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Efficient estimation of crop parameters at the county (small domain) level is an important 
priority for the USDA's National Agricultural Statistics Service (NASS). This paper 
focuses on three mixed modeling approaches to county-level estimation of crop planted or 
harvested area where survey reported values are fit to unit (farm) and area (county) level 
covariates: 1) an empirical best linear unbiased predictor (EBLUP) model, 2) an adaptive 
empirical best prediction (AEBP) model, and 3) a log-transformed empirical best 
prediction model. In a simulation study involving corn and soybean planted area in Ohio 
and South Dakota for 2018, the three estimators are compared using data from NASS’s 
County Agricultural Production Survey (CAPS) and auxiliary data sources. Control data 
from NASS’s list sampling frame are used as the unit-level covariate while two options are 
considered for the area-level covariate: 1) Farm Service Agency (FSA) planted acreage, 
and 2) satellite-based pixel counts obtained from NASS’s Cropland Data Layer. Since the 
unit-level covariate is missing for a subset of the list frame records, regression synthetic 
estimation is applied in that portion of the population to ensure complete coverage. 

 
1. Introduction  

 

The National Agricultural Statistics Service (NASS) produces small area statistics on some 
crop and livestock commodities. A small area refers to a geographical region (e.g., a U.S. 
county) for which limited information is available from the primary source of data. County-
level agricultural statistics are used for a number of applications including regional 
planning and fund allocation in government programs, setting of crop insurance premiums 
and agronomics research. The importance of producing accurate, defensible county-level 
estimates has motivated NASS to maintain an active research program in this area (Cruze, 
et al., 2019).   
 
NASS’s main source of data for commodity estimation has always been surveys of farmers, 
ranchers and agribusiness managers who provide requested information on a voluntary, 
confidential basis. In general, traditional direct methods that utilize only small area specific 
data from surveys designed for higher levels of aggregation (e.g., states) have been 
unreliable due mainly to small sample sizes in the areas of interest. In addition, effects of 
different nonsampling errors such as coverage and nonresponse can be severe. Even after 
combining data from multiple surveys, direct methods have often fallen short of producing 
adequate small area statistics. To improve on direct estimators, several indirect and model-
based methods have been proposed. These estimation procedures use implicit or explicit 
models that borrow strength from related resources such as administrative records, 
previous year survey estimates, NASS list sampling frame control data, agricultural census 
data and earth observing satellite data.  
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Prior to the implementation of CAPS, county estimation used data from sample surveys 
designed for estimating values at higher levels of aggregation in conjunction with ancillary 
data sources. Although CAPS is designed specifically for county-level estimation, there is 
still potential for improvement via the application of model-based small area estimation 
methodology.     
 
Previously, an empirical best linear unbiased predictor (EBLUP) estimator based on the 
Battese-Harter-Fuller (BHF) model (Battese et al., 1988) and involving two covariates (one 
at the unit-level and the other at the area-level) was evaluated for harvested acreage (Bellow 
and Lahiri, 2011). In an empirical study conducted over seven states in the Midwestern 
grain belt region of the U.S., the BHF estimator was found to be more accurate overall for 
corn and soybeans than five competing estimators when NASS official county-level 
estimates were used as the gold standard for comparison. A subsequent three-state (Illinois, 
Maryland, Tennessee) study showed a newly proposed mixed-model estimator known as 
adaptive empirical best prediction (AEBP) to be superior (in general) to both BHF and a 
log-transformed estimator called LEBP (Bellow and Lahiri, 2012). The term ‘adaptive’ 
refers to the fact that a hyperparameter is estimated by the model fitting algorithm as 
opposed to being preset to a fixed value. Neither of these two empirical studies involved 
the use of simulation.  
 
In this paper, we use Monte Carlo simulation to evaluate the two estimators just referred 
to (BHF and AEBP) and a third which is a special case of the model-based estimator 
developed by Berg and Chandra (2014). The latter estimator (referred to as BC) is based 
on a log-transformed model related to LEBP.  
 
