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Abstract
We consider the problem of variable selection in the context of sequential (or variable-by-variable)
imputation in clustered data. Specifically, we modify the sequential hierarchical regression impu-
tation technique to incorporate variable selection routines using spike-and-slab priors within the
Bayesian variable selection routine. Specific choice of these priors allow us to “force” variables of
importance (e.g. design variables or variables known to play role in missingness mechanism) into
the imputation models. Our ultimate goal is to improve computational speed by removing unnec-
essary variables. We employ Markov chain Monte Carlo techniques to sample from the implied
posterior distributions for model unknowns as well as missing data. We assess the performance of
our proposed methodology via simulation study. Our results show that our proposed algorithms lead
to satisfactory estimates and in, some instances, outperform some of the existed methods that are
available to practitioners.

Key Words: Clustered data, missing data, Markov chain Monte Carlo, multiple imputation, se-
quential hierarchical regression imputation, spike-and-slab variable selection

1. Introduction

Dealing with missing data in a statistically valid manner has been of interest in many prob-
lems in a wide-variety of disciplines. In statistical analysis of high-dimensional data, it is
common to encounter large covariance matrix estimation problems for various purposes,
such as dimensionality reduction, graphical modeling of conditional independence of ran-
dom variables via structure learning, image processing. These analytical aims are typically
complicated by arbitrary missing values (Lounici et al., 2014). In compressed sensing, one
of the interesting problems is the completion of a low-rank matrix in the presence of a
noisy matrix with missing entries, and there has been substantial progress in this field for
the recent decade thanks to E. Candes and T. Tao (Candès and Recht, 2009, Candès and
Tao, 2010). In survey sampling data, it is also typical to collect data when a portion of the
subjects fails to provide responses, leading to missing values in the response variable, and
missing data can occur in computer experiments as well as biomedical applications due
to equipment limitations Bayarri et al. (2007). In short, there are countless examples of
missing data in a broad range of fields, and sensible inferences in the presence of missing
data have been gaining interest for quite some time.

It is natural for practitioners to enforce imputation of missing values in the presence of
missing data. A single imputation process for the missing component of the complete data,
which is constituted by concatenating the observed data and the missing data, is hardly
adequate to account for the statistical uncertainty and could be potentially severely biased.
Idea of multiple imputation (MI), which was first introduced by Rubin (1987), RUBIN
(1976), has become a standard method to account for uncertainty due to missing data.
Rather than performing a single round of imputations, MI proposes to implement multiple
round of imputation of the missing value to account for the uncertainty due to missingness.
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The statistical analysis proceeds by treating each set of the imputed data as a set of complete
data, followed by a combined analysis using Rubin’s method (Rubin, 1987, RUBIN, 1976).
More specifically, the MI is built upon a complete probabilistic model for the complete
data, namely, a class of joint distributions of both the observed data and the missing values,
from which a simulation-based approach is implemented to perform multiple imputation
for the missing portion.

The most widely adopted strategy for MI is based on Bayesian modeling. It begins
with first specifying the conditional distribution of the complete data given the unknown
parameters, often referred to as the complete-data liklihood, and then a distribution for
the unknown parameters, referred to as prior distributions. This is followed by a posterior
computation via a Markov chain Monte Carlo sampler that draws random samples from the
posterior distribution of the unknown parameters as well as the missing portion of the data
given the observed portion of the data. Then each of the random sample drawn from the
posterior predictive distribution of the missing data serves as a single round among the MI
part of the missing data, and provide a copy of the imputed version of the complete data
available for combined subsequent Rubin’s analysis (RUBIN, 1976).

Variable selection problem arises in regression models when the number of predictors
or covariates that are available to users exceeds the number of the true active predictors, and
one aims to recover the correct set of active predictors. There has been vast literature on
developing frequentist methods for variable selection. Classical criterion-based approaches
include generalized cross-validation (GCV) and the Bayesian information criterion (BIC).
These methods become computationally expensive when the number of candidate predic-
tors becomes large as they require exhaustive search of the all possible sub-models, the
number of which grows exponentially with the number of predictors. Last decade has also
witnessed the progress of penalized-based approaches for variable selection (Bickel et al.,
2006), including the LASSO, Smoothly Clipped Absolute Deviation (SCAD) penalty (Zou,
2006), and Adaptive LASSO (ALASSO) (Zou, 2006). These methods translate the problem
of variable selection into convex programming problems and there has been relative ma-
ture algorithms for solving these mathematical optimization problems, greatly facilitating
the use of penalized-likelihood methods. The challenge of these likelihood-based meth-
ods is that they require the computation of the likelihood function of the incomplete data
when one is faced with missing responses and/or predictors. Such incomplete-data likeli-
hood function is typically intractable to compute and involves high-dimensional integrals
(Garcia et al., 2010). It is therefore computationally infeasible to enforce these classical
penalty-based methods for variable selection in regression models with missing data.

There has also been significant progress in developing Bayesian methods for variable
selection. The most widely adopted method is via the spike-and-slab prior distribution
(Castillo et al., 2012, 2015). In particular, Castillo et al. (2015) extensively studied the
theoretical properties for Bayesian linear regression model with fixed effects using the
spike-and-slab prior distribution. Other forms of the variable selection prior include the
Bayesian LASSO (Park and Casella, 2008), the horseshoe prior Carvalho et al. (2010), the
Dirichlet-Laplace prior (Bhattacharya et al., 2015), and the spike-and-slab LASSO prior
(Ročková et al., 2018, Ročková and George, 2018). This body of literature, however, focus
on sparsity recovery and parameter estimation in regression models and do not consider
missing data scenario as well as MI, which is the focus of this work.

In this paper, we are interested in methods for variable selection in the presence of
missing data for both continuous value responses as well as binary value responses, using
generalized linear mixed-effects models.In particular, our contributions are:

1. The proposed method is able to simultaneously perform variable selection and multi-
ple imputation of missing responses for continuous and binary responses via mixed-
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effects models. We build this based on generalized linear mixed-effects models and
the posterior inference for the unknown parameters, including variable selection, as
well as the simulation-based MI for the missing responses. For computations, we uti-
lize a Markov chain Monte Carlo sampler. Coefficients of the underlying regression
models are assigned a spike-and-slab prior distribution that allows variable selection
a posteriori.

2. For the classical linear model with normal errors, we derive the corresponding full
conditional distributions of all the parameters involved, together with the full condi-
tional posterior predictive distributions of the missing variables, thanks to the stan-
dard conjugate normal model, facilitating the implementation of a computationally
accessible Gibbs sampler.

3. For the binary response variables, we consider the generalized linear mixed-effect
model with a logit link function, also referred to as the logistic linear mixed-effects
model. The full conditional distribution for the linear coefficients as well as the
random-effects coefficients are not in closed-forms directly, and we borrow the pa-
rameter expansion for data augmentation (PX-DA) idea of Polson et al. (2013) by
introducing the cleverly-designed auxiliary Pólya-Gamma random variables, such
that the full conditional distributions of the expanded set of the parameters are easily
accessible, whereas the marginal distribution of the original (unexpanded) set of pa-
rameters is left invariant. As a consequence, we develop an easy-to-implement Gibbs
sampler as well.

4. For the simulation-based MI via the MCMC, rather than jointly drawing a set of the
random sample from the joint predictive posterior distribution of the missing vari-
ables, we follow the idea of Yucel et al. (2018) and draw each of the missing variable
sequentially via the full conditional predictive distribution of the corresponding vari-
able, referred to as sequential hierarchical regression imputation (SHRIMP). The
fundamental idea of SHRIMP is that one first sort the missing variables by their cor-
responding percentages of missing portion in the increasing order, and then draw
samples from the posterior predictive distribution of the missing variables following
this sorted order. The formal description of the SHRIMP strategy will be introduced
in Section 2. The advantage of this variable-by-variable MI strategy is that it re-
duces the computational complexity for high-dimensional data (Yucel et al., 2018)
significantly.

