at prediction in the sense that they used part of the ps to fit the

models and predict the part that is left off. Our work is motivated by SWRB, but we are interested

in prediction for a finite population, a much more difficult problem than their prediction problem.

Moreover, we want to integrate both datasets into our likelihood function with appropriate penalties

and adjustments for survey weights.

SWRB assumed that the nps and the ps are fielded by the same questionnaire. Let y
˜

2 denote

the vector of n2 responses and X2, a n2 × p matrix of covariates associated with the ps, including

an intercept. For their baseline model, called the reference model or Model 1, they assume

y
˜

2 ∼ Normal(X2β
˜
,σ 2I).
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Apriori, they assume that independent priors for the p components of β
˜

,

β j ∼ Normal(β j0,σ 2
β j0

), j = 1, . . . , p

with β j0 = 0 and σ 2
β j0

= 106. For σ 2, they assumed , σ2 ∼ InvGam(.001, .001), a proper diffuse

prior. Denote the posterior mean of β
˜

as β̂2. Under this prior, the posterior mean makes no use of

the nps data.

In Models 2 and 3, they used the non-probability sample to construct a prior for the probability

sample. Let y
˜

1 denote the vector of n1 responses and X1, a n1 × p matrix of covariates associated

with the nps, including an intercept. For Model 2, they have double-used the data, i.e., β̂
˜

2, an

incoherent procedure in Bayesian statistics. They fit a model, similar to Model 1, to the nps to get

β̂
˜

1. Then, they assume

β j ∼ Normal(β̂
˜

1 j,(β̂
˜

1 j − β̂
˜

2 j)
2), j = 1, . . . , p

with the same prior for σ 2. Put aside that this prior double-uses the data, the rationale for the

chosen prior variance of β j is left unclear.

In Model 3, they have bootstrapped the nps data to obtain a prior for the β
˜

in the ps. They

obtained

β j ∼ Normal(β̂
˜

2 j, σ̂
2
B, j), j = 1, . . . , p,

where σ̂ 2
B, j is a bootstrap estimate.

One can believe that Model 2 is not sensible. Model 3 indicates a very strong prior on β j

because the bootstrap prior variance above will be very small due to the large size of the nps.

Evidently, this is unrealistic and suggests one could make inference from the prior only. Model 1

is fine, but one can simply use the prior π(σ2) ∝ 1/σ 2, an objective prior, and there is no conflict.

It is just as simple to fit a model to the nps similar to the ps. Moreover, clearly independent priors

on the regression coefficients is not sensible. If one needs to use the nonprobability sample to

construct a prior for the probability sample, one has to be careful because this prior can dominate

the probability sample. In fact, it actually happens in the final estimates. One needs to penalize the

prior constructed using the nonprobability sample.

It is possible to convert the nps to a ps. This can be done by first estimating the survey weights

using propensity scores (e.g., Chen, Li and Wu 2020), and then adjusting the nps to a simple

random sample with a smaller effective sample size using surrogate sampling (Nandram 2007).

Assuming no overlaps, one can fit the same model to both datasets (now both are simple random

samples). This model is

y
˜

t | β
˜
,σ 2 ind∼ Normal(Xtβ

˜
,σ 2), t = 1,2, π(β

˜
,σ 2) ∝

1

σ 2
,

where the length of y
˜

1 is n∗1 ≤ n1, with a corresponding adjustment on X1. [An adjustment is not

needed for the simple random sample.] The joint posterior density of β
˜
,σ 2 is proper once at least

one of X1 or X2 is full rank.
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Based on the simulation study they did for both estimation and prediction, the results appear

very good; prediction results being less convincing. The results indicate that an increase in bias

due to using the nps-based prior, is offset by a reduction in variance, but a degree bias still re-

mains. They also performed an analysis on a real dataset and the results appear satisfactory. In

the discussion, they stated, “In conclusion, we find that augmenting a probability sample with a

nonprobability sample under the Bayesian framework can produce survey estimates with smaller

mean squared error and potentially large cost savings relative to probability-only samples.” We

concur with SWRB.

2.2 Power Prior

The power prior is an informative prior that combines historical data with current data. It

has been extensively used in many different applications over the past thirty years. However, we

must be careful that the historical data do not dominate the current data. In an interesting paper,

Ibrahim and Chen (2000) reviewed the properties of the power prior for arbitrary regression models

(e.g., linear models and generalized linear models). They discussed many applications in diverse

disciplines. However, they expressed doubts about the computational aspect of the power prior.

Later Ibrahim, Chen, Gwon and Chen (2015) reviewed many theoretical properties for a much

larger class of models with many different formulations. There are many versions of the power

prior.

In our application, we can treat the probability sample or the non-probability sample as his-

torical data with the appropriate power prior. The power prior is a penalty to the historical data

partially discounting it; here the ps or the nps is the historical data. We show how to use the power

prior to partially discount the non-probability sample and vice versa.

Suppose y | θ
˜
∼ f (y | θ

˜
). Then, one version of the the power prior is

f (y | θ
˜
,a) =

{ f (y | θ
˜
)}a

∫

y{ f (y | θ
˜
)}ady

,0 ≤ a ≤ 1.

It is important to note that a may not be identifiable in this power prior alone.

If the historical data, y11, . . . ,y1n1
, and current data, y21, . . . ,y2n2

, are available, then assuming

that the historical data and current data are independent, the joint probability ‘density’ function of

the data is

f (y
˜

1,y
˜

2 | θ
˜
,a) =

n1

∏
i=1

{ f (y1i | θ
˜
)}a

∫

y1i
{ f (y1i | θ

˜
)}ady1i

n2

∏
i=1

f (y2i | θ
˜
),0 ≤ a ≤ 1.

Here a may be identifiable, but some control may be needed over a in general. Besides for gen-

eralized linear models, there may be difficulties in computation, particularly the normalization

constant. This problem is particularly severe when Markov chain Monte Carlo methods are used

for computations. This prompted Ibrahim, Chen, Gwon and Chen (2015) and others to specify a,

and they suggested many methods for doing so. This leads to extensive sensitivity analysis. We

keep a random, and if it is needed, a can be specified to be in a sub-interval of (0,1) (e.g., (.5,1)
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for at most 50% discounting) rather than to actually specify a. Besides it is really a bad idea to

specify a in a Bayesian setting because a serves a very important function in the model; the data

should ‘speak’ for it.

Let us consider a simple example for the power prior,

y11, . . . ,y1n1
| θ ,σ 2,a

iid∼ Normal(θ ,
σ 2

a
)

and for the current data,

y21, . . . ,y2n2
| θ ,σ 2 iid∼ Normal(θ ,σ 2).

Clearly, a is not identifiable in the power prior if σ 2 is also unknown. However, if σ 2 is known, a

serves the role as a penalty to increase variance (i.e., σ 2 to σ 2/a,0 < a < 1).

Assume the prior π(θ ,σ 2,a) ∝ 1/σ 2. Letting D = (y
˜

1,y
˜

2) and using Bayes’ theorem, the joint

posterior density is

π(θ ,σ 2,a | D) ∝ an1/2

(

1

σ 2

)(n1+n2)/2+1

×

exp

{

− 1

2σ 2
{a(n1 −1)s2

1 +(n2 −1)s2
2 +an1(ȳ1 −θ)2 +n2(ȳ2 −θ)2}

}

,0 ≤ a ≤ 1,

where ȳt s2
t , t = 1,2, are the sample means and the sample variances.

Letting λ = an1

an1+n2
, it follows that

θ | σ 2,a,D ∼ Normal{λ ȳ1 +(1−λ )ȳ2,(1−λ )σ 2/n2},

σ 2 | a,D ∼ InvGam

{

n1 +n2 −1

2
,
n2λ (ȳ1 − ȳ2)

2 +a(n1 −1)s2
1 +(n2 −1)s2

2

2

}

and

π(a | D) ∝
an1/2

√

(1−λ )/n2

{(n2λ (ȳ1 − ȳ2)2 +a(n1 −1)s2
1 +(n2 −1)s2

2}(n1+n2−1)/2
,0 ≤ a ≤ 1.

Therefore, π(a | D) is well defined for all 0 ≤ a ≤ 1. Moreover, there will be no difficulties in

computation because a can be sampled using a grid method.

In the single area example, the difference between this illustration and our problem is that we

have survey weights and covariates. But the implementation is similar in that we do not need to

use a Gibbs sampler; we can use the multiplication rule to draw the samples as in this illustrative

example. As pointed out in the literature on power priors, it is possible to have poor mixing

when Markov chain Monte Carlo methods (e.g., the Gibbs sampler) are used; this is caused by the

stochastic feature in a and this is why researchers have turned away from a full specification of a

together with extensive sensitivity analysis, a nuisance. But this slow mixing can be avoided by

using a carefully planned block Gibbs sampler instead, as in our implementation of the small area

model for the non-probability sample later.
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2.3 A Quick Review of Meng (2018)

When the sample is unbalanced with respect to the target population composition, larger data

volume increases the relative contribution of selection bias to absolute or squared error. Meng

(2018) called this phenomenon a “Big Data Paradox”, and he showed both theoretically and em-

pirically that the impact of selection bias on the effective sample size can be extremely large.