In our application, the areas are counties and the population units are farming operations. 
The unit (farm) level covariate employed is derived from the size variable, a measure of 
planted area for the crop of interest over recent survey years based on NASS list frame 
control data. A missing value for this variable could arise if the farm in question is in the 
list frame sample for the current year but not the previous year, while a zero value could 
occur if the crop was never planted on the farm over recent years. Two available choices 
for the source of the area (county) level covariate are:  
 
1) Farm Service Agency (FSA) planted acreage – estimates of planted acreage derived 

from reports submitted by farm operators to their local FSA offices, and 
 

2) Remote Sensing (RS) pixel counts – counts of satellite pixels classified to crops in 
NASS’s Cropland Data Layer (CDL).   

 
The FSA planted acreage figures are normally available to NASS in time for use in 
operational county-level estimation (which involves a board process). NASS’s Cropland 
Data Layer (CDL) is a georeferenced, crop-specific data layer of land cover (including crop 
types) created annually for the continental U.S. using a combination of Landsat 8,  Deimos-
1, UK-DMC2 and Sentinel-2 satellite imagery and agricultural ground reference data 
(Boryan et al., 2011).  
 
Although a full scale comparison between the impacts of using the FSA and RS covariates 
is beyond the scope of this paper, preliminary evidence suggests that the choice of one or 
the other makes little difference in terms of the resulting model-based estimates. For that 
reason, the FSA covariate is used exclusively in our estimator comparison study.      
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Due to incomplete availability of the unit-level covariate over the entire population, 
estimation of total planted acreage must be of the hybrid variety. The population is 
subdivided into two poststrata: A (unit-level covariate available) and B (unit-level 
covariate missing). Mixed effects estimation is applied in poststratum A and an area-level 
estimator in poststratum B.  
 
In Section 2, we describe the three mixed effects models for county-level acreage 
estimation and the associated estimation procedures in detail. Section 3 discusses a two-
state (Ohio and South Dakota) simulation study comparing three hybrid estimators for corn 
and soybeans in 2018 (one each corresponding to BHF, AEBP and BC in poststratum A 
and regression synthetic estimation in poststratum B). Section 4 provides a summary and 
discussion of potential avenues for future research.    
     

2. Mixed Effects Models for County-Level  Crop Area Estimation   

 
In this section, we first introduce a general mixed effects model and then discuss the three 
specific versions noted above and their associated estimation procedures.  
 
Linear Mixed Effects Model 
            
The general mixed effects model with m covariates is expressed as: 
 
       𝑓(𝑦𝑖𝑗) =  𝒛𝑖𝑗′𝜷 + 𝑣𝑖  + 𝑒𝑖𝑗  (i = 1, … , L; j = 1, … , 𝑁𝑖)                                                                                 
      
where: 
 
    f (t) = t or log(t), 
 
    𝑦𝑖𝑗  = value of dependent variable for area i, population unit j, 
 
    𝒛𝑖𝑗′ = (1,  𝑧1𝑖𝑗 , … , 𝑧𝑚𝑖𝑗)  - vector of covariates for area i, population unit j, 
 
    𝜷 = (𝛽0 , 𝛽1 ,  …. , 𝛽𝑚) ′ - vector of model regression parameters, 
 
    L = number of areas to be estimated, 
 
    𝑁𝑖 = number of population units in area i, 
 
    𝑣𝑖 =  effect for area i, 
      
    eij = random error for area i, population unit j, 
      
    (vi , eij ) ~ N(0, diag(σv ,

2 σeij
2  )). 

 
In our specific application involving a single unit-level and area-level covariate and the 
two poststrata defined in Section 1, the model reduces to: 
  
    f(yij) =  β0 + β1z1ij  + β2z2i + vi  + eij  
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where: 
 
   yij  = true area (planted or harvested) of crop in county i, population unit j. 
 
Let: 
 
   𝑥1𝑖𝑗 = value of list frame size variable in county i, population unit j,  
 
   𝑁𝑖 = number of population units in county i, 
 
   nAi = number of sample units in poststratum A, county i, 
 
   𝑥2𝑖

(𝐹𝑆𝐴) = (FSA planted acreage in county i) / 𝑁𝑖, 
 
   𝑥2𝑖

(𝑅𝑆) = (RS pixel count in county i) / 𝑁𝑖. 
 