A frequentist version for variable selection in regression models in the presence of missing
data is fully addressed in Garcia et al. (2010). The major difference is that our approach
is built upon a fully Bayesian methodology that allows for parameter estimation and in-
ference, variable selection, and the implementation of MI simultaneously via a coherent
Gibbs sampler, whereas Garcia et al. (2010) focused on developing easy-to-compute pe-
nalized likelihood approach and focus on the inference goal via point estimators, together
with some well-established theoretical properties, and MI needs to be performed separately.

The rest of this paper is organized as follows. Section 2 is devoted to the linear mixed-
effects regression model for variable selection with missing responses for continuous value
response variables, in which a Gibbs sampler is developed. For binary response variables,
we elaborate the logistic mixed-effects model for the same tasks in Section 3, introduce the
Pólya-Gamma random variables, leverage them for the PX-DA, and successfully develop
a closed-form Gibbs sampler as well. These two Gibbs samplers allow simulatenous infer-
ence of the parameters and MI of the missing responses. The advantage of the proposed
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approach is illustrated via numerical examples in Section 4, and we conclude the paper
with a discussion in Section 5.

2. Linear mixed-effects regression models with missing responses

Let us consider a linear mixed-effects model with random intercept only for continuous
response variable yij , which has also been considered in Yucel et al. (2018):

yij = xT
ijβ + bi + εij , i = 1, . . . ,m, j = 1, . . . , n, (1)

where β ∈ Rp is the fixed-effect, b1, . . . , bm
i.i.d.∼ N(0, σ2b ) are the random effects, and

ε11, . . . , εmn
i.i.d.∼ N(0, σ2e) are the errors. The responses yij’s are either observed or miss-

ing, but the missing portion can be imputed via the last cycle of the SHRIMP strategy, as
is suggested in Yucel et al. (2018). Finally, xij ∈ Rp’s are the individual-level covariates
that can also be either observed or missing, and the missing values are sampled through the
SHRIMP strategy.

We develop a Gibbs sampler to draw posterior samples from the joint distribution of
(β, b1, . . . , bm, σb, σe), as well as to draw samples of the missing data (ymis). To select
the variables among xij1, . . . , xijp, we assign a spike-and-slab prior distribution, which
has been widely applied to Bayesian variable selection (Mitchell and Beauchamp, 1988,
George and McCulloch, 1993, Clyde et al., 1996, Geweke, 1996, Kuo and Mallick, 1998),
is assigned to the fixed-effects coefficient βk. In the current context, if we are not certain
whether the kth variable is to be selected, then we assign the following spike-and-slab prior
to βk:

βk | w, µ0, σ0
{

= 0, with probability (1− w),
∼ N(µ0, σ

2
0), with probability w,

(2)

where w > 0 is the prior probability that the kth variable xijk is selected, and with prob-
ability (1 − w), βk is set to 0 so that under the prior distribution, the kth variable is not
selected. The spike-and-slab prior distribution (2) can be equivalently written as

(βk | w, µ0, σ0) ∼ (1− w)δ0 + wN(µ0, σ
2
0),

where δ0, point mass at 0, is assigned a normal prior if there is a sure certainty of selection:

(βk | w, µ0, σ0) ∼ N(µ0, σ
2
0).

To reduce the effect of hyperparameters and enhance the robustness of the entire Bayesian
model, we further assume that the hyperparameters have the following hyperprior distribu-
tions: w ∼ Beta(aw, bw), µ0 ∼ N(0, 1), and σ2 ∼ Inverse−Gamma(1, 1). For the rest
of the parameters (σ2b , σ

2
e), we assume the inverse-χ2 distribution for the sake of conjugacy,

which has also been adopted in Yucel et al. (2018): σ2b ∼ χ−2νb and σ2e ∼ χ−2νe .
We provide the detailed full conditional distributions that are needed for the Gibbs

sampler in Appendix A. Here we focus on the conditional distribution of the linear co-
efficients βk, k = 1, 2, . . . , p. Denote the parameters θ−k be the set of all parameters
except βk: θ−k = (β−k, σb, σe), where β−k = {β1, . . . , βp}\{βk}, and the random ef-
fects b = [b1, . . . , bm]

T. Then the full conditional distribution of βk for k = 1, 2, . . . , p is
given by

(βk | X,θ−k, w, µ0, σ0) ∼

{
w∗1δ0 + w∗2N(µ̂, V̂ ), if xijk is not required,
N(µ̂, V̂ ), if xijk is required,

(3)
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where X denotes the full set of covariates X = [xij ]i=1,...,m,j=1,...,n,

w∗1 ∝ (1− w)N

(
0
∣∣∣ ∑i,j xijk(yij −

∑
`6=k xij`β` − bi)∑

i,j x
2
ijk

,
σ2e∑
i,j x

2
ijk

)
,

w∗2 ∝ wN

(
µ0

∣∣∣ ∑i,j xijk(yij −
∑

`6=k xij`β` − bi)∑
i,j x

2
ijk

, σ20 +
σ2e∑
i,j x

2
ijk

)
,

V̂ =

 1

σ2e

m∑
i=1

n∑
j=1

x2ijk +
1

σ20

−1 ,
µ̂ = V̂

µ0
σ20

+
1

σ2e

m∑
i=1

n∑
j=1

xijk

yij −∑
`6=k

xij`β` − bi

 ,
The derivation of the rest of the full conditional distributions are routine and are deferred
to Appendix A. We also emphasize that (3) presents the nature of variable selection inside
a single cycle of the Gibbs sampler: with probability w∗1, we set βk = 0, suggesting that
currently the kth variable xijk is not selected, and with probability w∗2, we draw βk from a
normal distribution, indicating that βk 6= 0, and therefore, the kth variable xijk needs to be
selected.

For a given set of values β, σb, σe, b1, . . . , bm that are drawn from a single cycle of the
Gibbs sampler, each missing response can be drawn from

(yij | X,β, σb, σe, b1, . . . , bm) ∼ N(xT
ijβ + bi, σ

2
e),

where “j” indicates missing value(s) among the ith observational (cluster) unit. Here we
adopt the SHRIMP strategy to draw the samples y(mis) given y(obs) and θ in the following
sequential fashion:

• Step 1: Order the column indices {1, 2, . . . , n} of the response matrix Y such that
the sorted indices, say {j1, . . . , jn}, satisfy

n∑
i=1

1(yijk = NA) ≤
n∑
i=1

1(yijk+1
= NA),

i.e., the number of missing values of the jkth column is always no greater than the
number of missing values of the jk+1th column.

• Step 2: Sample {yij} where j denotes the missing data value for jth observation in
cluster i.