Primarily, he introduced data defect index, drop out odds and the degree of uncertainty.

He considered a finite population as in survey sampling. So let Ri, i = 1, . . . ,N, denote the sam-

ple (response) indicators, where Ri = 1 if the ith unit is selected and Ri = 0 otherwise. He discussed

Big Data, self-reported or administrative data, that have no consideration of the R-mechanism. On

the contrary, in probability sampling the R-mechanism plays a major role. He further assumed that

there is no response error (measurement error). The population values are denoted by y1, . . . ,yN ,

with Ri pairing up with yi. Note that for any R-mechanism, ∑N
i=1 Ri = n, and we are interested in the

finite population mean, Ȳ = 1
N ∑N

i=1 yi, although interest can be on any finite population quantity.

Let ȳ denote the sample mean and f = n
N

, the sampling fraction. The discussion applies to both

continuous and discrete y. We also let Var(yi) = σ 2
Y .

Meng (2018) brought to light a very important formula for the study of Big Data. He stated

that the bias in using ȳ to estimate Ȳ is given by

ȳ− Ȳ = ρRY ×
√

1− f

f
×σY ,

where ρRY , the correlation between R and Y , is the data quality,

√

1− f
f

is the data quantity and

σY is the problem difficulty, where ρRY is the most important measure in his work. The perfect

situation occurs when ρRY = 0. However, ρRY is not identifiable, creating enormous difficulties

in the analysis of Big Data that are mostly very large non-probability samples (without an R-

mechanism), where N could be of the order of several millions of records. Data quantity is easy

to understand. When f = 1, the population values of the variable of interest, y, are fully recorded,

and the error is zero, and when f = 0, the error is infinite. It is possible to decrease σY by adding

more information (i.e., increasing the sample size); this is not necessarily true though. However,

the strength of the bias is captured by the magnitude of ρRY and its sign tells us about the direction

of the bias.

Meng (2018) showed that the mean squared error of ȳ is given by

MSE(ȳ) = ER(ρ2
RY )×

1− f

f
×σ 2

Y = DI ·Do ·DU ,

where ER denotes expectation with respect to any chosen distribution of R, conditional on ∑N
i=1 Ri =

n, typical in finite population calculations. He called DI the data defect index, Do the drop out odds,

and DU the degree of uncertainty. He pointed out that the most relevant quantity to decrease the

MSE(ȳ) is DI , but this is also the most difficult quantity to estimate because it is not identifiable;

clearly DI cannot be estimated from the data because the nonsample y’s are not available. Meng
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(2018) pointed out that the DI is also useful in the context of missing data because it can used as a

measure of non-ignorability. More importantly, he showed that DI ∝ N−1 for probability sampling

but for non-probability Big Data, DI does not vanish with large N.

For binary data (i.e., yi = 0,1), Meng (2018) used the Hoeffding-Frechet bounds to obtain

−min

{

√

Do

OY

,

√

OY

Do

}

≤ ρRY ≤ min

{

√

OY Do,
1√

OY Do

}

,

where OY = pY

1−pY
and pY = P(yi = 1). The upper bound is achieved when Ri = yi and the lower

bound is achieved when Ri = 1− yi. It appears that ρRY will almost always be very small (close to

the lower bound because of its non-identifiability); yet it can be very disastrous.

Finally, he stated the Big Data Paradox, “The bigger the data, the surer you fool yourself.” He

showed that the effective sample size,

ne f f =
1

DoDI

≤ n∗e f f =
n

1− f

1

NDI

,

and because DI = O(1), this causes NDI to increase very rapidly with N and the effective sample

size (ESS) is O(1/N). That is, the ESS is dramatically reduced; it does not matter how small DI is,

thereby creating a “butterfly” effect. This appears to be a bit controversial. He applied his theory

to the 2016 US Presidential election. He attempted to use many datasets to get some control over

ρRY ; see Appendix E for estimation of ρRY .

3. Bayesian Methodology for the Single Area Example

We consider the homogeneous case, consisting of a nonprobability sample and a probability

sample. In the construction here, the survey weights are very important and they are to be used to

avoid bias due to the sample design and other post-design adjustments such as adjustment for non-

response and certain demographics. However, it is worth mentioning again that we are considering

the case of a homogeneous sample (population). That is, there are no sub-groups (e,g., small areas)

or clustering. We also discuss how to partially discount the prior data (ps or nps).

We note here that the nps and the ps are assumed to be independent samples from the same

population (finite population or super-population). The ps is a probability sample, and therefore, it

is a representative sample. The nps is a nonprobability sample, and therefore, it is not a represen-

tative sample from the same population. We estimate propensity scores (survey weights) tto make

the nps compatible with the ps; see Appendix A. If nps (ps) is used as a prior, there is discounting

of the nps (ps) because the prior data are historical data.

First, in our approach we need the effective sample size and the adjusted survey weights. Let

yi, i = 1, . . . ,n, be independent with E(yi) = µi, var(yi) = ν2
i and Wi, i = 1, . . . ,n are the original

survey weights. This is a standard assumption in a super-population model, but it is questionable

as the units may not be independent. Then, with just this assumption, Potthoff, Woodbury and
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Manton (1992) showed that the equivalent (effective) sample size is no, where

no =
(∑n

i=1Wi)
2

∑n
i=1W 2

i

.

The effective sample size, no, indicates the extent to which the variance is increased by the unequal

weighting. Then, the adjusted survey weights required to eliminate bias introduced by the original

survey weights are

wi = no

Wi

∑n
j=1Wj

, i = 1, . . . ,n. (1)

[Note the use of small w for adjusted survey weights.] Here ∑n
i=1Wi = N, the population size,

and ∑n
i=1 wi = no = ∑n

i=1 w2
i . We note that no has some interesting properties. First, if the Wi are

nearly equal, no = n. Second, if n > 1, no > 1. Third, no is invariant to scale and therefore the

wi are invariant to scale. The adjusted weights in (1) will play an important role in the Bayesian

methodology.

We can now write the joint density of y1, . . . ,yn as a weighted product,

g(y
˜
| θ

˜
,w

˜
) =

n

∏
i=1

{ f (yi | θ
˜
)}wi

∫ { f (yi | θ
˜
)}widyi

, (2)

where we have conditioned on w
˜

to cover the case when the survey weights are random. [Hence-

forth, we will drop the conditioning on w
˜
.] Apart from the normalization constant, this is similar

to what we do in survey sampling, and the normalization constant will make no difference under

normality.

In (2), we are assuming that the population is homogeneous. If the population is heterogeneous,

and we know the sub-groups (e.g., small areas or clusters), (2) must be applied to each of them

separately. Also, the effective sample size formula given here is applicable under independence.

Second, we describe how to use the power prior to partially discount for the prior data. If we

put a prior on θ
˜
, say π(θ

˜
), using Bayes’ theorem,

π(θ
˜
| y

˜
) ∝ π(θ

˜
)g(y

˜
| θ),

which we assume is proper. Actually, we want to construct an informative prior for θ
˜

using the nps

(ps) when the actual data are the ps (nps). We want to do so to avoid the prior from dominating

the actual sample information, and therefore, some discounting is necessary. That is, the nps

(ps) is used to construct a data-based prior with some discounting; the ps and nps are assumed

independent. The power prior can be used for this purpose; see Ibrahim and Chen (2000) and

Ibrahim, Chen, Gwon and Chen (2015).

In the case of the regression problem stated here, if the nps is used to construct the prior,

π(β
˜
,σ 2 | y

˜
1,a) ∝

1

σ 2

n1

∏
i=1

{aw1i

σ 2
}1/2e

− a

2σ2 ∑
n1
i=1 w1i(y1i−x

˜

′
1iβ

˜
)2

,
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where we have used the prior π(β
˜
,σ 2) ∝ 1/σ 2. It is easy to draw samples of (β

˜
,σ 2) because

β
˜
| σ 2,y

˜
1 ∼ Normal







β̂
˜
,
σ 2

a

(

n1

∑
i=1

w1ix
˜

1ix1i
˜

′
)−1







,

where β̂
˜
=
(

∑n1

i=1 w1ix
˜

1ix1i
˜

′)−1 ∑n1

i=1 w1ix
˜

1iy1i and

σ 2 | y
˜

1 ∼ IGam{n1 − p

2
,

a∑n1

i=1 w1i(y1i − x
˜

′
1iβ̂

˜
)2

2
}.

Note that we can specify a because σ2

a
is identifiable but not a or σ 2 separately. In fact, this is the

prior for β
˜
,σ 2,a when a ∼ Uniform(0,1).