The models referred to as Battese-Harter-Fuller (BHF), adaptive empirical best prediction 
(AEBP) and Berg-Chandra (BC) are defined by specific choices of f(t), the two covariates 
and the random error variance structure. All three are fit using the restricted maximum 
likelihood (REML) method. Before proceeding further, we augment the notation for 
regression parameters and county effects so as distinguish among the three models:     

 
    𝛽𝐴𝑘

(𝑀) = regression parameter associated with model M in poststratum k (k = 0, 1, 2), 
                                        
    𝑣𝑖

(𝑀)  = county effect associated with model M (i = 1, …, L). 
 
Battese-Harter-Fuller (BHF) Model 
 
If f(t) = t, the unit-level covariate is 𝑥1𝑖𝑗 , the area-level covariate is either 𝑥2𝑖

(𝐹𝑆𝐴) or 𝑥2𝑖
(𝑅𝑆) 

and 𝜎𝑒𝑖𝑗
2 =  𝜎𝑒

2  (constant over population units), we obtain a special case of the model first 
proposed by Battese, Harter and Fuller (1988) for a related agricultural application.  
 
    𝑦𝑖𝑗 =  𝛽𝐴0

(𝐵𝐻𝐹)
+ 𝛽𝐴1

(𝐵𝐻𝐹)
𝑥1𝑖𝑗  + 𝛽𝐴2

(𝐵𝐻𝐹)
𝑥2𝑖 + 𝑣𝑖

(𝐵𝐻𝐹)
 + 𝑒𝑖𝑗  

 
Adaptive Empirical Best Prediction (AEBP) Model 
 
The specifications of this model are identical to those for BHF except that the random error 
variance is assumed to be a function of the unit-level covariate (crop size): 
 
   𝜎𝑒𝑖𝑗

2  = 𝑥1𝑖𝑗
𝛿 𝜎𝑒

2   (𝛿 > 0) 
 
AEBP is adaptive since the hyperparameter 𝛿 is estimated from the data by the REML 
algorithm which searches for the value that minimizes the Bayesian Information Criterion. 
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Berg-Chandra (BC) Model  
 
If f(t) = log(t), the unit-level covariate is log(𝑥1𝑖𝑗), the area-level covariate is either 
log(𝑥2𝑖

(𝐹𝑆𝐴)) or log( 𝑥2𝑖
(𝑅𝑆)) and 𝜎𝑒𝑖𝑗

2 =  𝜎𝑒
2 , we obtain a version of a model proposed by Berg 

and Chandra (2014):                                            
    𝑙𝑜𝑔 (𝑦𝑖𝑗) =  𝛽𝐴0

(𝐵𝐶)
+  βA1

(BC)
𝑙𝑜𝑔 (𝑥1𝑖𝑗) +  𝛽𝐴2

(𝐵𝐶)
𝑙𝑜𝑔 (𝑥2𝑖) + 𝑣𝑖

(𝐵𝐶)
+  𝑒𝑖𝑗                                                              

                 
Note that this log-transformed model can only be fit using survey records with positive 
acreage, thus introducing an additional bias that (unless all survey records are positive) 
must be adjusted for in the estimation process.  
 
The procedure for computing the poststratum A component of hybrid county-level (planted 
or harvested) area estimates using the BHF, AEBP or BC model is as follows:   
 
1) Fit survey acreage values to covariates within sample units in poststratum A using the 

REML algorithm to obtain estimates of model parameters and county effects.   
 