The idea of the SHRIMP strategy is to impute missing values in a variable in an order de-
fined according to the amount of missingness (from least missing to most). By iterating
the above cycles for sufficiently large number of times, we are able to obtain a sequence
of parameters drawn from the Gibbs sampler {θ(1),θ(2), . . .}, which converges in distri-
bution to {ymis(1), ymis(2), . . .} as the number of cycles goes to infinity, as well as a se-
quence of missing responses ymis = {ymis(1), ymis(2), . . .}, whose limiting distribution is
P (ymis | yobs,X, b1, . . . , bm), where yobs denotes the observed y-values. After the Gibbs
sampler is completed and the Markov chain converges, we sample ymis from its predictive
distribution with the final set of drawn values of all the parameters. For the purpose of
multiple imputation, one can repeat this procedure for M times to obtain M copies of the
imputed data.
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3. Logistic mixed-effects regression models with missing responses

We assume that our binary variable follows a logistic mixed-effects regression model:

P (yij = 1 | xij , bi,β) =
1

1 + exp(−xT
ijβ − bi)

,

where β are the fixed-effects coefficients for covariates xi, and b1, . . . , bm
i.i.d.∼ N(0, σ2b ) are

the random effects. To develop a closed-form Gibbs sampler for the logistic regression
model with respect to the random-effects, we adopt a similar strategy suggested by Polson
et al. (2013). They suggest introducing a collection of auxiliary variables following the
Pólya-Gamma distribution, such that the full conditional distributions of all parameters
are obtainable in closed-form. Before understanding the mechanism, we first present the
definition of the Pólya-Gamma distribution (see Definition 1 in Polson et al., 2013): A
random variable X is said to follow a Pólya-Gamma distribution with parameters b > 0
and c ∈ R, denoted by X ∼ PG(b, c), if there exists a sequence of independent Gamma

random variables (gk)∞k=1
i.i.d.∼ Gamma(b, 1), such that

X =
1

2π2

∞∑
k=1

gk
(k − 1/2)2 + c2/(4π2)

.

The key result of the Pólya-Gamma distribution lies in the following theorem, which is
established in Polson et al. (2013):

Theorem 1 (Theorem 1 in Polson et al., 2013) Let p(ω) be the density function of ω ∼
PG(b, 0), b > 0. Then the following integral identity holds for all a ∈ R:

[exp(ψ)]a

[1 + exp(ψ)]b
= 2−b exp

[(
a− b

2

)
ψ

] ∫ ∞
0

exp

(
−1

2
ωψ2

)
p(ω)dω.

Moreover, the normalized integrand

p(ω | ψ) =
exp

(
−ωψ2/2

)
p(ω)∫∞

0 exp (−ωψ2/2) p(ω)dω

is the density function of ω ∼ PG(b, ψ).

We let the following prior distributions reflect the appropriate prior knowledge on the
fixed-effects coefficients β1, . . . , βp. In light of the need for variable selection, we assign
the spike-and-slab prior (2) to β1, . . . , βp as follows

(βk | w, µ0, σ20) ∼ (1− w)δ0 + wN(µ0, σ
2
0), if the kth variable is undetermined,

(βk | w, µ0, σ20) ∼ N(µ0, σ
2
0), if the kth variable is forced to be selected,

w ∼ Beta(aw, bw), µ0 ∼ N(0, 1), σ2 ∼ IG(1, 1).

(4)

The prior distribution on σb is same as Section 2: σ2b ∼ χ−2νb .
We now elaborate on the full conditional distributions of the linear coefficients βk, k =

1, 2, . . . , p. The rest of the full conditional distributions necessary for deriving the Gibbs
sampler that draws posterior samples from the joint distribution of (β, b1, . . . , bm), together
with the samples of the missing data (ymis), are provided in Appendix B. Following the
derivation in Polson et al. (2013), we utilize Theorem 1 and derive the likelihood function
of ηij := xT

ijβ + bi

L(ηij | yij) ∝ exp

[(
yij −

1

2

)
ηij

] ∫ ∞
0

exp

(
−
ωijη

2
ij

2

)
p(ωij | 1, 0)dωij ,
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where p(ωij | 1, 0) is the density of an auxiliary Pólya-Gamma random variable ωij ∼
PG(1, 0). The idea of introducing the auxiliary variables ωij’s is such that after marginal-
izing them out, the joint distribution of the rest variables is left invariant. We derive the
likelihood of β for all mn data points after introducing Ω = [ωij ]m×n:

L(β | X,Y,Ω, b1, . . . , bm, σ
2) ∝ exp

{
−1

2
(z−Xβ)TΣ−1(z−Xβ)

}
,

where zij = (yij − 1/2)/ωij − bi,

z = [z11, . . . , z1n, z21, . . . , z2n, . . . , zm1, . . . , zmn]
T ∈ Rmn,

X = [x11, . . . ,x1n,x21, . . . ,x2n, . . . ,xm1, . . . ,xmn]
T ∈ Rmn×p,

Σ−1 = diag(ω11, . . . , ω1n, ω21, . . . , ω2n, . . . , ωm1, . . . , ωmn) ∈ Rmn×mn.

We then obtain the following closed-form full conditional distribution of βk, k = 1, 2, . . . , p:

(βk | X,Y,Ω,β−k,b, σb, w, µ0, σ0) ∼

{
w∗1δ0 + w∗2N(µ̂, V̂ ), if xijk is not required,
N(µ̂, V̂ ), if xijk is required,

(5)

where X denotes the full set of covariates X = [xij ]i=1,...,m,j=1,...,n, and

w∗1 ∝ (1− w)N

(
0

∣∣∣∣∣
∑

i,j ωijxijk(zij −
∑

`6=k xij`β`)∑
i,j ωijx

2
ijk

,
1∑

i,j ωijx
2
ijk

)
,

w∗2 ∝ wN

(
µ0

∣∣∣∣∣
∑

i,j ωijxijk(zij −
∑

`6=k xij`β`)∑
i,j ωijx

2
ijk

, σ20 +
1∑

i,j ωijx
2
ijk

)
,

V̂ =

 m∑
i=1

n∑
j=1

ωijx
2
ijk +

1

σ20

−1 ,
µ̂ = V̂

µ0
σ20

+
m∑
i=1

n∑
j=1

ωijxijk

zij −∑
`6=k

xij`β`

 .
The full conditional distribution of the auxiliary variables Ω = [ωij ]m×n can be derived
similarly as that in Polson et al. (2013):

(ωij | β, b1, . . . , bm) ∼ PG(1,xT
ijβ + bi), (6)

and sampling a random variable following a Pólya-Gamma distribution can be implemented
using the algorithm described in Secion 4 in Polson et al. (2013). The derivation of the rest
of the full conditional distributions are similar to those in Section 2 and we leave them in
Appendix B. Finally, for each missing yij ∈ (ymis), one can draw it from the following
conditional distribution in a single cyle of the Gibbs sampler:

(yij | X,β, b1, . . . , bm) ∼ Bernoulli

(
1

1 + exp(−xT
ijβ − bi)

)
.

Similar to our algorithm of Gibbs sampler in Section 2, the above procedure is performed
to lead to imputed values for the binary variables (ordered from highest to lowest missing
values) with selected as well as forced covariates. The post-MCMC analysis is the same as
that in Section 2.
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4. Simulated examples

4.1 A linear mixed-effects regression model example

We begin our simulated examples with the classical linear mixed-effects regression model
with normal errors. Our simulation proceeds for y under the following linear mixed-effects
model:

yij = xT
ijβ + bi + εij , m = 1, . . . , n, j = 1, . . . , n,

where (xij : i = 1, . . . , n, j = 1, . . . ,m) are p-dimensional predictor vectors, β is the

p-dimensional fixed-effect linear coefficients, b1, . . . , bm
i.i.d.∼ N(0, σ2b ) are random effects,

and εij
i.i.d.∼ N(0, σ2e) are independent homoscedastic errors. Here we consider m = 50 and

j = 100. The coordinates of the covariates of xij’s are generated independently from
N(0, 32), and the true value of β is generated as follows: First set

α = [α1, α2, 0, 0, α3, α4, 0, α5, α6, 0],

where α1, . . . , α6 ∼ N(1, 0.12) independently. Then set β = α/‖α‖2. The response
matrix Y = [yij ]m×n is assumed to be contaminated by missing values, and we consider
two scenarios of missingness mechanism:

• Missing completely at random (MCAR): the probability for missingness of yij fol-
lows Bernoulli(0.4) independently for all i = 1, . . . ,m and j = 1, . . . , n.