For our problem, if the nps is used to construct the prior and the ps is the actual sample, the

joint posterior density is

π(θ
˜
,a | y

˜
1,y

˜
2) ∝ π(θ

˜
)π(a)

n1

∏
i=1

{ f (y1i | θ
˜
)}aw1i

∫ { f (y1i | θ
˜
)}aw1idy1i

n2

∏
i=1

{ f (y2i | θ
˜
)}w2i

∫ { f (y2i | θ
˜
)}w2idy2i

,0 ≤ a ≤ 1,

where a is a discounting factor for the power prior. Similarly, if the ps is used to construct the prior

and nps is the actual sample, the joint posterior density is

π(θ
˜
,a | y

˜
1,y

˜
2) ∝ π(θ

˜
)π(a)

n1

∏
i=1

{ f (y1i | θ
˜
)}w1i

∫ { f (y1i | θ
˜
)}w1idy1i

n2

∏
i=1

{ f (y2i | θ
˜
)}aw2i

∫ { f (y2i | θ
˜
)}aw2idy2i

,0 ≤ a ≤ 1.

We note that although a is not identifiable in the prior alone, as the two samples are combined, a

becomes identifiable, at least weakly.

We assume that there are no overlaps between the nps and ps. That is, a unit is not captured

in both the ps and the nps. We note that to stay within the Bayesian paradigm, we cannot use the

responses from the actual sample to construct the prior; all other variables can be used.

With the nps as prior, the appropriate posterior density is

π(β
˜
,σ 2,a | y

˜
1,y

˜
2) ∝

1

σ 2

n1

∏
i=1

{aw1i

σ 2
}1/2e

− a

2σ2 ∑
n1
i=1 w1i(y1i−x

˜

′
1iβ

˜
)2

n2

∏
i=1

{w2i

σ 2
}1/2e

− 1

2σ2 ∑
n2
i=1 w2i(y2i−x

˜

′
2iβ

˜
)2

,0 ≤ a ≤ 1,

where we assume a noniformative uniform prior on a. Here, the parameters can be drawn by simply

using a random sampler (not a Markov chain). It is possible to integrate out β
˜

and σ 2 to get the

posterior density of a; and samples from the posterior density of a can be drawn easily using a grid

method. Also, posterior propriety can be established.

Letting y
˜
= (y

˜
1,y

˜
2), the joint posterior density can be written as

π(β
˜
,σ 2,a | y

˜
) ∝ an1/2(

1

σ 2
)

n1+n2
2

+1e
− 1

2σ2 Q
,0 ≤ a ≤ 1,
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where Q = a∑n1

i=1 w1i(y1i − x
˜

1iβ
˜
)2 +∑n2

i=1 wi2(y2i − x
˜

2iβ
˜
)2. In Appendix C, we obtain a random

sampler to draw from the joint posterior density of β
˜
,σ 2,a | y

˜
and we show that the joint posterior

density is proper. We state the main distributions to get a random sampler.

For convenience, letting a1 = a,a2 = 1 (i.e., nps is used as a prior), we define

A =
2

∑
s=1

ns

∑
i=1

aswsix
˜

six
˜

′
si, b

˜
=

2

∑
s=1

ns

∑
i=1

aswsix
˜

siysi and d =
2

∑
s=1

ns

∑
i=1

aswsi(ysi − x
˜

′
siβ̂

˜
)2.

Then, letting β̂
˜
= A−1b

˜
, we have

β
˜
| σ 2,a,y

˜
∼ Normal(β̂

˜
,σ 2A−1),

σ 2 | a,y
˜
∼ IGam

(

n1 +n2 − p

2
,
d

2

)

,

and

π(a | y
˜
) ∝

an1/2 | A |−1/2

d(n1+n2−p)/2
,0 ≤ a ≤ 1.

The joint posterior density is proper because 0 ≤ a ≤ 1 and all quantities are well defined, provided

the design matrix, X2, of the ps is full rank. We can draw a sample from π(a | y
˜
) using the grid

method. The other parameters, β
˜

and σ 2 are drawn in a standard manner. However, the main

difficulty is to find the inverse and the determinant of A at each value of a because a is jittered

at each draw from its discrete distribution (i.e., the draws of a are different almost surely). It is

possible to get around this difficulty using a sub-sampling procedure, albeit with less quality; yet

we might want to do so.

Here, we assume that the actual sample is the ps, and the nps plays the primary role in the

construction of the prior. By interchanging the roles of a1 and a2, we will get the posterior density

for the case where nps is the actual sample and the ps plays the primary role in the construction of

the prior.

It is difficult to do prediction fully within the Bayesian paradigm because the nonsampled co-

variates are unknown and the population is fairly large. One can fill in the nonsampled covariates

subject to some constraint like the total for each covariate is known. In this case, one would need

to sample the entire population using surrogate sampling. That is, once the parameters are esti-

mated from the sample model (population model adjusted with survey weights and the discounting

factor), one can then use the appropriate parameters in the population model to sample all the

N values of the study variable (i.e., projective inference). This is surrogate sampling (see Nan-

dram 2007, Nandram and Choi 2010 and many others). However, for a large population this is a

time-consuming procedure that depends on external sources of information (e.g., webscraping or

administrative records for N and the total for each covariate). Based on quasi randomization, we

have used an alternative procedure.

It is true that given β
˜
,σ 2 and all the sample data, y

˜
s,

Ȳ | β
˜
,σ 2,y

˜
s ∼ Normal

(

X̄
˜

′β
˜
,
σ 2

N

)

,
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where X̄
˜
= 1

N ∑N
i=1 x

˜
i, population average covariate, and N, the population size, are both unknown,

and in the Bayesian paradigm, these are parameters. Here, using the ps and inverse probability

weighted estimators,

Ȳ |
{

β
˜
,σ 2, X̄

˜
=

∑n2

i=1W2ix
˜

2i

∑n2

i=1W2i

,N =
n2

∑
i=1

W2i,y
˜

s

}

∼ Normal

{

∑n2

i=1W2ix
˜
′
2i

∑n2

i=1W2i

β
˜
,

σ 2

∑n2

i=1W2i

}

,

where W21, . . . ,W2n2
are the original survey weights in the ps. We have used this same technique for

all five scenarios (models); in Scenario G below, we assume simple random sampling (i.e., survey

weights are equal). Unfortunately, it is difficult to take the variabilities (not quasi randomization)

of the mean and variance into consideration, and further study is needed in a super-population

model-based analysis like what we attempt here. One way to do so is to bootstrap the probability

sample.

4. Numerical Analysis for the Single Sample Example

In this section, we consider numerical analysis for the single sample example. Specifically, we

use the example on BMI data to compare different scenarios (models) and we present a simulation

study.

As a preliminary analysis, we have looked at the probability sample only, (x2i,W2i,y2i), i =
1, . . . ,n2. By simply bootstrapping these data, we can provide distributions for N, X̄

˜
,Ȳ . We have

obtained B = 10,000 Bayesian bootstrap samples, each represented by (x∗2i,W
∗
2i,y

∗
2i), i = 1, . . . ,n2.

Then, we computed Nb = ∑n2

i=1W ∗
2i, X̄

˜
d = ∑

n2
i=1 W ∗

2ix
∗
2i

Nb
and Ȳb =

∑
n2
i=1 W ∗

2iy
∗
2i

Nb
,b = 1, . . . ,B. A 95% cred-

ible interval for Ȳ is (25.008,27.115) with posterior mean, PM = 26.002 and posterior standard

deviation, PSD = .534. The key question is, “Can we keep PM the same and considerably reduce

the PSD?” We have also a 95% credible interval for N is (1,946,029, 2,837,823) and for X̄
˜

, they

are respectively (42.791, 50.380), (.012, .060) and (.437, 27.115), corresponding to age, race and

sex. It is possible to use the Bayesian bootstrap distributions to express uncertainty in the prediction

about the inverse probability weighted estimators. This can be coupled with the Bayesian method.

We describe five scenarios, which we denote by B, C, D, E, G. We want to see how the weights

and the discount factor change the Bayesian predictive inference. The five scenarios (models) are

given next.

i. B uses the nps to make inference; the weights are obtained via propensity scores assisted by

the ps.

ii. C uses both the ps and the nps; the nps is used as the prior and there is partial discounting.

iii. D uses both the ps and the nps; the ps is used as the prior and there is partial discounting.

iv. E uses only the ps with the survey weights, of course.

 
1582



v. G uses only the ps; weights are omitted, and therefore G is different from E. However, N is

still unknown, and we have used N from the ps.

A comparison of these scenarios is informative and it provides important clues on survey weights,

discounting and data integration.

4.1 BMI Data

We analyze the BMI data on the 8 counties in California in the single sample, a nonprobaility

sample and a probability sample. We note that the correlation between the BMI values and the

survey weights for the probability sample is almost zero (≈ −.145), thereby there is little effect

from the survey weights; it is a bit disappointing that the correlation is so low, but there are still

important differences among the five scenarios.

In Table 1, we present posterior summaries of the finite population mean. We use the posterior

mean (PM), posterior standard deviation (PSD), numerical standard error (NSE, not really neces-

sary here), posterior coefficient of variation (PCV) and 95% credible interval. We see that the PM

of E is different from the other four models which are very similar. For PSDs, B, C, D are similar

with those for E and G much larger. NSEs and PCVs are very good for all models. The 95% HPD

intervals for B, C, D are similar and to the right of E; G has wide intervals. As expected, E should

be unbiased with large PSD.