2) Compute estimates of average (per population unit) and total crop area in poststratum 
A, county i (respectively) as: 

 
          𝑦̂𝐴𝑖

(𝑀)
= 𝛽̂𝐴0

(𝑀)
+  𝛽̂𝐴1

(𝑀)
𝑥̅1𝑖   + 𝛽̂𝐴2

(𝑀)
 𝑥2𝑖  + 𝑣𝑖

(𝑀)
        (M = BHF or AEBP)       

 
          𝑦̂𝐴𝑖

(𝐵𝐶) = 𝑖 { ∑ exp [𝛽̂𝐴0
(𝐵𝐶)

(1 − ̂
i)𝑠𝐴(~𝑖)

+ + 𝛽̂𝐴1
(𝐵𝐶)

(x1ij − ̂
i
x̅1i)) + 

                                     𝛽̂𝐴2
(𝐵𝐶)

x2i(1 − ̂
i)+ ̂

i
lA̅i] +   𝑛𝐴𝑖

+ y̅Ai }                
               
          𝑌̂𝐴𝑖

(𝑀) = NAi 𝑦̂𝐴𝑖
(𝑀)            (M = BHF, AEBP or BC).                                                                  

 
        where:  
 
            𝛽̂𝐴𝑘

(𝑀)  = estimate of 𝛽𝐴𝑘
(𝑀) computed by REML algorithm,   

 
            𝑣𝑖

(𝑀)
 = estimate of  𝑣𝑖

(𝑀) computed by REML algorithm (i = 1, …, L), 
          
            𝑖   = adjustment term,   
 
            𝑠𝐴

+  = set of sampled units with positive acreage of crop in poststratum A, county i, 
 
            𝑠𝐴(~𝑖)

+  = set of sampled units with positive acreage of crop in poststratum A,   
                          counties other than i,       
 
            𝑛𝐴𝑖

+  = number of sampled units with positive acreage of crop in poststratum A, 
                      county i,     
                 
            𝛽̂𝐴𝑘

(𝐵𝐶) = estimate of 𝛽𝐴𝑘
(𝐵𝐶) computed by fitting BC model using REML in  

                         poststratum A (k = 0, 1, 2),       
     
            𝜎̂𝑣

2,  𝜎̂𝑒
2 =  estimates of 𝜎𝑣

2 and  𝜎𝑒
2 (computed by REML algorithm) 
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             ̂
i

=  𝜎̂𝑒
2/(𝜎̂𝑒

2 + 𝑛𝐴𝑖
+ 𝜎̂𝑣

2), 
 
            𝑥̅1𝑖  = population mean of unit-level covariate (𝑥1𝑖𝑗) in poststratum A, county i, 

             
            NAi  =  number of population units in poststratum A, county i, 
                                 
   lA̅i = (1 / 𝑛𝐴𝑖

+ ) ∑ log (𝑦𝑖𝑗)𝑗∈𝑠𝐴𝑖
+     if  𝑛𝐴𝑖

+ > 0,  
                  = 0         otherwise.                                 
 
3) Compute regression synthetic (RGS) estimates of average and total crop acreage in  

 poststratum B, county i as:  
 

            𝑦̂𝐵𝑖
(𝑅𝐺𝑆) = [ ∑ 𝑛𝐵𝑘

𝐿
𝑘=1 𝑦̅𝐵𝑘   /  ∑ 𝑛𝐵𝑘

𝐿
𝑘=1  𝑥2𝑘] 𝑥2𝑖 , 

                                                                                                            
            𝑌̂𝐵𝑖

(𝑅𝐺𝑆) = 𝑁𝐵𝑖 𝑦̂𝐵𝑖
(𝑅𝐺𝑆)                                                                                                                                                     

        
         where: 
 
             𝑛𝐵𝑖 = number of sample units in poststratum B, county i, 
 
             y̅𝐵i = sample mean survey acreage for poststratum B, county i,  
 
             𝑁𝐵𝑖 = number of population units in poststratum B, county i. 
 
4) Compute hybrid estimate of total and average crop area in county i as: 
 
             𝑌̂𝑖

(𝑀/𝑅𝐺𝑆)
=  𝑌̂𝐴𝑖

(𝑀)  + 𝑌̂𝐵𝑖
(𝑅𝐺𝑆),     

 
             𝑦̂𝑖

(𝑀/𝑅𝐺𝑆) = 𝑌̂𝑖
(𝑀) / Ni     (i = 1, … , L)       

 
          where: 
 
              M = model used in poststratum A (BHF, AEBP or BC). 
 
The hybrid estimator that uses model M in poststratum A as is denoted by M/RGS. 
             