• Missing at random (MAR): the missingness of yij follows Bernoulli(pij) indepen-
dently for all i = 1, . . . ,m and j = 1, . . . , n, where logit(pij) = −

∑p
k=1 |xijk|/20.

This results in the percentage of missingness around 20%.

We then employ the Gibbs sampler developed in Section 2 for posterior inference and MI,
and the number of MIs is set to M = 5. For each set of the imputed data, posterior median
and standard deviation β are computed. Then we combine these estimands using Rubin’s
rules (RUBIN, 1976). The results are summarized in Table 1 under the MCAR and Table 2
under the MAR, respectively.

Table 1: Linear mixed-effects model with missing completely at random (MCAR) prob-
ability 0.4, m = 50, n = 100, and p = 10. Imputation and estimation method is the
Bayesian method with the spike-and-slab (SS) prior and sequential hierarchical regression
imputation (SHRIMP). Number of multiple imputation is M = 5.

β True values Estimate Credible intervals (CI) CI width Total variance
β1 0.3726 0.3395 (0.3747, 0.3043) 0.0704 2.4917×10−4
β2 0.3667 0.3915 (0.4156, 0.3675) 0.0481 1.4139×10−4
β3 0.0000 0.0000 (0.0003, -0.0003) 0.0005 1.7423×10−8
β4 0.0000 0.0000 (0.0012, -0.0012) 0.0023 3.5239×10−7
β5 0.4326 0.4280 (0.4595, 0.3965) 0.0630 2.0917×10−4
β6 0.3934 0.3985 (0.4217, 0.3752) 0.0465 1.3361×10−4
β7 0.0000 0.0000 (0.0002, -0.0002) 0.0004 1.2171×10−8
β8 0.4370 0.4325 (0.4690, 0.3959) 0.0731 2.6499×10−4
β9 0.4401 0.4330 (0.4594, 0.4067) 0.0526 1.6186×10−4
β10 0.0000 0.0000 (0.0018, -0.0018) 0.0036 8.2747×10−7

We also implement the pan package (Zhao and Schafer, 2013) and the mice
(Buuren and Groothuis-Oudshoorn, 2010) package for comparison. The corresponding
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Table 2: Linear mixed-effects model with missing at random (MAR) probability 0.4, m =
50, n = 100, and p = 10. Imputation and estimation method is the Bayesian method with
the spike-and-slab (SS) prior and sequential hierarchical regression imputation (SHRIMP).
Number of multiple imputation is M = 5.

β True values Estimate Credible intervals CI width Total variance
β1 0.3652 0.3868 (0.4081, 0.3655) 0.0426 1.1555×10−4
β2 0.4289 0.4161 (0.4349, 0.3973) 0.0376 9.1991×10−5
β3 0.0000 0.0000 (0.0000, 0.0000) 0.0000 0.0000
β4 0.0000 0.0000 (0.0000, 0.0000) 0.0000 4.9048×10−13
β5 0.3985 0.4027 (0.4272, 0.3782) 0.0489 1.4247×10−4
β6 0.4165 0.4065 (0.4256, 0.3874) 0.0382 9.4402×10−5
β7 0.0000 0.0000 (0.0000, 0.0000) 0.0009 5.6395×10−8
β8 0.4088 0.3978 (0.4166, 0.3791) 0.0375 9.1407×10−5
β9 0.4282 0.4224 (0.4453, 0.3994) 0.0459 1.2999×10−4
β10 0.0000 0.0000 (0.0000, 0.0000) 0.0008 4.2961×10−8

combined Rubin’s analysis results for the pan package are tabulated in Table 3 under the
MCAR and Table 4 under the MAR, and the corresponding results for the mice package
are listed in Table 5 and Table 6 under the MCAR and MAR, respectively. The numeri-
cal results for the three approaches under the MCAR and the MAR are also visualized in
Figure 1 and Figure 2, respectively. From both the tables and the plots, one can identify
that the pan package can estimate β well but is unable to detect the sparsity pattern of
β, and hence is not successful in variable selection; It can also be seen that for the mice
package, it is unable to estimate β accurately, losses the coverage of the confidence inter-
vals for β, and is not successful in variable selection. On the contrary, we can see that
the proposed approach outperforms some of the alternatives (e.g., the pan package and
the mice package) in terms of both accuracy for estimating the regression coefficient β,
detecting the sparsity pattern of β, and uncertainty quantification assessed by the width of
the confidence intervals.

Table 3: Linear mixed-effects model with missing completely at random (MCAR) proba-
bility 0.4, m = 50, n = 100, and p = 10. Imputation and estimation method is the pan
package. Number of multiple imputation is M = 5.
β True values Estimate Confidence intervals (CI) CI width Total variance
β1 0.3726 0.3387 (0.3632, 0.3142) 0.0491 1.5664×10−4
β2 0.3667 0.3829 (0.4076, 0.3581) 0.0494 1.5909×10−4
β3 0.0000 -0.0098 (0.0139, -0.0335) 0.0473 1.4567×10−4
β4 0.0000 -0.0144 (0.0105, -0.0392) 0.0497 1.6080×10−4
β5 0.4326 0.4222 (0.4465, 0.3979) 0.0486 1.5397×10−4
β6 0.3934 0.4010 (0.4255, 0.3766) 0.0489 1.5585×10−4
β7 0.0000 -0.0102 (0.0141, -0.0345) 0.0485 1.5332×10−4
β8 0.4370 0.4385 (0.4633, 0.4137) 0.0496 1.6007×10−4
β9 0.4401 0.4339 (0.4590, 0.4088) 0.0501 1.6351×10−4
β10 0.0000 -0.0184 (0.0064, -0.0431) 0.0495 1.5963×10−4
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Table 4: Linear mixed-effects model with missing at random (MAR) probability 0.4, m =
50, n = 100, and p = 10. Imputation and estimation method is the pan package. Number
of multiple imputation is M = 5.
β True values Estimate Confidence intervals (CI) CI width Total variance
β1 0.3652 0.3805 (0.4017, 0.3593) 0.0424 1.1700×10−4
β2 0.4289 0.4168 (0.4386, 0.3950) 0.0435 1.2336×10−4
β3 0.0000 0.0057 (0.0271, -0.0157) 0.0428 1.1928×10−4
β4 0.0000 0.0028 (0.0237, -0.0182) 0.0419 1.1407×10−4
β5 0.3985 0.4016 (0.4229, 0.3802) 0.0427 1.1875×10−4
β6 0.4165 0.4053 (0.4265, 0.3842) 0.0423 1.1641×10−4
β7 0.0000 -0.0096 (0.0126, -0.0318) 0.0444 1.2812×10−4
β8 0.4088 0.3983 (0.4203, 0.3763) 0.0439 1.2557×10−4
β9 0.4282 0.4289 (0.4505, 0.4073) 0.0432 1.2130×10−4
β10 0.0000 -0.0121 (0.0097, -0.0340) 0.0437 1.2414×10−4

Table 5: Linear mixed-effects model with missing completely at random (MCAR) proba-
bility 0.4, m = 50, n = 100, and p = 10. Imputation and estimation method is the mice
package. Number of multiple imputation is M = 5.
β True values Estimate Confidence intervals (CI) CI width Total variance
β1 0.3726 0.1960 (0.2469, 0.1451) 0.1017 5.9542×10−4
β2 0.3667 0.2288 (0.2713, 0.1863) 0.0849 4.5158×10−4
β3 0.0000 -0.0134 (0.0330, -0.0599) 0.0930 5.1194×10−4
β4 0.0000 -0.0109 (0.0269, -0.0488) 0.0757 3.7076×10−4
β5 0.4326 0.2553 (0.2985, 0.2120) 0.0865 4.5857×10−4
β6 0.3934 0.2273 (0.2774, 0.1772) 0.1003 5.8649×10−4
β7 0.0000 -0.0031 (0.0420, -0.0483) 0.0903 4.9888×10−4
β8 0.4370 0.2443 (0.2833, 0.2054) 0.0779 3.8950×10−4
β9 0.4401 0.2675 (0.3093, 0.2258) 0.0835 4.3849×10−4
β10 0.0000 -0.0022 (0.0654, -0.0698) 0.1351 9.2000×10−4