In Figure 1, we have compared the posterior densities of the finite population mean for the five

methods. All posterior densities are unimodal with B, C and D concentrated around 27; E and G

are different from these. In the plot, E is to the left; E and G have very large spread.

The discount factor a is significant when the nps is used as the prior [95% HPD interval is

(.670, .945)] and it is nearly 0 when the ps is used as the prior [95% HPD interval is (.989, .999)].
This is sensible because the ps is small and of high quality and the nps is large but of low quality.

We have looked at similar posterior summaries for the regression coefficients, variance, σ2, and

the discounting factor, a. We note that SWRB and WSRB were mainly concerned about regression

coefficients. Inference about β1, the intercept, is similar over the five models. However, there

are some differences of the other regression coefficients. For models C and D, all parameters are

important. In models A, E and G, β3,β4 are important; for models B and G, β2 is also important.

The PSDs for models B, C, D and E, which are similar (D has the smallest PSD), are much smaller

than those for model G.

We use the Bayesian bootstrap to assist taking care of the variability in the estimated survey

weights for the non-probability sample. Specifically, we incorporate the variability of the estimated

weights, W2 j, j = 1, . . . ,n2, in the models. We also assess the variability in estimating the population

size by ∑n2

j=1W2 j = N and x̄2
˜
=

∑
n2
j=1 W2 jx

˜
2 j

∑
n2
j=1 W2 j

. The procedure has the following steps.

a. Use the Bayesian bootstrap to draw a random sample from the nps and ps respectively.

b. Compute ∑n2

j=1W2 j = N and x̄2
˜
=

∑
n2
j=1 W2 jx

˜
2 j

∑
n2
j=1 W2 j

.
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Table 1: Comparison of five models using BMI data

Model PM PSD PCV 95% CI

B 27.321 0.153 0.006 (27.029, 27.630)

C 27.045 0.134 0.005 (26.787, 27.301)

D 27.097 0.135 0.005 (26.825, 27.350)

E 25.979 0.299 0.012 (25.395, 26.562)

G 26.856 0.304 0.011 (26.285, 27.470)

NOTE: The models are B: nps only; C: data integration with nps as prior; D: data integration with ps as

prior; E: ps only; G: ps without survey weights. When the nps is used as the prior, the 95% HPD interval

for the discount factor (a) is (0.670,0.945) and when ps is used as the prior, it is (0.989,0.999).

c. Fit the models and do the prediction.

Repeat (a), (b) and (c) 1000 times to get the posterior distribution of the finite population mean. To

get the posterior density of Ȳ , letting Ω
˜

denote the vector of super-population parameters, we use

the following decomposition,

[Ȳ, X̄ ,N,Ω
˜
,W

˜
,y
˜

s] = [Ȳ | X̄ ,N,Ω
˜
,W

˜
,y
˜

s]× [y
˜

s |W
˜
,Ω

˜
]× [Ω

˜
]× [X̄ ,N,W

˜
],

where [X̄ ,N,W
˜
] is the bootstrap ‘posterior’ distribution. Throughout, we condition on x

˜
and we

assume independence of the sample indicators and the study variables.

In Table 2 we compare Models B, C and D to assess the underestimation in assuming the

estimated weights are known. The biggest increase is in B while C and D show very little increase

in standard deviations. For E, the sample weights are known (not estimated) and there is still an

increase in standard deviation. Therefore, the increase in standard deviation does not come only

from assuming the estimated weights are known. This phenomenon should be looked at more

carefully. Note G does not have survey weights, except for N from the ps.

4.2 Simulation Study

We follow Chen, Li and Wu (2020), henceforth CLW, design-based method for generating the

finite population and the sample. However, we associate the data simulation within the framework

of the BMI data. The BMI data have the following structure,

E(yi) = 23.8449+ .0559x1i +2.2656x2i + .0452x3i, i = 1, . . . ,N
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Figure 1: Comparison for the posterior distributions of the finite population mean by the five models (B, C,

D, E, G)

at least for the samples (nps and ps). We adjust this a bit by replacing .0452 by .2525 to avoid

computational instability. Following CLW, we have taken N = 20000, n1 = 1500 and n2 = 300.

Modifying sampling process, we perform the following steps, for i = 1, . . . ,N,

i. Draw

x1i
ind∼ Uniform(20,90)

and set bi = {23.8449+ .0559x1i}
1

10 ;
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Table 2: Bootstrap study: Underestimation of variability for four selected models

Model PM PSD CV NSE 95% CI

No Bayesian bootstrap

B 27.321 0.153 0.002 0.006 (27.029, 27.630)

C 27.045 0.134 0.002 0.005 (26.787, 27.310)

D 27.098 0.135 0.001 0.005 (26.824, 27.350)

E 25.979 0.299 0.003 0.012 (25.395, 26.562)

G 26.856 0.304 0.011 0.009 (26.285, 27.470)

Bayesian bootstrap

B 27.424 0.470 0.018 0.017 (26.895, 27.845)

C 26.951 0.218 0.006 0.008 (26.510, 27.334)

D 27.088 0.208 0.006 0.008 (26.651, 27.436)

E 25.984 0.371 0.011 0.018 (25.288, 26.772)

G 26.840 0.303 0.009 0.011 (26.211, 27.374)

NOTE: The bootstrap posterior distribution is based on 1000 samples that provide PM, posterior mean,

PSD, posterior standard deviation, W , width of the 95% HPD interval and CV, coefficient of variation. In C

the prior is the ps and in D the prior is the nps.

ii. Draw

x2i | x1i
ind∼ Bernoulli{ ebi

1+ ebi
}

and set bi = {23.8449+ .0559x1i +2.2656x2i}
1

10 ;

iii. Draw

x3i | x1ix2i
ind∼ Bernoulli{ ebi

1+ ebi
};

iv. Finally, construct

yi = 23.8449+ .0559x1i +2.2656x2i + .2525x3i + ei,ei
iid∼ Normal(0,σ 2).

This gives us the finite population of values (x
˜

i,yi), i = 1, . . . ,N. So we can compute the true value

of Ȳ = 1
N ∑N

i=1 yi. Following CLW, we have selected σ 2 such that the correlation, Cor(23.8449+
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.0559x1i + 2.2656x2i + .2525x3i,yi) = ρ , and we have selected ρ as ρ = ..20, .30,50, .80. This is

done by by trial and error.

Table 3: Simulation Study I: No misspecification

Model

Measure ρ B C D E G

ARB 0.20 0.006 0.006 0.005 0.017 0.015

0.30 0.003 0.003 0.003 0.010 0.008

0.50 0.002 0.002 0.002 0.006 0.005

0.80 0.001 0.001 0.001 0.002 0.002

PRMSE 0.20 0.282 0.270 0.264 0.705 0.730

0.30 0.164 0.160 0.155 0.421 0.424

0.50 0.091 0.089 0.086 0.234 0.236

0.80 0.039 0.038 0.037 0.101 0.101

Cov 0.20 0.997 0.944 0.978 0.823 0.939

0.30 0.999 0.949 0.980 0.834 0.960

0.50 0.999 0.948 0.980 0.833 0.960

0.80 0.999 0.949 0.980 0.834 0.960

Wid 0.20 0.863 0.757 0.771 1.698 2.064

0.30 0.526 0.461 0.471 1.034 1.254

0.50 0.292 0.257 0.262 0.575 0.698

0.80 0.126 0.110 0.113 0.247 0.300

NOTE: Here, x3 is used in both the response model and the participation model.

The selection probabilities are from

π1i = exp(bi)/(1+ exp(bi),bi = θ0 + .1x1i +0.2x2i +0.1x3i, i = 1, . . . ,N

and we vary θ0 is selected by trial and error such that ∑N
i=1 π1i = n1. We select π2i such that

π2i = n2zi/
N

∑
i=1

zi,zi = θ1 + x1i +0.2x2i +0.1x3i,

where θ1 is selected, again by trial and error, to ensure max{zi}/min{zi} ≈ 50. This deviates a

little bit from CLW.
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As in CLW, the nps is taken using Poisson sampling with probabilities π1i and target sample

size n1, and the ps taken using randomized systematic PPS sampling with target sample size n2.

We have run the simulations as follows.

a. For each setting of ρ , we have generated one finite population, and we took 1000 samples

(a nps and a ps) from it. We use the following notations. T is true finite population mean,

PM is the posterior mean and PSD is posterior standard deviation; (C025, C975) is the 95%

highest posterior density interval (HPDI);

b. We computed the absolute relative bias: ARB =| (PM−T )/T |; posterior root mean squared

error, PRMSE =
√

(PM−T )2 +PSD2 and incidence: I = 1 if a 95% HPDIs containing T ,

0 otherwise; width, Wid =C975−C025;

c. Finally, we averaged the 1000 runs; coverage, Cov, is the proportion of HPDIs containing T .