3.  Simulation Study Comparing Estimators  

 
This section describes a simulation study aimed at comparing efficiency properties of 
hybrid estimators associated with the three mixed model estimators BHF, AEBP and BC. 
The study was conducted for corn and soybeans in Ohio and South Dakota for the 2018 
crop year. 
 
In order to avoid negative replicates, the Berg-Chandra model was chosen as the simulation 
model in poststratum A. We should note that since BC/RGS is one of the hybrid estimators 
being evaluated, there is a possibility of the simulation results being biased in favor of that 
estimator. The procedure employed to carry out the simulations is as follows: 
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1) Compute simulation parameter estimates 𝛽̂𝐴𝑘
(𝐵𝐶)  (k = 0, 1, 2) and 𝜎̂𝐴𝑒

2  by fitting the BC 
model via REML using sampled units with positive reported acreage in poststratum 
A. 
 

2) Compute simulation parameter estimates 𝛽̂𝐵𝑘 (k = 0, 2) and 𝜎̂𝐵𝑒
2  by fitting a simple 

linear regression model relating survey reported acreages to the area-level covariate 
in poststratum B. 
  

3) Generate simulated crop acreage values for all population farms in poststratum A 
using the following formula: 

 
           𝑦𝐴𝑖𝑗

(𝑠𝑖𝑚)
=   𝛽̂𝐴0

(𝐵𝐶)
+  𝛽̂𝐴1

(𝐵𝐶)
𝑥1𝑖𝑗 +   𝛽̂𝐴2

(𝐵𝐶)
𝑥2𝑖 + 𝑣𝑖

(𝐵𝐶)
+  𝑒𝐴𝑖𝑗

(𝑠𝑖𝑚)    
 
        where: 
 
           𝑦𝐴𝑖𝑗

(𝑠𝑖𝑚)   = simulated crop acreage in poststratum A, county i, farm j, 
 
           𝑒𝐴𝑖𝑗

(𝑠𝑖𝑚)
= value of 𝑒𝐴𝑖𝑗 simulated from 𝑁(0, 𝜎̂𝐴𝑒

2 ) distribution. 
 

4) Generate simulated crop acreage values for all population farms in poststratum B as: 
    

            𝑦𝐵𝑖𝑗
(𝑠𝑖𝑚)

=   𝛽̂𝐵0
(𝑅𝐸𝐺)

+ 𝛽̂𝐵2
(𝑅𝐸𝐺)

𝑥2𝑖 +  𝑒𝐵𝑖𝑗
(𝑠𝑖𝑚)                                                                    

                  
         where: 
 
            𝛽̂𝐵0 ,  𝛽̂𝐵2 = ordinary least squares estimates of 𝛽𝐵0

(𝑅𝐸𝐺) and 𝛽𝐵2
(𝑅𝐸𝐺), 

                                               
           𝑒𝐵𝑖𝑗

(𝑠𝑖𝑚)
= value of 𝑒𝐵𝑖𝑗 simulated from 𝑁(0, 𝜎̂𝐵𝑒

2 ) distribution. 
 

5) Combine the sets of simulated crop acreage values from steps 3 and 4 to generate 
the overall simulated population from which ‘truth’ values are derived by summing 
and averaging statistics over counties: 
 

            𝑦𝑖𝑗
(𝑠𝑖𝑚)

=  𝑦𝐴𝑖𝑗
(𝑠𝑖𝑚)

+  𝑦𝐵𝑖𝑗
(𝑠𝑖𝑚)                   

 
      The next five steps are carried out for each replication r  (r = 1, … , 𝑁𝑟𝑒𝑝): 
 

6) Select a sample of preset size nsmp from the simulated population using simple 
random sampling. 

 
7) Fit models of interest (BHF, AEBP, and BC) using the poststratum A subset of the 

sample to derive estimates of the model parameters. 
 

8) Compute poststratum A estimates for each model using the appropriate formulas 
from Section 2: 
 

               𝑦̂(𝑟)𝐴𝑖
(𝑀)  = model M estimate of average planted acreage per population unit in  
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                            poststratum A. 
                                     

9) Compute poststratum B estimates using the formula for RGS estimation from 
Section 2: 
                       

               𝑦̂(𝑟)𝐵𝑖
(𝑅𝐺𝑆) = regression synthetic estimate of average planted acreage per population 

                             unit in poststratum B.     
   