Table 6: Linear mixed-effects model with missing at random (MAR) probability 0.4, m =
50, n = 100, and p = 10. Imputation and estimation method is the mice package. Number
of multiple imputation is M = 5.
β True values Estimate Confidence intervals (CI) CI width Total variance
β1 0.3652 0.3017 (0.3445, 0.2590) 0.0854 4.3491×10−4
β2 0.4289 0.3328 (0.3717, 0.2939) 0.0778 3.7629×10−4
β3 0.0000 -0.0024 (0.0388, -0.0436) 0.0824 4.1141×10−4
β4 0.0000 -0.0029 (0.0328, -0.0387) 0.0716 3.2681×10−4
β5 0.3985 0.3097 (0.3512, 0.2682) 0.0829 4.1551×10−4
β6 0.4165 0.3190 (0.3623, 0.2758) 0.0866 4.4447×10−4
β7 0.0000 -0.0191 (0.0229, -0.0611) 0.0840 4.2886×10−4
β8 0.4088 0.3062 (0.3475, 0.2650) 0.0825 4.1432×10−4
β9 0.4282 0.3437 (0.3921, 0.2954) 0.0967 5.2824×10−4
β10 0.0000 -0.0205 ( 0.0152, -0.0562) 0.0714 3.2673×10−4
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Figure 1: Simulation performance of the SS-SHRIMP method, the pan package, and the
mice package, for multipe imputation and estimation of the linear mixed-effects model
with MCAR: The red dots are the multiple imputation estimates of β, the red bars in the
top panels are estimated 95% confidence intervals for β after multiple imputation, and the
blue lines represent the true values of β.
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Figure 2: Simulation performance of the SS-SHRIMP method, the pan package, and the
mice package, for multipe imputation and estimation of the linear mixed-effects model with
MAR: The red dots are the multiple imputation estimates of β, the red bars in the top panels
are estimated 95% confidence intervals for β after multiple imputation, and the blue lines
represent the true values of β.
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4.2 Logistic Mixed-effects Regression Model

The second simulated example is a generalized linear mixed-effects model with the logit
link, i.e., the logistic version of the model in Section 4.1. Simulation proceeds under

yij ∼ Bernoulli(pij), i = 1, . . . ,m, j = 1, . . . , n,

where
logit(pij) = log(pij/(1− pij)) = xT

ijβ + bi,

xij’s are p-dimensional predictors, β is the p-dimensional vector of linear coefficients, and

b1, . . . , bm
i.i.d.∼ N(0, σ2b ) are random effects. We set m = 50 and n = 50 in this example.

The covariates xij’s and the true value of β are generated following the same distribution
as those in Section 4.1. The response matrix Y = [yij ]n×m is now a m× n binary matrix,
and we assume that it is also contaminated by missing values. The missingness mechanism
is set to be the same as the MAR in Section 4.1.

The Gibbs sampler introduced in Section 3 based on the PX-DA strategy is imple-
mented for posterior computation of β and MI, and the number of imputation times is set
to M = 5. A similar MI inference is presented in Table 7.

Table 7: Logistic mixed-effects model with missing at random (MAR) probability 0.4,
m = 50, n = 100, and p = 10. Imputation and estimation method is the Bayesian
method with the spike-and-slab (SS) prior and sequential hierarchical regression imputation
(SHRIMP). Number of multiple imputation is M = 5.

β True values Estimate Credible intervals (CI) CI width Total variance
β1 0.4108 0.3900 (0.4368, 0.3433) 0.0935 5.6173×10−4
β2 0.3331 0.3079 (0.3661, 0.2497) 0.1164 7.8233×10−4
β3 0.0000 0.0000 (0.0048, -0.0048) 0.0096 6.0540×10−6
β4 0.0000 0.0000 (0.0078, -0.0078) 0.0155 1.5680×10−5
β5 0.4009 0.3948 (0.4539, 0.3357) 0.1182 8.3012×10−4
β6 0.3659 0.3392 (0.3917, 0.2866) 0.1051 6.7536×10−4
β7 0.0000 0.0000 (0.0140, -0.0140) 0.0279 5.0822×10−5
β8 0.4389 0.3958 (0.4605, 0.3312) 0.1292 9.5072×10−4
β9 0.4827 0.4411 (0.4971, 0.3851) 0.1120 7.7004×10−4
β10 0.0000 0.0000 (0.0060, -0.0060) 0.0121 9.4592×10−6

In this example we compare the performance with lme4 package and the mice pack-
age. The corresponding results based on the combined Rubin’s analysis are given in Table
8 and Table 9, respectively. Visualization of the comparison of the results produced by
different methods are presented in Figure 3, and the advantages of the proposed method in
terms of the accuracy for estimating β, sparsity recovery of β (i.e., variable selection ac-
curacy), and smaller uncertainty measured by the width of the confidence intervals and the
total variances, are demonstrated clearly in both the figure and the Tables. We can also see
that the mice package is far from satisfactory in this example, which is similar to the case
of Section 4.1, and the behavior of the lme4 package is very similar to the pan package
in the case of Section 4.1.

4.3 A combined mixed-effects model

The third simulated example pertains to joint aspects of binary and continuous variables.
We simulate data under a marginal distribution for Y1 and conditional distribution for Y2
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Table 8: Logistic mixed-effects model with missing at random (MAR) probability 0.4,
m = 50, n = 100, and p = 10. Estimation method is the lme4 package with missing
values deleted. Number of multiple imputation is M = 5.
β True values Estimate Confidence intervals (CI) CI width Total variance
β1 0.4108 0.3980 (0.4511, 0.3449) 0.1062 7.3393×10−4
β2 0.3331 0.2952 (0.3442, 0.2463) 0.0979 6.2366×10−4
β3 0.0000 0.0067 (0.0499, -0.0365) 0.0864 4.8539×10−4
β4 0.0000 0.0228 (0.0665, -0.0209) 0.0873 4.9638×10−4
β5 0.4009 0.4011 (0.4545, 0.3477) 0.1068 7.4230×10−4
β6 0.3659 0.3298 (0.3797, 0.2799) 0.0998 6.4871×10−4
β7 0.0000 0.0313 (0.0761, -0.0135) 0.0896 5.2287×10−4
β8 0.4389 0.3981 (0.4518, 0.3445) 0.1073 7.4994×10−4
β9 0.4827 0.4501 (0.5058, 0.3944) 0.1114 8.0720×10−4
β10 0.0000 0.0098 (0.0537, -0.0340) 0.0877 5.0085×10−4

Table 9: Logistic mixed-effects model with missing at random (MAR) probability 0.4,
m = 50, n = 100, and p = 10. Imputation and estimation method is the mice package.
Number of multiple imputation is M = 5.
β True values Estimate Confidence intervals (CI) CI width Total variance
β1 0.4108 0.2179 (0.2551, 0.1806) 0.0745 3.5552×10−4
β2 0.3331 0.1447 (0.1819, 0.1075) 0.0744 3.5001×10−4
β3 0.0000 0.0067 (0.0391, -0.0256) 0.0647 2.7152×10−4
β4 0.0000 0.0154 (0.0567, -0.0260) 0.0827 4.0954×10−4
β5 0.4009 0.2129 (0.2520, 0.1739) 0.0781 3.8377×10−4
β6 0.3659 0.1698 (0.2089, 0.1306) 0.0783 3.8197×10−4
β7 0.0000 0.0448 (0.0853, 0.0043) 0.0810 3.9683×10−4
β8 0.4389 0.2036 (0.2393, 0.1679) 0.0714 3.2933×10−4
β9 0.4827 0.2302 (0.2742, 0.1862) 0.0880 4.6399×10−4
β10 0.0000 0.0151 (0.0554, -0.0251) 0.0805 3.9543×10−4