In Table 3, we present simulation comparisons. The smallest ARBs come from B, C, D and E,

G are slightly larger. The PRMSEs of B, C, D are smaller than E, G with C, D slightly smaller than

B. The coverage for E is below the nominal value of 95%; B and D are too conservative but C is just

about the nominal value. For Wid, C and D dominate the others, considerably shorter than B, and E

and G are too wide. We note that ARB, PRMSE and Wid decrease with increasing ρ; this must be

true because larger ρ means smaller σ 2 in the simulation runs (a possible defect in the simulation

design). It is clear that C is the winner and B and D are competitive. For the discount factor a, the

PM (PSD), averaged over the simulation runs, are for C .569 (.051) (i.e., considerable discounting)

and for D .981 (.016) (i.e., no discounting) with very little changes over ρ . This indicates that one

should use the nps as the prior with a penalty and inference should be made using the ps (poor

coverage although very wide) integrated with the nps. We have seen similar results in the example

on BMI data.

We have also looked at two cases of mis-specifications. The first case omitted the third covariate

from model fitting, and the second case the third covariate is not used for data collection and

model fitting; the third covariate is used in getting the propensity scores. We found that the two

models with discounting are competitive with the others, but for all models coverage decreases as

ρ increases.

5. A Small Area Model for a Non-probability Sample

Beaumont (2020) argued that it is sensible to use a non-probability sample to supplement a

probability sample in small area estimation. Rao (2020) stated that a non-probability sample can

be used to construct covariates for probability samples in small area estimation; he cited five pa-

pers where this has been done. However, we can use the non-probability sample to supplement a

probability sample within small areas similar to what we have done in Model 3. The small area

model will include random effects as an attempt to discriminate the areas.

The small area model has the following features.
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a. The two sets of covariates are commensurate (i.e., the same covariates are measured in the

non-probability and the probability sample; or at least only a common set of covariates will

be used). Of course, they generally differ by unit.

b. Within an area, the random effects are the same in the non-probability sample and the prob-

ability sample.

c. Pooling will take place using a common set of regression coefficients and variance compo-

nents over all areas in the two samples.

d. It is possible to have some areas with only a probability sample, and some areas with only a

non-probability sample.

We use an extended version of the model of Battese, Harter and Fuller (BHF, 1988).

We assume there are ℓ areas and within the ith area, there are a non-probability and a probability

sample of sizes n1i and n2i and population sizes N1i and N2i, where “1” and “2” respectively refer to

the non-probability sample and the probability sample, maintaining the notation in the single area

example. The covariates are (x
˜

si, i = 1, . . . ,nsi,s = 1,2), but the covariates are unobserved for the

nonsamples. The responses are ysi, i = 1, . . . ,nsi. There are also survey weights Wsi, i = 1, . . . ,nsi,

such that ∑nsi

j=1Wsi j = Nsi; so Nsi may be known or unknown. Bayesian predictive inference is

required for

Ȳi =
1

N2i

N2i

∑
j=1

y2i j, i = 1, . . . , ℓ,

the finite population means, based on the probability sample. Of course, the model permits the use

of the non-probability sample, as we have seen for the single sample model and as we will see for

the small area model soon. That is, there is pooling across areas and within areas from both the

non-probability sample and the probability sample.

As we stated, the discounting factors will only be used for the nps, which will be used to

construct the prior and the ps will be used as the actual data and these discounting factors depend

on areas. That is, for s = 1 (nps), asi = ai, i = 1, . . . , ℓ (allowing discounting) and for s = 2 (ps),

asi = 1, i = 1, . . . , ℓ (no discounting).

5.1 Small Area Model

Our model for the two samples over the areas is

ysi j | νi,β
˜

ind∼ Normal(x
˜

si jβ
˜
+νi,

σ 2

asiwsi j

), j = 1, . . . ,nsi,s = 1,2,

where wsi j are the adjusted weights within areas,

νi | ρ,σ 2 ind∼ Normal(0,
ρ

1−ρ
σ 2), i = 1, . . . , ℓ,
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π(β
˜
,σ 2,ρ) ∝

1

σ 2
,0 < ρ < 1.

Again note that these are two BHF models, one for the non-probability samples and the other for

the probability samples. But they are connected because they have the same parameters.

For the discounting factors 0 ≤ ai ≤ 1, we will assume that for i = 1, . . . , ℓ,

ai | θ ,γ ind∼ Beta

{

θ
1− γ

γ
,(1−θ)

1− γ
γ

}

,0 < θ ,γ < 1.

We need to specify the priors for θ and γ . We make a modest assumption that the distribution

of each ai is log-concave, and a sufficient condition for this to happen is that θ 1−γ
γ > 1 and (1−

θ) 1−γ
γ > 1. (A log-concave density has very nice properties, specifically its moment generating

function exists.) This means that 0 < γ < 1
3
, γ

1−γ < θ < 1−2γ
1−γ . Therefore, the prior for (a

˜
,θ ,γ ,ρ) is

π(a
˜
,θ ,γ ,ρ) =







ℓ

∏
i=1

a
θ 1−γ

γ −1

i (1−ai)
(1−θ) 1−γ

γ −1

B{θ 1−γ
γ ,(1−θ) 1−γ

γ }







,0 < γ <
1

3
,

γ
1− γ

< θ <
1−2γ
1− γ

,0 < ρ < 1.

Note that this model holds for the entire population with wsi j ≡ 1.

Using Bayes’ theorem, letting y
˜

denote the vector of all observations, the joint posterior density

is

π(ν
˜
,a
˜
,β

˜
,σ 2,ρ,θ ,γ | y

˜
) ∝

1

σ 2

ℓ

∏
i=1

{[

n1i

∏
j=1

√

aiw1i j

2πσ 2
e
− aiw1i j

2σ2 (y1i j−x
˜

′
1i jβ

˜
−νi)

2
n2i

∏
j=1

√

w2i j

2πσ 2
e
− w2i j

2σ2 (y2i j−x
˜

′
2i jβ

˜
−νi)

2

]

×
√

1−ρ
2πρσ 2

e
− 1−ρ

2ρσ2 ν2
i

a
θ 1−γ

γ −1

i (1−ai)
(1−θ) 1−γ

γ −1

B{θ 1−γ
γ ,(1−θ) 1−γ

γ }







. (3)

Letting Ω1 = (a
˜
,θ ,γ ,ρ) and Ω2 = (ν

˜
,β

˜
,σ 2, to fit the posterior density in (3), we will first integrate

out Ω2 and sample the posterior density of Ω1 | y
˜

using the Gibbs sampler; see Appendix D. Then,

we can sample Ω2 | Ω1,y
˜

using the composition method via

π(Ω2 | Ω1,y
˜
) = π1(σ 2 | Ω1,y

˜
)π2(β

˜
| σ 2,Ω1,y

˜
)π3(ν

˜
| β

˜
,σ 2,Ω1,y

˜
),

where π1(σ 2 | Ω1,y
˜
), π2(β

˜
| σ 2,Ω1,y

˜
) and π3(ν

˜
| β

˜
,σ 2,Ω1,y

˜
) are all in standard forms, inverse

gamma, p-variate normal and independent normals respectively; see Appendix D.

Bayesian predictive inference is required for Ȳ2i =
1
Ni

∑Ni

i=1 y2i j. As the ysi j are corrupted because

of the survey weights, we cannot use them. So we use surrogate sampling; in principle the entire

population is drawn, not the values for the individual units though. Therefore,

Ȳ2i | νi,β
˜
,σ 2 ind∼ Normal

(

X̄
˜

′
2iβ

˜
+νi,

σ 2

N2i

)

, i = 1, . . . , ℓ,
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where X̄
˜

2i =
1

N2i
∑N2i

i=1 x
˜

2i j and N2i are unknown. We use the Horvitz-Thompson estimators x̄
˜

2i =
∑ j∈S2i

w2i jx
˜

2i j

∑ j∈S2i
w2i j

and ∑ j∈S2i
w2i j (IPW, inverse probability weighted estimators). Then,

Ȳ2i | νi,β
˜
,σ 2 ind∼ Normal

(

x̄
˜

′
2iβ

˜
+νi,

σ 2

∑ j∈S2i
w2i j

)

, i = 1, . . . , ℓ. (4)

Once we have drawn (ν
˜
,β

˜
,σ 2) using the Gibbs sampler, we simply draw the Y2i from (4). Accord-

ing to the model, all the sampled data are used in the predictive inference.

Observe that E(Ȳi | νi,β
˜
,σ 2,ρ) = x̄

˜

′
2iβ

˜
+λi( ¯̄yi − ¯̄x

˜
i
′β
˜
); see Appendix D for definitions. Then,

E(Ȳ2i | β
˜
,σ 2,ρ,y

˜
) = λi ¯̄yi +(1−λi) ¯̄x

˜
i
′β
˜
+(x̄

˜
2i − ¯̄x

˜
i)
′β
˜
.

and

Var(Ȳ2i | β
˜
,σ 2,ρ,y

˜
) =







(

∑
j∈S2i

w2i j

)−1

+
ρ

1−ρ
(1−λi)







σ 2.