10)  Combine poststrata A and B estimates to obtain overall (hybrid) replication r  
  county-level estimates of average planted acreage:  

 
               𝑦̂(𝑟)𝑖

(𝐻) = [NAi 𝑦̂(𝑘)𝐴𝑖
(𝑀)  + NBi 𝑦̂(𝑘)𝐵𝑖

(𝑅𝐺𝑆)] / Ni             
 

11) After all replications have been completed, compute county-level performance 
metrics for each model based on replicated estimates of planted acreage and ‘true’ 
planted  acreage values from the simulated population. 
 

      The following county-level performance metrics are used in the study (H refers to the  
      specific hybrid estimator, e.g., BHF/RGS): 

 
1) Bias 

 
   [𝐵𝑖𝑎𝑠]𝑖

(𝐻)  =  ∑ (𝑦̂(𝑘)𝑖
(𝐻)𝑁𝑟𝑒𝑝

𝑘=1 -  y̅𝑖
(𝑠𝑖𝑚))  /  Nrep                                   

 
where: 
 
    y̅𝑖

(𝑠𝑖𝑚) =  ∑ 𝑦𝑖𝑗
(𝑠𝑖𝑚)𝑁𝑖

𝑗=1  / Ni 
 

2) Relative Bias 
 
   [𝑅𝐵]𝑖

(𝐻)= [𝐵𝑖𝑎𝑠]𝑖
(𝐻)/ y̅𝑖

(𝑠𝑖𝑚) 
 

3) Absolute Bias  
  
    [𝐴𝐵]𝑖

(𝐻) = | [Bias]i  | 
 

4) Standard Deviation 
 
   [𝑆𝐷]𝑖

(𝐻)= [  ∑  (𝑦̂(𝑘)𝑖
(𝐻)

−   y̅𝑖
(𝐻)

)2𝑁𝑟𝑒𝑝

𝑘=1  / (𝑁𝑟𝑒𝑝 – 1) ]1/2 
 
where: 
 
    y̅𝑖

(𝐻) =  ∑ 𝑦̂(𝑘)𝑖
(𝐻)𝑁𝑟𝑒𝑝

𝑗=1
 / Nrep 

 
5) Coefficient of Variation 

 
   [𝐶𝑉]𝑖

(𝐻) =  [𝑆𝐷]𝑖
(𝐻) /  y̅𝑖

(𝐻)                   
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6) Root Mean Squared Error 
 
   [𝑅𝑀𝑆𝐸]𝑖

(𝐻)=  [ ∑  (𝑦̂(𝑘)𝑖
(𝐻)

−  y̅𝑖
(𝑠𝑖𝑚)

)2𝑁𝑟𝑒𝑝

𝑘=1  / 𝑁𝑟𝑒𝑝]1/2 
 

7) Relative Root Mean Squared Error 
 
   [𝑅𝑅𝑀𝑆𝐸]𝑖

(𝐻)=  [𝑅𝑀𝑆𝐸]𝑖
(𝐻)/  y̅𝑖

(𝐻) 
 
Table 1 provides data on number and percent of population units in poststrata A and B for 
each of the four state/crop combination considered in the study. Note that the proportion 
of units in poststratum B (crop size variable missing) ranged from 6 to 19 percent.  
 
Table 1. Number and Percent of Population Units by Poststrata 

 
State Crop                                Poststratum 

        A        B  Combined 

Ohio Corn 23,134 
(82%) 

5,074 
(18%) 

28,208 

Soybeans 22,820 
(81%) 

5,388 
(19%) 

28,208 

South 
Dakota 

Corn 11,612 
(94%) 

751 
(6%) 

12,363 

Soybeans 10,490 
(82%) 

2,283 
(18%) 