 
2447



0.0

0.1

0.2

0.3

0.4

0.5

2.5 5.0 7.5 10.0

beta_j (j from 1 to p)

colour

SS + SHRIMP

Truth

SS + SHRIMP estimate for beta (logistic model with MAR)

0.0

0.1

0.2

0.3

0.4

0.5

2.5 5.0 7.5 10.0

beta_j (j from 1 to p)

colour

lme4 package

Truth

lme4 package with missing value deleted (logistic model with MAR)

0.0

0.1

0.2

0.3

0.4

0.5

2.5 5.0 7.5 10.0

beta_j (j from 1 to p)

colour

mice package

Truth

mice package estimate for beta (logistic model with MAR)

Figure 3: Simulation performance of the SS-SHRIMP method, the lme4 package with
missing values deleted, and the mice package, for multipe imputation and/or estimation
of the logistic mixed-effects model with MAR: The red dots are the multiple imputation
estimates of β, the red bars in the top panels are estimated 95% confidence intervals for β
after multiple imputation, and the blue lines represent the true values of β.
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given Y1:
p(Y1,Y2) = p(Y2 | Y1)p(Y1),

where the distribution of Y1 = [y1ij ]m×n is given by a linear mixed-effects model

y1ij = βT
1 xij + b1i + εij , i = 1, . . . ,m, j = 1, . . . , n,

where b11, . . . , b1m
i.i.d.∼ N(0, σ2b1), εij

i.i.d.∼ N(0, σ2e), with xij’s generated following the same
distribution as those in Section 4.1, and β1 is set to be

β1 = [0.3726, 0.3667, 0, 0, 0.4326, 0.3934, 0, 0.4370, 0.4401, 0]T.

The conditional distribution of Y2 = [y2ij ]m×n, p(Y2 | Y1), can be described as follows:
Given Y1,

y2ij ∼ Bernoulli(pij), i = 1, . . . ,m, j = 1, . . . , n,

where logit(pij) = log(pij/(1−pij)) = −1+0.5y1ij+b2i, and b21, . . . , b2m
i.i.d.∼ N(0, σ2b2).

Here we set m = 25 and j = 100. The corresponding working model for inference, with
the true values of σ2b1 , σ

2
b2
,β1, and β2 = [−1, 0.5]T as unknown parameters, is set as

follows:

y1ij = βT
1 xij + b1i + εij ,

xij
i.i.d.∼ N(0, 3),

logit(P(y2ij = 1)) = β21 + β22y1ij + b2i,

where i = 1, . . . ,m and j = 1, . . . , n. To completely build a hierarchical Bayesian model
such that posterior computation for parameter estimation, variable selection, and MI can be
performed, we specify the following prior distributions for the unknown parameters: with
p1 = 10 and p2 = 2, we assign

β11, . . . , β1p1 | w, µ01, σ201 ∼ (1− w)δ0(dβ1) + wN(µ01, σ
2
01)dβ1,

β21, . . . , β2p2 | µ02, σ202 ∼ N(µ02, σ
2
02),

w ∼ Beta(aw, bw),

σ2e ∼ χ−2νe ,
σb1 , σb2 ∼ χ−2νb ,
µ01, µ02 ∼ N(0, 1),

σ201, σ
2
02 ∼ IG(1, 1)

The response matrices Y1, Y2, as usual, are also contaminated by missing values. The
missingness mechanism adopted here is very similar to that in Section 3.1 of Yucel et al.
(2018), and we consider the following missing at random (MAR) scenario: Denote r1ij
and r2ij the missingness indicators for y1ij and y2ij . Then we simulate the missingness
indicators using the following hierarchical model:

bz1i , b
z2
i

i.i.d.∼ N(0, 1),

z1ij | bz1i ∼ N(bz1i , 2),

z2ij | bz2i ∼ N(bz2i , 2)

logit(P(z1ij = 1)) = γ10 + γ11z1ij ,

logit(P(z2ij = 1)) = γ20 + γ21z2ij ,
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where the coefficients γ10, γ11, γ20, γ21 are selected such that the overall missingness per-
centage is approximately 18%.

The posterior computation that produces inference results for β (including sparsity
recovery, i.e., variable selection via detection of zeros in β) is performed by an implemen-
tation of the Gibbs sampler provided in Appendix C. The results are tabulated in Table 10
for β1 and Table 11, respectively.

Table 10: Inference for β1 under the compound conditional mixed-effects model with
missing at random (MAR), m = 25, n = 100, and p1 = 10. Imputation and estimation
method is the SS-SHRIMP.

β1 True values Estimate Credible intervals (CI) CI width
β11 0.3726 0.3710 (0.3748, 0.3670) 0.0077
β12 0.3667 0.3653 (0.3687, 0.3623) 0.0063
β13 0.0000 0.0000 (0.0000, 0.0000) 0.0000
β14 0.0000 0.0000 (0.0000, 0.0000) 0.0000
β15 0.4326 0.4317 (0.4358, 0.4281) 0.0077
β16 0.3934 0.3927 (0.3960, 0.3889) 0.0072
β17 0.0000 0.0000 (0.0000, 0.0000) 0.0000
β18 0.4370 0.4366 (0.4404, 0.4326) 0.0078
β19 0.4401 0.4402 (0.4435, 0.4358) 0.0077
β1,10 0.0000 0.0000 (0.0000, 0.0000) 0.0000

Table 11: Inference for β2 under the compound conditional mixed-effects model with
missing at random (MAR), m = 25, n = 100, and p2 = 2. Imputation and estimation
method is SS-SHRIMP.

β2 True values Estimate Confidence intervals CI width
β21 -1 -0.9959 (-0.8824, -1.1314) 0.2490
β22 0.5 0.4873 (0.5330, 0.4472) 0.0859

Here we considered the pan package (as an approximate for binary variable) and mice
package. We summarize the results in Table 12 and Table 13, respectively. We also visual-
ize the comparison of the results provided by our method against the pan package in Figure
4 for β1 and Figure 5. We can see that both methods can successfully and accurately esti-
mate the non-zero signal of β1, but the spike-and-slab approach provides better results in
terms of recovering the zero coordinates of β compared to the pan package, as the latter
produces relatively wider confidence intervals for β13, β14, β17, β1,10. The mice package
produces inaccurate estimates for β2, which can be easily recognized from Table 13 and
Figure 5. Therefore, we conclude that the empirical performance of the proposed spike-
and-slab variable selection approach embedded in SHRIMP outperforms the competitors
in this simulated example.

5. Discussion

We have illustrated that the variable selection problem in the presence of missing response
variables in mixed-effects regression models can be done by a hierarchical Bayesian ap-
proach with a spike-and-slab prior distribution for the linear coefficients. We successfully
derive efficient Gibbs sampler for posterior computation of the corresponding linear and
logistic mixed-effects models. The hierarchical Bayesian model itself also permits the inte-
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Table 12: Inference for β1 under the compound conditional mixed-effects model with
missing at random (MAR), m = 25, n = 100, and p1 = 10. Imputation and estimation
method is the pan package.