These can be used to form Rao-Blackwellized density estimators for Ȳ2i.

5.2 Operationalizing the SAE model

Apart from the exchangeable assumption on the ai, the current small area model is essentially

robust with respect to the ai. But with a large number of areas, it will not be easy to sample all the

ai using the grid method. One possibility is to smooth out the ai in an attempt to operationalize the

algorithm. We can assume that the ai are “proportional” to the sample sizes or better yet to their

logarithms. This will also eliminate the exchangeability assumption. Therefore, one possibility is

to take

ai =
eγ0+γ1 log(ni)

1+ eγ0+γ1 log(ni)
, i = 1, . . . , ℓ,

where for the ith area, ni is the sample size of the nonprobability sample or the total sample size.

We are assuming here that −∞ < γ0 < ∞,0 < γ1 < ∞. Then, clearly

ai =
α0n

γ1

i

1+α0n
γ1

i

,α0 = eγ0 , i = 1, . . . , ℓ.

Next, letting α0 =
φ0

1−φ0
and α1 =

φ1

1−φ1
, we have

ai =
φ0n

φ1
1−φ1

i

1−φ0 +φ0n

φ1
1−φ1

i

, i = 1, . . . , ℓ, (5)
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where 0 < φ0,φ1 < 1. Note that if φ1 = 0, ai = φ0 and there will be no dependence on the ni. Now,

simply substitute the ai in the SAE model by (5) and use the prior

φ0,φ1
ind∼ Uniform(0,1).

This reduces the number of parameters for this part of the model from ℓ+2 to just two and actually

the two parameters, θ and γ , are now eliminated or replaced by φ0 and φ1.

5.3 Numerical Example on Small Area Estimation

For the eight counties of California, which we use as a numerical example, the Gibbs sampler is

efficient. We started the Gibbs sampler arbitrarily by taking the ai to be the corresponding posterior

means from the individual area model, set ρ = .5, its mid range, and as the mid point of the interval

( γ
1−γ ,

1−2γ
1−γ ) is .5, set θ = .5 and and γ = 1/6, its mid range. We ran 5,500 iterates, used 500

as a “burn in” and systematically selected every fifth to get a ‘random’ sample of M = 1,000. We

performed the diagnostic procedures. The auto-correlations are not significant, the trace plots show

no trend, Geweke tests of stationarity are all passed and the effective sample size are all satisfactory,

mostly near to 1000. The entire computation consists of three parts (a) constructing the unknown

survey weights for the nps, (b) fitting the individual area model, and (c) fitting of the small area

model. The entire computation took nearly 15 minutes with (c) taking almost all the time.

Table 4: BMI data from eight counties

Model LPML DIC BPP DM PRMSE

Discounting 977.491 1946.369 0.553 2.626 1.606

Logit 975.866 1943.152 0.528 2.623 1.783

No discounting 1235.930 2472.066 1.000 2.616 1.718

PS only 969.371 1922.219 0.493 2.682 3.373

NOTE: For PRMSE, the true value is taken to be the weighted average of all BMI values. The model with

discounting is the one described, the logit model regresses the ai on the logarithm of sample sizes, and the

model without discounting has all ai set to unity. The measures are calculated for PS data only. Gibbs

sampling is needed for the models with discounting. Wang et al. (2011) has the divergence measure (DM).

In Table 4 we present measures to compare the small area models. These are the negative

log pseudo marginal likelihood (LPML), the deviance information criterion (DIC), the Bayesian
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predictive p-value (BPP), a divergence measure (DM) and the posterior root mean square error

(PRMSE). All measures show that the model without discounting is not competitive, and DM and

PRMSE show that the PS only model is not competitive, leaving us with two models, discounting

and logit. In terms of PRMSE, the model with discounting is approximately 10% better than the

logit model, which is not robust, linearity between the discounting factors and log sample sizes,

thereby making the model with discounting the best. Also the posterior standard deviations of

the finite population means of the different areas under the model with discounting are at least as

similar to those from the other models, better than the ps only model.

6. Concluding Remarks

Two important findings show up. First, if one has the study variable on both the ps and the

nps, and the nps is much larger than the ps, as is usually the case, then it is better to use the nps

to construct the prior with partial discounting. Second, if the ps is used to construct the prior with

partial discounting, there will be virtually no discounting. Apparently this is sensible because the

ps is much smaller than the nps and of higher quality. It is erroneous to use the ps as the prior or to

use the ps to supplement the nps, rather one should use the nps to supplement the ps, provided the

study variable is available in the ps.

We have also shown how to extend our approach to cover small area estimation. We have

done so for the unit-level small area model (a bit less practical); we have extended Toto and Nan-

dram (2010) or Molina, Nandram and Rao (2014), who provided a Bayesian approach, to solve

the problem. However, our work here was motivated by Beaumont (2020) and Rao (2020) and

Beaumont and Rao (2020) but these authors did not discuss unit-level models; Beaumont and Rao

(2020) showed how to use the Fay-Herriot model to improve inference for the small areas in the

ps, covariates being drawn from the nps.

There is a need to express uncertainty in the estimation of propensity scores in the Bayesian

approach. We have shown how to use the bootstrap (Bayesian or non-Bayesian) method to in-

corporate uncertainty in the estimated survey weights for the single sample example. There is

considerable underestimation in Scenario B with C and D showing much less underestimation;

there is a significant underestimation in Scenario E. However, the bootstrap is not the best way to

do this; one would need a model to contain the unknown survey weights with estimation being

done in the same model. This is under study. Also, it is possible to have the discounting factor

varies with the observation. For example, using the nps as the prior, we can easily replace a by

a1/w1i , reflecting less discounting for observations with larger survey weights.

The assumption of normality on the BMI data is perhaps not a very good one because the

BMI data are skewed and discrete; see Yin and Nandram (2020 a,b). Also, more robust methods

on propensity scores are needed. The generalized Dirichlet process, the Pitman-Yor process, or

general stick-breaking priors, can be used to provide more robust models, but these models are

difficult to fit when all uncertainty is taken into account; see Ishwaran and James (2001). It is also

possible to use BART in data integration (e.g., Rafei, et al. 2021); one does not need to express

a relation between study variable and covariates. But BART is not a fully Bayesian procedure
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because it double-uses the data, it suffers from overshrinkage, and there is no underlying theory of

BART (just a machine learning algorithm like random forest).
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APPENDIX A: Propensity Scores

Let xi
˜
, i = 1, . . . ,N, denote the covariates; these are observed in the ps and the nps, but they are

not observed for the rest of the population. Again, for the nps, we have x
˜

1i, i = 1, . . . ,n1, and for the

ps, we have x
˜

2i, i = 1, . . . ,n2. Chen, Li and Wu (2020) has a very clever way to get the propensity

scores for the nps, and therefore the survey weights, which are the reciprocals of the propensity

scores. They assume that the propensity scores can be modeled parametrically using

πi = P(Ri = 1 | x
˜

i) = π(x
˜

i;θ
˜
),

with independence over i, where θ
˜

are to be estimated. Here Ri = 1 for the ps or nps; Ri = 0 for

the nonsamples. Then, the likelihood function is

ℓ(θ
˜
) =

N

∏
i=1

{π(x
˜

i;θ
˜
)}Ri{1−π(x

˜
i;θ

˜
)}1−Ri .

The first clever idea is to write the log-likelihood as

ℓ∗(θ
˜
) =

n1

∑
i=1

log

{

π(x
˜

1i;θ
˜
)

1−π(x
˜

1i;θ
˜
)

}

+
N

∑
i=1

log{1−π(x
˜

i;θ
˜
)}.

The second clever idea is to use the pseudo-log-likelihood by replacing the second term by the

Horvitz-Thompson estimator since the nonsample x
˜

i are unknown, as

ℓ∗(θ
˜
) =

n1

∑
i=1

log

{

π(x
˜

1i;θ
˜
)

1−π(x
˜

1i;θ
˜
)

}

+
n2

∑
i=1

w2i log{1−π(x
˜

2i;θ
˜
)},

which can now be maximized for θ̂
˜
. The propensity scores for the nps are then π(x

˜
1i; θ̂

˜
), i =

1, . . . ,n1. Henceforth, they specialize to logistic regression.

However, the gradient vector of the log-pseudo-likelihood in the general form is

∆(θ
˜
) =

n1

∑
i=1

{1−π(x
˜

1i;θ
˜
)}∂π(x

˜
1i;θ

˜
)

π(x
˜

1i;θ
˜
)
−

n2

∑
i=1

w2i

∂π(x
˜

2i;θ
˜
)

1−π(x
˜

2i;θ
˜
)
,
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where ∂π(x
˜

1i;θ
˜
) or ∂π(x

˜
2i;θ

˜
) is the gradient vector with respect to θ

˜
. Then, ∆(θ̂

˜
) = 0

˜
give the

solutions. In the case of logistic regression, they have used the Newton-Ralphson method to solve

the equations, starting with θ̂
˜
= 0

˜
, but we note that the Newton-Raphson’s method is sensitive to

these starts.