12,773 

 
In order to sufficiently minimize the variation due to simulation, the number of replications 
used for each case (state/crop/estimator combination) was set to the smallest multiple of 
500 greater than or equal to the square of the number of counties to be estimated. The 
resulting number of replications in the study were 8,000 for both corn and soybeans in Ohio 
(87 counties), 3,000 for corn in South Dakota (52 counties) and 3,500 for soybeans in South 
Dakota (57 counties). For each case, the same strings of random number seeds were 
generated to simulate the random errors for all three estimators (although strings were 
unrelated across cases). The sample sizes per replication were 1100 for both Ohio cases 
and 500 for both South Dakota cases (approximately four percent of the total number of 
population units). The method of sampling in this study is not intended to emulate NASS 
operational practice where maximal Brewer selection (also known as multivariate 
probability proportional to size sampling) is used to select the CAPS samples (Kott and 
Bailey, 2000). Since the survey reported acreages were positive for all population units 
with non-missing value of the unit-level covariate (crop size) in all cases, the adjustment 
term for the BC estimator was always equal to one.  
 
Table 2 shows for each hybrid estimator the seven efficiency metrics defined earlier in this 
section (averaged over counties) by state and crop. In each row, an asterisk appears next to 
the ‘best’ of the three values (closest to zero for bias and relative bias, lowest for the other 
five metrics). Note that for corn in Ohio, AEBP/RGS and BC/RGS were best for three 
metrics each and BHF/RGS for one; for soybeans in Ohio, AEBP/RGS was best for four 
metrics and BC/RGS for the other three. For corn in South Dakota, AEBP/RGS was best 
for four metrics and BHF/RGS for the other three; for soybeans in South Dakota, 
AEBP/RGS was best for five metrics with BHF/RGS and BC/RGS best for one metric 
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each. For corn (both states combined), AEBP/RGS was best for seven state/metric 
combinations, BHF/RGS for four and BC/RGS for three. For soybeans (both states 
combined), AEBP/RGS was best for nine state/metric combinations, BC/RGS for four and 
BHF/RGS for one. Overall, AEBP/RGS was best for 16 state/crop/metric combinations 
(14 involving variability metrics), BC/RGS for seven and BHF/RGS for five. 
       
Table 2. Performance Metrics for Hybrid Estimators by State and Crop 
 
                 

 
Table 3 shows for each state/crop combination the percent of replications where the 
simulated county-level hybrid estimators showed a positive bias (i.e., were higher 
than the corresponding population truth values). The bias statistics were computed 
over all estimated counties in the state combined. Note that the values for 
AEBP/RGS ranged from 66 to 75.1 percent, clearly suggesting a strong positive bias 
tendency for that estimator. By contrast, the bias values for BHF/RGS ranged from 
43.7 to 51.9 percent and those for BC from 46.6 to 54.5 percent.  

 
 

State Crop Metric                 Hybrid Estimator 

BHF/RGS AEBP/RGS BC/RGS 
Ohio Corn Bias     -1.27     9.31   - 0.002* 

RB     -0.017*     0.052    -0.02 
AB     16.7    21.0     15.9* 
SD      60.9    59.5*     60.5 
CV     0.364    0.314*    0.346 
RMSE      65.9     65.5    65.3* 
RRMSE     0.403    0.36*    0.388 

Soybeans Bias     -5.12    12.81   -4.59* 
RB    -0.126    -0.059*   -0.216 
AB     25.7     36.7    25.7* 
SD      55.0    52.9*     55.3 
CV     0.287    0.209*    0.366 
RMSE      66.3     68.9    66.1* 
RRMSE     0.387    0.337*     0.51 

South 
Dakota  

Corn Bias      1.92*     32.4    13.1 
RB     0.006*     0.064    0.016 
AB      33.4*     46.8    40.1 
SD     178.2    175.0*    182.6 
CV     0.392    0.364*   0.393 
RMSE     183.5    183.4*  190.4 
RRMSE     0.404    0.381*  0.408 

Soybeans Bias     -1.03*      32.3    1.34 
RB    -0.084     -0.016*   -0.072 
AB      40.6      52.1    38.2* 
SD     125.4     111.3*   121.5 
CV      0.315     0.219*     0.271 
RMSE    136.1     129.3*   132.5 
RRMSE    1.797     1.286*   1.288 
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Table 3. Percent of Replications with Positive Bias (All Counties Combined) 
 