β1 True values Estimate Confidence intervals (CI) CI width
β11 0.3726 0.3730 (0.3759, 0.3702) 0.0057
β12 0.3667 0.3653 (0.3682, 0.3624) 0.0058
β13 0.0000 0.0009 (0.0038, -0.0020) 0.0058
β14 0.0000 0.0020 (0.0048, -0.0008) 0.0056
β15 0.4326 0.4323 (0.4353, 0.4293) 0.0060
β16 0.3934 0.3922 (0.3949, 0.3894) 0.0055
β17 0.0000 0.0017 (0.0047, -0.0012) 0.0059
β18 0.4370 0.4374 (0.4404, 0.4345) 0.0059
β19 0.4401 0.4429 (0.4458, 0.4400) 0.0058
β1,10 0.0000 0.0012 (0.0041, -0.0018) 0.0059

Table 13: Inference for β2 under the compound conditional mixed-effects model with
missing at random (MAR), m = 25, n = 100, and p2 = 2. Imputation and estimation
method is the mice package.

β2 True values Estimate Confidence intervals (CI) CI width
β21 -1 -0.7433 (-0.6218, -0.8647) 0.2430
β22 0.5 0.3307 (0.3726, 0.2888) 0.0838
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Figure 4: Simulation performance of the SS-SHRIMP method, the pan package, and the
mice package, for imputation-based estimation of β1 in the compound conditional mixed-
effects model with MAR: The red dots are the multiple imputation estimates of β1, the
red bars in the top panels are estimated 95% confidence intervals for β1 after multiple
imputation, and the blue lines represent the true values of β1.
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Figure 5: Simulation performance of the SS-SHRIMP method, the pan package, and the
mice package, for imputation-based estimation of β2 in the compound conditional mixed-
effects model with MAR: The red dots are the multiple imputation estimates of β2, the
red bars in the top panels are estimated 95% confidence intervals for β2 after multiple
imputation, and the blue lines represent the true values of β2.

gration with the sequential hierarchical regression imputation strategy introduced by Yucel
et al. (2018) for multiple imputation of the missing responses, further facilitate the compu-
tational efficiency of the corresponding MCMC algorithm.

There are some potential future extensions of the current methodology. The numer-
ical examples provided in this work are relatively low-dimensional regression problems.
Although the spike-and-slab prior distributions (2) permits the derivation of closed-form
Gibbs sampler either by a direct approach or via a PX-DA strategy (e.g., the auxiliary
Pólya-Gamma random variable), the corresponding computation expense for the MCMC is
still problematic with ultra-high-dimensional data. Even with the help of Monte Carlo sam-
pling methods and the spike-and-slab prior (2), it is still required to explore the entire space
of all possible models as much as possible. Nonetheless, the complexity of the space of
all possible models grows exponentially with the number of predictors, and in moderately
high-dimensional setup, the MCMC could be cumbersome or even infeasible to implement.
We have already observed the potential computational difficulty of the MCMC-based MI
method involving variable selection in the simulated examples. The comparison among the
computation expenses using different methods are tabulated in Table 14, and we note that
the computation expense for the spike-and-slab variable selection composite with SHRIMP
for MI is much more expensive than the other competitors, but we gain estimation and vari-
able selection accuracy instead. It has also been pointed out in Castillo et al. (2015) that

Table 14: Computation expenses using different MI methods in Section 4
Method Section 4.1 Section 4.2 Section 4.3

Spike-and-slab SHIRMP 986s 580s 604s
pan package 3.43s N/A 1.73s
mice package 124s 19.2s 134s
lme4 package N/A 2.00s N/A

algorithms that can successfully addresses ultra-high-dimensional variable selection prob-
lems is beyond the scope of fully Bayesian methods.

In contrast to relying on MCMC-based posterior computation algorithms, which is a
class of exact Bayesian inference methods in the sense that the random samples drawn
from the Markov chain can be regarded as samples generated from the exact full posterior
distribution, a relatively more efficient method is the variational inference (VI). Unlike the
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MCMC approach, the VI is an approximate Bayesian inference algorithm that can be much
faster but at the cost of certain model bias. Under certain regularity conditions, it has also
been proved that the variational posterior distribution is comparable to the exact posterior
distribution (Zhang et al., 2020, Pati et al., 2018, Wang and Blei, 2019, Han and Yang,
2019). The use of VI for linear regression models has been restricted on the case of low-
dimensional case (You et al., 2014). In the future, we plan to explore the methodology and
theory for VI for linear and generalized linear mixed-effects models in the presence of the
missing responses for the sake of computational efficiency for high-dimensional data.
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Appendix

A. Gibbs sampler for Section 2

In this section, we derive the detailed Gibbs sampling algorithm, which reduces to the
following full conditional distributions of the parameters θ = (β, σb, σe) and the random
effects b = [b1, . . . , bm]

T. A single cycle of the Gibbs sampler iterates the following
sampling schemes:

(βk | X,β−k,b, σb, σe, w, µ0, σ0) ∼

{
w∗1δ0 + w∗2N(µ̂, V̂ ), if xijkis not required,
N(µ̂, V̂ ), if xijk is required,

(7)

(w | X,β) ∼ Beta

(
aw +

p∑
k=1

zk, bw +

p∑
k=1

(1− zk)

)
, (8)

(µ0 | β, σ0) ∼ N

(1 + 1

σ20

p∑
k=1

zk

)−1
1

σ20

p∑
k=1

βk,

(
1 +

1

σ20

p∑
k=1

zk

)−1 , (9)

(σ20 | β, µ0) ∼ Inverse−Gamma

(
1 +

1

2

p∑
k=1

zk, 1 +
1

2

p∑
k=1

zk(βk − µ0)2
)
, (10)

(bi | X,β, σb, σe) ∼ N(̂bi, V (̂bi)), (11)

(σ2e | X, b1, . . . , bm,β, σb) ∼

1 +
m∑
i=1

n∑
j=1

ε̂2ij

χ−2νe+mn−1, (12)

(σ2b | X, b1, . . . , bm,β, σe) ∼
(
νb +

∑m
i=1 b

2
i

νb +m

)
χ−2νb+m, (13)

where X denotes the full set of covariates X = [xij ]i=1,...,m,j=1,...,n, zk = 1(βk 6= 0),
w∗1, w

∗
2, V̂ , µ̂ are the same as those given in Section 2,

ε̂ij = yij − xT
ijβ̂, β̂ =

 m∑
i=1

n∑
j=1

xijx
T
ij

−1 m∑
i=1

n∑
j=1

xij(yij − bi),

V (̂bi) =

(
n

σ2e
+

1

σ2b

)−1
, b̂i =

V (̂bi)

σ2e

n∑
j=1

(yij − xT
ijβ).

Note that formulas (11), (12), and (13) are the same as those appearing in Section 2.2.1
in Yucel et al. (2018). The last step in one iteration of the Gibbs sampler is to draw the
predictive posterior distribution of the missing response yij ∈ (ymis) using the SHRIMP
strategy described at the end of Section 2.