APPENDIX B: Calibration

We show how to calibrate the nps to the ps. Here, we simply need the population totals from the

ps. We are assuming that the ps is very small, so that the totals from the ps are not very reliable. We

can obtain the totals from a census, administrative records or web scraping. Let t
˜

denote the vector

of the p totals including the intercept; note that it appears Haziza and Beaumont (2017) did not use

the intercept but this is necessary. Generally, the basic weighting system ensures consistency of a

survey with a census by reducing nonsampling errors (e.g., response errors and coverage errors)

and improves precision; see Haziza and Beaumont (2017) for more discussion.

Let the original survey weights in the ps be w j, j = 1, . . . ,n. [Momentarily we drop the subscript

on n.] We search for a calibrated weighting system w̃ j, j = 1, . . . ,n, such that ∑n
j=1 w̃ jx

˜
j = t

˜
, the

calibration equations. We want the w̃ j, j = 1, . . . ,n, to be as close as possible to w j, j = 1, . . . ,n.

Haziza and Beaumont (2017) judged closeness by a distance function, G(u), where

a. G(u)≥ 0 and G(1) = 0;

b. G(u) is differentiable, g(u) = G′(u),g(1) = 0, and strictly convex.

They need to minimize ∑n
j=1

w̃ j

q j
G(

w̃ j

w j
) over w̃ j, j = 1, . . . ,n, where q j denote the importance of unit

j, subject to the constraint ∑n
j=1 w̃ jx

˜
j = t

˜
.

Haziza and Beaumont (2017) considered the function,

φ(w̃1, . . . , w̃n,λ
˜
) =

n

∑
j=1

w̃ jG(
w̃ j

w j
)

q j

−λ
˜

′(
n

∑
j=1

w̃ jx
˜

j − t
˜
),

where λ
˜
= (λ1, . . . ,λp)

′ are Lagrangian multipliers. Differentiating φ(w̃1, . . . , w̃n,λ
˜
) with respect

to w̃ j, they got

w̃ j = w jg
−1(q jλ

˜

′x
˜

j), j = 1, . . . ,n.

Therefore,
n

∑
j=1

w jg
−1(q jλ

˜

′x
˜

j)x
˜

j = t
˜
.

Here, our method differs from Haziza and Beaumont (2020); they used the Newton-Ralphson

method. We use the Nelder-Mead to minimize ∑p
k=1 | ∑n

j=1 w jg
−1(q jλ

˜

′x
˜

j)x jk − tk | over λ
˜

, forcing

each component down to zero, to get λ̂
˜

. The weights are then,

w̃ j = w jg
−1(q jλ̂

˜

′
x
˜

j), j = 1, . . . ,n.
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In our case, we use the simple Euclidean distance. This gives closed-form answers; apparently

this was not recognized by Haziza and Beaumont (2017). We choose q j = 1, j = 1, . . . ,n. For

G(u) = (u− 1)2 is a legitimate distance function because G(1) = 0, g(u) = 2(u− 1), g(1) = 0,

g′(u) = 2 > 0 and so G(u) is strictly convex. Also g−1(y) = 1+ y
2
. In this case, we have

n

∑
j=1

w j(1+
λ ′x

˜
j

2
)x jk = tk,k = 1, . . . , p.

That is,
p

∑
k′=1

n

∑
j=1

λk′x jk′x jk = 2(tk −
n

∑
j=1

w jx jk),k = 1, . . . , p,

and

Aλ
˜
= b

˜
, A =

(

n

∑
j=1

w jx jk′xik

)

(k′,k)

, b
˜
= 2(t

˜
−

n

∑
j=1

w jx
˜

j).

Therefore, assuming A is invertible, λ̂ =A−1b
˜

and the calibrated weights are w̃ j =w j(1+
ˆλ
˜

′
x
˜

j

2
), j =

1, . . . ,n. It is worth noting that if we use the ps to get t
˜
, ∑n

j=1 w jx
˜

j = t
˜

and λ
˜
= 0

˜
. If b

˜
is closed to

0
˜
, there will be little difference using calibration.

In our example on eight counties in California, we use web scraping. We got a population size

of N = 4,035,862, and the other totals are age = 36.7×N, race = .719×N, sex = .497×N. We

got λ̂1 = .000713, λ̂2 =−0.000001, λ̂3 = 0.002198, λ̂4 =−0.000124. It is not surprising then that

calibrated weights are barely different from the original weights.

APPENDIX C: Joint Posterior Density when PS is the Actual Sample

We obtain a random sampler to draw β
˜
,σ 2,a | y

˜
and we show that the joint posterior density is

proper. Letting y
˜
= (y

˜
1,y

˜
2), the joint posterior density is

π(β
˜
,σ 2,a | y

˜
) ∝ an1/2(

1

σ 2
)

n1+n2
2

+1e
− 1

2σ2 Q
,0 ≤ a ≤ 1,

where Q = a∑n1

i=1 w1i(y1i − x
˜

1iβ
˜
)2 +∑n2

i=1 wi2(y2i − x
˜

2iβ
˜
)2. For convenience, letting a1 = a,a2 = 1

for the case when the nps is used as the prior.

First, let us look at Q and assume the design matrix is full rank at least for the ps. We find the

conditional posterior density of β
˜

, which clearly has a multivariate normal density. We now decide

its mean and variance using a standard trick by differentiation. First, letting ∆(β
˜
) = Q, we have

∆′(β
˜
) = 2

2

∑
s=1

ns

∑
i=1

aswsi(ysi − x
˜

′
siβ

˜
)x
˜

si

and the Hessian matrix is

∆′′(β
˜
) = 2

2

∑
s=1

ns

∑
i=1

aswsix
˜

six
˜

′
si.
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Now, setting ∆′(β
˜
) = 0

˜
, we get

β̂
˜
= A−1b

˜
,A =

2

∑
s=1

ns

∑
i=1

aswsix
˜

six
˜

′
si, b

˜
=

2

∑
s=1

ns

∑
i=1

aswsix
˜

siysi.

Therefore,

β
˜
| σ 2,a,y

˜
∼ Normal(β̂

˜
,σ 2A−1). (C.1)

Second, integrating out β
˜

from the joint posterior density, we get

π(σ 2,a | y
˜
) ∝ an1/2

(

1

σ 2

)(n1+n2−p)/2+1

| A |1/2e
− 1

σ2 ∑2
s=1 ∑ns

i=1(ysi−x
˜

′
siβ̂

˜
)2

.

Then, letting d = ∑2
s=1 ∑ns

i=1 aswsi(ysi − x
˜

′
siβ̂

˜
)2,

σ 2 | a,y
˜
∼ IGam

(

n1 +n2 − p

2
,
d

2

)

. (C.2)

Finally, integrating out σ 2, we have

π(a | y
˜
) ∝

an1/2 | A |−1/2

d(n1+n2−p)/2
,0 ≤ a ≤ 1. (C.3)

Because 0 ≤ a ≤ 1, all quantities are well defined, and provided the design matrix of the ps is

full rank, the joint posterior density is proper. Draws can be made from the joint posterior density

using the multiplication rule of probability, drawing samples from (C.3), (C.2) and (C.1) in that

order. Samples can be drawn from π(a | y
˜
) in (C.3) using the grid method.

APPENDIX D: Computation for the Small Area Model

We discuss how to fit the model in (3). Recall Ω1 = (a
˜
,θ ,γ ,ρ) and Ω2 = (ν

˜
,β

˜
,σ 2). Our

strategy is to integrate out Ω2 from π(Ω1,Ω2 | y
˜
) to get π(Ω1 | y

˜
) and then sample π(Ω1 | y

˜
) using

the Gibbs sampler.

For convenience, we will keep asi,s = 1,2, i = 1, . . . , ℓ free in (0,1) and sometimes a1i = ai and

a2i = 1, i = 1, . . . , ℓ. Then, letting n = ∑2
s=1 ∑ℓ

i=1 nsi, the total number of observations,

π(Ω1,Ω2 | y
˜
) ∝ π(Ω1)

(

ℓ

∏
i=1

√
ai

)

×

(

1

σ 2

)
n+ℓ

2
+1(

1−ρ
ρ

)ℓ/2 ℓ

∏
i=1

[

e
− 1

2ρσ2

{

ρ ∑2
s=1 ∑

nsi
j=1 asiwsi j(ysi j−x

˜

′
si jβ

˜
−νi)

2+(1−ρ)ν2
i

}]

. (D.1)
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We will integrate out Ω2. Momentarily, we will drop π(Ω1), but we will retain ∏ℓ
i=1

√
ai.

Define the following quantities,

λi =
ρ ∑2

s=1 ∑nsi

j=1 asiwsi j

ρ ∑2
s=1 ∑nsi

j=1 asiwsi j +(1−ρ)
,φsi j =

asiwsi j

∑2
s=1 ∑nsi

j=1 asiwsi j

,

¯̄yi =
2

∑
s=1

nsi

∑
j=1

φsi jysi j, ¯̄x
˜

i =
2

∑
s=1

nsi

∑
j=1

φsi jx
˜

si j,

ỹsi j = ysi j − ¯̄yi, x̃
˜

si j = x
˜

si j − ¯̄x
˜

i.