State Crop                               Hybrid Estimator 

BHF/RGS AEBP/RGS BC/RGS 
Ohio Corn 51.9 74.9 51.9 

Soybeans 48.6 66.3 51.7 
South 
Dakota 

Corn 50.4 75.1 54.5 
Soybeans 43.7 66.0 46.6 

 
The three hybrid estimators were ranked from 1 to 3 by replication for each county based 
on absolute bias, with the ranks then averaged over all replications and counties. Table 4 
displays these average ranks for each state/crop combination. Note that the average rank of 
BC/RGS was lowest in three of the four cases while that of AEBP/RGS was highest in all 
four cases.  
 
Table 4. Average Ranks of Replication Level Absolute Bias (All Counties Combined)  
 

State Crop                               Hybrid Estimator 

BHF/RGS AEBP/RGS BC/RGS 
Ohio Corn 2.0 2.23 1.76 

Soybeans 1.87 2.23 1.88 
South 
Dakota 

Corn 2.07 2.2 1.73 
Soybeans 2.05 2.11 1.84 

 
While Tables 2 through 4 show summary values of metrics averaged over counties, further 
insights are provided by Figures 1 through 12 which display box plots of three different 
metrics at the individual county level for each of the four state/crop combinations (bias in 
Figures 1-4, standard deviation in Figures 5-8 and relative root mean squared error in 
Figures 9-12). Note from Figures 1-4 that AEBP/RGS shows positive bias tendencies for 
all four state/crop combinations while the values for BHF/RGS and BC/RGS are more 
symmetric around zero. Examination of the SD and RRMSE plots (Figures 5-12) confirms 
the earlier observation of more favorable properties for AEBP/RGS than the other two 
hybrid estimators in terms of variability. 
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Figure 1. Box Plots of County-Level Bias for Corn in Ohio 
 

 
 
Figure 2. Box Plots of County-Level Bias for Soybeans in Ohio 
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Figure 3. Box Plots of County-Level Bias for Corn in South Dakota 
 

 
 
Figure 4. Box Plots of County-Level Bias for Soybeans in South Dakota 
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Figure 5. Box Plots of County-Level Standard Deviation for Corn in Ohio  
 

 
 
Figure 6. Box Plots of County-Level Standard Deviation for Soybeans in Ohio  
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Figure 7. Box Plots of County-Level Standard Deviation for Corn in South Dakota  
 

 
 
Figure 8. Box Plots of County-Level Standard Deviation for Soybeans in South Dakota  
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Figure 9. Box Plots of County-Level RRMSE for Corn in Ohio  
 

 
 
Figure 10. Box Plots of County-Level RRMSE for Soybeans in Ohio  
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Figure 11. Box Plots of County-Level RRMSE for Corn in South Dakota 
 

 
 
Figure 12. Box Plots of County-Level RRMSE for Soybeans in South Dakota  
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4.  Summary and Future Work  

 
Three mixed-model estimators for estimation of county-level crop planted area were 
evaluated via a simulation study involving corn and soybeans in two states (Ohio and South 
Dakota). The estimation procedures made use of combined County Agricultural Production 
Survey (CAPS) and auxiliary data, with a list frame size variable used as the unit (farm) 
level covariate and FSA planted acreage figures as the area (county) level covariate. 
Regression synthetic estimation was used for the subset of population units where the unit-
level covariate was missing (so the actual estimators evaluated were of the hybrid variety).  
 
The study found that the AEBP/RGS estimator displayed a strong tendency toward positive 
bias while BC/RGS appeared to be closest to unbiasedness among the three estimators. In 
terms of variability, AEBP/RGS displayed the most favorable properties among the three 
hybrid estimators evaluated.  
 
Potential future directions for research would include a comprehensive comparison 
between the FSA and RS area-level covariates, further evaluation of the three mixed model 
estimators via simulation in other states and for additional crops, an investigation of 
robustness to departures from model assumptions and development of an adaptive version 
of the log-transformed Berg-Chandra estimator.   
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