B. Gibbs sampler for Section 3

We provide the complete full conditional distributions that are required for the Gibbs sam-
pler to draw posterior samples from the joint distribution of (β, b1, . . . , bm), together with
the samples of the missing data (ymis). Following the derivation in Section 3, we obtain the
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following closed-form full conditional distribution of β, w, µ0, and σ20:

(βk | X,Y,Ω,β−k,b, σb, w, µ0, σ0) ∼

{
w∗1δ0 + w∗2N(µ̂, V̂ ), if xijk is not required,
N(µ̂, V̂ ), if xijk is required,

(14)

(w | X,β) ∼ Beta

(
aw +

p∑
k=1

zk, bw +

p∑
k=1

(1− zk)

)
, (15)

(µ0 | β, σ0) ∼ N

(1 + 1

σ20

p∑
k=1

zk

)−1
1

σ20

p∑
k=1

βk,

(
1 +

1

σ20

p∑
k=1

zk

)−1 , (16)

(σ20 | β, µ0) ∼ Inverse−Gamma

(
1 +

1

2

p∑
k=1

zk, 1 +
1

2

p∑
k=1

zk(βk − µ0)2
)

(17)

where X denotes the full set of covariates X = [xij ]i=1,...,m,j=1,...,n, zk = 1(βk 6= 0), and
the formulas for computing w∗1, w

∗
2, V̂ , µ̂ are provided in Section 3. The full conditional

distribution of the auxiliary variables Ω = [ωij ]m×n is given by (6) in Section 3. Similar to
the derivation of (5), the full conditional distribution of the random effects b1, . . . , bm can
be derived analogously:

p(bi | X,Y,β, σb) ∝ p(bi)
n∏
j=1

L(ηij | yij)

∝ p(bi)
n∏
j=1

exp

{(
yij −

1

2

)
(xT
ijβ + bi)−

ωij
2

(xT
ijβ + bi)

2

}

∝ p(bi)
n∏
j=1

exp

{
−ωij

2

[
b2i − 2

(
yij − 1/2

ωij
− xT

ijβ

)
bi

]}

∝ p(bi)
n∏
j=1

exp
[
−ωij

2
(bi − uij)2

]
,

where uij = (yij − 1/2)/ωij − xT
ijβ. Since p(bi) = (1/

√
2πσ2b ) exp[−b

2
i /(2σ

2
b )], it

follows directly from the normal conjugacy that

(bi | X,Y,β, σb) ∼ N

 1

σ2b
+

n∑
j=1

ωij

−1 n∑
j=1

ωijuij ,

 1

σ2b
+

n∑
j=1

ωij

−1 . (18)

The full conditional distribution of σb is the same as (13):

(σ2b | X, b1, . . . , bm) ∼
(
νb +

∑m
i=1 b

2
i

νb +m

)
χ−2νb+m.

The last step in a single iteration of the Gibbs sampler is to draw the predictive posterior dis-
tribution of the missing response yij ∈ (ymis) following the SHRIMP strategy mentioned
at the end of Section 2.

C. Gibbs sampler for Section 4.3

In this appendix we derive the full conditional distributions of the unknown parameters
as well as the posterior predictive distribution for the missing response variables that are
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needed for the Gibbs sampler for Section 4.3. The full conditional distributions of the
parameters for the linear mixed-effects component are listed as follows:

(β1k | −) ∼ w∗1kδ0 + w∗2kN(µ̂1, V̂1), k = 1, 2, . . . , p1 (19)

(w | −) ∼ Beta

(
aw +

p1∑
k=1

1(β1k 6= 0), bw +

p1∑
k=1

(β1k = 0)

)
, (20)

(µ01 | −) ∼ N

(1 + 1

σ20

p1∑
k=1

1(β1k 6= 0)

)−1 p1∑
k=1

β1k
σ201

,

(
1 +

1

σ201

p1∑
k=1

1(β1k 6= 0)

)−1 ,

(21)

(σ201 | −) ∼ IG

(
1 +

1

2

p1∑
k=1

1(β1k 6= 0), 1 +
1

2

p1∑
k=1

1(β1k 6= 0)(β1k − µ01)2
)
, (22)

(b1i | −) ∼ N(̂b1i, V (̂b1i)), (23)

(σ2e | X, b1, . . . , bm,β, σb) ∼

1 +

m∑
i=1

n∑
j=1

ε̂2ij

χ−2νe+mn−1, (24)

(σ2b1 | X, b1, . . . , bm,β, σe) ∼
(
νb +

∑m
i=1 b

2
1i

νb +m

)
χ−2νb+m, (25)

where

w∗1k ∝ (1− w)N

0

∣∣∣∣∣
∑

i,j x
(1)
ijk(y1ij −

∑
`6=k x

(1)
ij`β1` − b1i)∑

i,j(x
(1)
ijk)

2
,

σ2e∑
i,j(x

(1)
ijk)

2

 ,

w∗2k ∝ wN

µ01
∣∣∣∣∣
∑

i,j x
(1)
ijk(y1ij −

∑
`6=k x

(1)
ij`β1` − b1i)∑

i,j(x
(1)
ijk)

2
, σ201 +

σ2e∑
i,j(x

(1)
ijk)

2

 ,

V̂1 =

 1

σ2e

m∑
i=1

n∑
j=1

(x
(1)
ijk)

2 +
1

σ201

−1 ,
µ̂1 = V̂1

µ01
σ201

+
1

σ2e

m∑
i=1

n∑
j=1

x
(1)
ijk

y1ij −∑
`6=k

x
(1)
ij`β1` − b1i

 ,
ε̂ij = y1ij − (x

(1)
ij )Tβ̂1, β̂1 =

 m∑
i=1

n∑
j=1

(x
(1)
ij )(x

(1)
ij )T

−1 m∑
i=1

n∑
j=1

x
(1)
ij (y1ij − b1i),

V (̂b1i) =

(
n

σ2e
+

1

σ2b1

)−1
, b̂1i =

V (̂b1i)

σ2e

n∑
j=1

(y1ij − (x
(1)
ij )Tβ1),

x
(1)
ij = xT

ij . Denote zij = (y2ij − 1/2)/ωij − b2i,

z = [z11, . . . , z1n, z21, . . . , z2n, . . . , zm1, . . . , zmn]
T ∈ Rmn,

X = [x
(2)
11 , . . . ,x

(2)
1n ,x

(2)
21 , . . . ,x

(2)
2n , . . . ,x

(2)
m1, . . . ,x

(2)
mn]

T ∈ Rmn×p2 ,
Σ−1 = diag(ω11, . . . , ω1n, ω21, . . . , ω2n, . . . , ωm1, . . . , ωmn) ∈ Rmn×mn,
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where x
(2)
ij = [1, y1ij ]

T. We then obtain the following closed-form full conditional distribu-
tion of β2, µ02, and σ202, which are the parameters for the logistic mixed-effects component:

(β2k | −) ∼ N(µ̂2, V̂2), k = 1, . . . , p2 (26)

(µ02 | −) ∼ N

((
1 +

p2
σ202

)−1 1

σ202

p2∑
k=1

β2k,

(
1 +

p2
σ202

)−1)
, (27)

(σ202 | −) ∼ IG

(
1 +

p2
2
, 1 +

1

2

p2∑
k=1

(β2k − µ02)2
)

(28)

where

V̂2 =

 m∑
i=1

n∑
j=1

ωij(x
(2)
ijk)

2 +
1

σ202

−1 ,
µ̂2 = V̂2

µ02
σ202

+

m∑
i=1

n∑
j=1

ωij(x
(2)
ijk)

zij −∑
`6=k

x
(2)
ij`β2`

 .
The full conditional distribution of the auxiliary variables Ω = [ωij ]m×n can be derived
similarly as that in Polson et al. (2013):

(ωij | −) ∼ PG(1, (x
(2)
ij )Tβ2 + b2i), (29)

Denote uij = (y2ij − 1/2)/ωij − (x
(2)
ij )Tβ2. Then the random effects b21, . . . , b2m can be

sampled from

(b2i | −) ∼ N

 1

σ2b2
+

n∑
j=1

ωij

−1 n∑
j=1

ωijuij ,

 1

σ2b2
+

n∑
j=1

ωij

−1 . (30)

The full conditional distribution of σb2 is the same as (13):

(σ2b | −) ∼
(
νb +

∑m
i=1 b

2
2i

νb +m

)
χ−2νb+m.

Finally, sampling missing responses y1ij ∈ (y1mis) and y2ij ∈ (y2mis) from

(y1ij | −) ∼ N((x
(1)
ij )Tβ1 + b1i, σ

2
e),

(y2ij | −) ∼ Bernoulli

(
1

1 + exp(−(x(2)
ij )Tβ2 − b2i)

)
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