Note that while the λi are functions of ρ , the φsi j, ¯̄yi and ¯̄x
˜

i are not functions of ρ .

We can now rewrite the exponent in (D.1),

e
− 1

2σ2

{

∑2
s=1 ∑

nsi
j=1 asiwsi j(ysi j−x

˜

′
si jβ

˜
−νi)

2+ 1−ρ
ρ ν2

i

}

,

as

e
− 1

2σ2

{

∑2
s=1 ∑

nsi
j=1 asiwsi j(ỹsi j−x̃

˜

′
si jβ

˜
)2+ 1−ρ

ρ (∑2
s=1 ∑

nsi
j=1 asiwsi j)( ¯̄yi− ¯̄x

˜

′β
˜
−νi)

2
}

.

Then, it is easy to show that

νi | β
˜
,σ 2,ρ,y

˜

ind∼ Normal{ν̂i,
ρ

1−ρ
σ 2(1−λi)}, i = 1, . . . , ℓ,

where ν̂i = λi( ¯̄yi − ¯̄x
˜

′
iβ
˜
). This is a standard form in small area estimation and it combines both the

probability sample and the non-probability sample over all areas; note the common β
˜

and σ 2.

Then, integrating out the νi from (D.1), we have

π(β
˜
,σ 2,ρ | y

˜
) ∝
(

1

σ 2

)
n
2
+1 ℓ

∏
i=1

√

ai(1−λi)

×
ℓ

∏
i=1

[

e
− 1

2σ2

{

∑2
s=1 ∑

nsi
j=1 asiwsi j(ỹsi j−x̃

˜

′
si jβ

˜
)2+Pi( ¯̄yi− ¯̄x

˜

′
iβ
˜
)2
}]

, (D.2)

where

Pi =

(

2

∑
s=1

nsi

∑
j=1

asiwsi j

)

(1−λi)
2 +

1−ρ
ρ

λ 2
i , i = 1, . . . , ℓ.

Then,

β
˜
| σ 2,ρ,y

˜
∼ Normal{β̂

˜
,σ 2∆},

where

∆ =

{

ℓ

∑
i=1

2

∑
s=1

nsi

∑
j=1

asiwsi jx̃
˜

si jx̃
′
si j +

ℓ

∑
i=1

Pi ¯̄x
˜

i ¯̄x
˜

′
i

}−1
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and

β̂
˜
=

{

ℓ

∑
i=1

2

∑
s=1

nsi

∑
j=1

asiwsi jx̃
˜

si jx̃
′
si j +

ℓ

∑
i=1

Pi ¯̄x
˜

i ¯̄x
˜

′
i

}−1{
ℓ

∑
i=1

2

∑
s=1

nsi

∑
j=1

asiwsi jx̃
˜

si jỹsi j +
ℓ

∑
i=1

Pi ¯̄x
˜

i ¯̄yi

}

.

Then integrating β
˜

from (D.2), we have

π(σ 2,ρ | y
˜
) ∝
(

1

σ 2

)
n−p

2
+1

| ∆ |1/2
ℓ

∏
i=1

√

ai(1−λi)

× e
− 1

2σ2

{

∑ℓ
i=1 ∑2

s=1 ∑
nsi
j=1 asiwsi j{ỹsi j−x̃

˜

′
si j

ˆβ
˜
}2+∑ℓ

i=1 Pi( ¯̄yi− ¯̄x
˜

′
i

ˆβ
˜
)2
}

. (D.3)

Therefore,

σ 2 | ρ,y
˜
∼ InvGam

{

n− p

2
,
Q

2

}

, (D.4)

where

Q =
ℓ

∑
i=1

2

∑
s=1

nsi

∑
j=1

asiwsi j{ỹsi j − x̃
˜

′
si jβ̂

˜
}2 +

ℓ

∑
i=1

Pi( ¯̄yi − ¯̄x
˜

′
iβ̂
˜
)2.

Integrating out σ 2 from (D.3), we have

π(ρ | y
˜
) ∝

| ∆ |1/2 ∏ℓ
i=1

√

ai(1−λi)

Q(n−p)/2
,0 ≤ ρ ≤ 1. (D.5)

Actually π(ρ | Ω1,y
˜
) is defined for all values of ρ in [0,1] because the Pi and λi are well defined

for all values of ρ in [0,1]. Note that the ai are constants above, specifically they are constants in

(D.5).

Bringing back π(Ω1) into the picture, we have

π(Ω1 | y
˜
) ∝ π(Ω1)π(ρ | y

˜
),

and therefore,

π(Ω1 | y
˜
) ∝

| ∆ |1/2 ∏ℓ
i=1

√

ai(1−λi)

Q(n−p)/2







ℓ

∏
i=1

a
θ( 1−γ

γ )−1

i (1−ai)
(1−θ)( 1−γ

γ )−1

B{θ( 1−γ
γ ),(1−θ)( 1−γ

γ )}







, (D.6)

γ
1−γ ≤ θ ≤ 1−2γ

1−γ ,0 < γ < 1/3,0 ≤ ρ ≤ 1. It is worth noting that the ai are not independent; ∆ and

Q contain all the ai, which is contained by λi also. Next, we present the rather obvious conditional

posterior densities (CPDs) necessary to run the Gibbs sampler.

First, we consider the CPD of the ai, i = 1, . . . , ℓ. Letting a
˜
(i) = (a1, . . . ,ai−1,ai+1, . . . ,aℓ)

′, i =
1, . . . , ℓ (ai is eliminated), then for 0 < ai < 1,

π(ai | a
˜
(i),ρ,θ ,γ ,y

˜
) ∝

| ∆ |1/2 ∏ℓ
i=1

√

ai(1−λi)

Q(n−p)/2

{

ℓ

∏
i=1

a
θ( 1−γ

γ )−1

i (1−ai)
(1−θ)( 1−γ

γ )−1

}

. (D.7)
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Second, the CPD of ρ is

π(ρ | a
˜
,θ ,γ ,y

˜
) ∝

| ∆ |1/2 ∏ℓ
i=1

√

(1−λi)

Q(n−p)/2
,0 < ρ < 1. (D.8)

Third, the joint CPD of (θ ,γ) is

π(θ ,γ | a
˜
,ρ,y

˜
) ∝







ℓ

∏
i=1

a
θ( 1−γ

γ )−1

i (1−ai)
(1−θ)( 1−γ

γ )−1

B{θ( 1−γ
γ ),(1−θ)( 1−γ

γ )}







,
γ

1− γ
≤ θ ≤ 1−2γ

1− γ
,0 < γ < 1/3. (D.9)

γ
1−γ ≤ θ ≤ 1−2γ

1−γ ,0 < γ < 1/3. The CPD of θ or γ is easy to write down.

We note that all the CPDs are nonstandard, but all the parameters lie in (0,1), so we have used

a grid method, with 100 grid points, to sample each of the CPDs. The number grid points can be

reduced for the ai perhaps to 50 or so, but we need the number grid points to be around 100 for

(ρ,θ ,γ); hyperparameters are more difficult to sample. We have done this, and we have reduced

the entire computation time from 15 minutes to 8 minutes with little change in the results.

APPENDIX E: Estimation of ρRY

The main difficulty is how to get control over ρRY or DI . However, if we can field a small

probability survey, we can use the magic of probability sampling to get a reasonable estimate of

ρRY , and therefore we can provide a better study of the quality of the non-probability sample. It

appears that there is no other sensible way to get control over ρRY .

Given a population of R and Y , the finite population correlation coefficient is given by

ρRY =
∑N

i=1(Ri − R̄)(Yi − Ȳ )
√

∑N
i=1(Ri − R̄)2 ∑N

i (Y1 − Ȳ )2

We have

ρRY =

√

f

1− f

(ȳ− Ȳ )

σY

,

where f is the sampling fraction, Ȳ is the population mean and σY is the standard deviation of

Y . With a small probability sample, we can estimate Ȳ and σY using inverse probability weighted

estimators. Assuming that there is a probability sample {(yi,Wi), i = 1, . . . ,n}. Then a design-

unbiased estimator of Ȳ is ȳW , σ 2
Y is estimated by σ̂ 2

Y = ∑n
i=1Wi(yi − ȳW )2/∑n

i=1Wi,

ρ̂RY =

√

f

1− f

(ȳ− ȳW )

σ̂Y

,
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and we can study the quality of our non-probability sample. If Y is binary,

ρ̂RY =

√

f

1− f

(ȳ− â)

σ̂Y

,

where σ̂ =
√

â(1− â) with â = N̂1

N̂
, N̂1 = ∑n

i=1Wiyi, N̂ = ∑n
i=1Wi.

For the single sample example on BMI data, we found that ρ̂RY = .006. Meng (2018) stated

that such a value of ρ̂RY is large enough to make the selection bias very destructive, especially in

data sets with millions of records, much bigger than ours.
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