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Abstract
Effective screening surveys can assist in detecting early diseases among high-risk children who

need treatment intervention. However, it is challenging to optimize the survey protocol for low inci-
dence diseases with large health surveys. This paper proposes a Multi-objective Constrained Binary
Particle Swarm Optimization (MCBPSO) method to identify effective and optimal survey items for
disease detection. The algorithm balances on dual objectives, minimizing feature redundancy and
maximizing partial AUC (Area under the ROC curve) with a constraint sensitivity at 0.8 for training
data. Meanwhile, it realizes the variability by controlling velocity and the best performance of the
swarm using mutation and resetting operators. Multiple machine learning algorithms were ensem-
bled by a Super Learner to improve prediction performance. The proposed algorithm is applied to a
recent oral health survey of children with 192 self-reported items. MCBPSO-based feature selection
algorithms can be effectively applied to detect diseases with a low incidence rate. The cost-effective
screening toolkit developed can be used in oral health screening for large school-age children in the
future.

Key Words: Feature Selection; Partial AUC; Crowding Distance; Multi-objective Optimization;
Synthetic Minority Over-sampling Technique (SMOTE).

1. Introduction

Feature selection has been widely used in many research areas with machine learning and
pattern recognition. A feature is also called variable or attribute, which describes a property
of subjects. Feature selection algorithms aim to improve the prediction performance of the
model with more cost-effective subsets of predictors [1]. In the classification problems,
irrelevant and redundant features can lead to high dimensional space with a possibly severe
bias on the estimation, which is “the curse of dimensionality”. The predictive power of a
classifier will first increase with the number of features, but it then is followed by steep
fall [2]. Besides, when analyzing data in high-dimensional space, data usually becomes
much sparser with more bias introduced in the estimation. A condensed feature subset
would be more preferable, especially for the survey research where it is infeasible to collect
all possible features via a questionnaire with a large population.

Typically, the feature selection algorithms are summarized into three types including
filter, embedded, and wrapper methods. The filter method selects the most relevant features
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by performing independent bivariate analysis with the targeted outcome, such as correla-
tion, χ2 test, and analysis of variance (ANOVA) while ignoring the relationship among
features. Meanwhile, the embedded method, on the other hand, picks the features which
contribute the most to the prediction given a specific model [3].

Comparing to the filter and embedded methods, the wrapper method iteratively explores
the best subset of features based on the classifier performance directly [4]. Unlike the
embedded method, it is flexible to incorporate with various classifiers. However, it still
results in more computational difficulties. An exhaustive greedy search can be conceivably
performed to guarantee the optimal subset for low-dimensional data. When the dimension
getting higher, the number of the potential subset will run into 2D whereD is the dimension
of the feature space. It is a classical NP-hard problem (Non-deterministic Polynomial-time)
as the number of the subset will increase exponentially with D. Thus, the search may
become computationally intensive.

Swarm Intelligent (SI) algorithms have been proved to solve NP-hard computational
problems efficiently [5]. It shares good properties on autonomy, self-organization, scal-
ability, and flexibility [6]. The Particle Swarm Optimization (PSO) is one of the evo-
lutionary SI optimization techniques which is inspired by the behavior of birds. Many
works have been done to integrating Binary PSO (BPSO) with different Machine Learn-
ing algorithms as a wrapper method for feature selection. PSO hybrid Support Vector
Machine (SVM) algorithm performed better than Genetics Algorithm on the classifica-
tion accuracy [7, 8]. Improved BPSO-KNN and BPSO hybrid Decision Tree own higher
classification accuracy and a less total number of features comparing with Logistic Re-
gression, Back-propagation Neural Networks (BPNN), SVM and Probabilistic Neural Net-
works [9–11]. BPSO-Random Forest incorporating a sampler for imbalanced data has a
better performance than other re-sampling algorithms [12]. Multi-objective PSO-based fil-
ter and wrapper methods for feature selection have been also proposed in situations where
multi-objective models outperform the models with a single objective function [13, 14].

Many machine learning algorithms are available to incorporate with BPSO for feature
selection. However, no single algorithm could fit for all cases. One possible solution is that
we need to train multiple models and compare the results before making the final decision.
Another way is to ensemble the performance of multiple learners. Super Learner creates
optimal weights for a set of candidate learners for the prediction problem to minimize the
cross-validation risk [15]. It has been shown theoretically to perform asymptotically no
worse than any of its candidate learners [16]. Despite the predictive power, few works have
been done towards feature selection using the Super Learner.

One of the greatest barriers in many state-of-art machine learning algorithms is imbal-
anced labeled data. Imbalanced data refers to a classification problem where the distribu-
tion of classes is extremely skewed. Such imbalance problems are encountered in various
fields such as economic, engineering, and public health. However, mainstream learning
methods are designed for balanced training data instead. Objective functions that are op-
timized by these methods are mainly related to cross-entropy, mean squared error, and
accuracy [6]. It may generate a frequency bias that emphasizes learning on the dominated
class. For real-world data especially in the health field, the class distribution is usually
imbalanced. For example, when detecting active cavity among kids and adolescents with
a prevalence of 12%, even if the classifier assigns all subjects as being caries-free, it could
still attain an error rate merely 12%. Such classification is trivial. The Receiver Operator
Characteristic (ROC) curve is one of the common ways to evaluate the classification per-
formance for imbalanced labeled data by presenting the relationship between true-positive
rate (sensitivity) and false-positive rate (1 - specificity) under various thresholds. However,
the importance of sensitivity and specificity are not always the same. For instance, in an
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oral health screening for a large population, it is more essential to identify the kids with
high-risk dental problems and ensure they get needed care. A relatively lower specificity
with a pre-assigned high sensitivity could be preferred in such a scenario. Therefore, the
constraint on the sensitivity or specificity sometimes needs to be considered when tackling
the real problems in the health field.

In this work, we utilize the variability of PSO and Super Learner to select the most
compact feature subset with a maximum Partial Area under the ROC curve (pAUC) with
a constraint on sensitivity. Related algorithm background is introduced in Section 2 in-
cluding Particle Swarm Optimization, Multi-objective Optimization, and Super Learner.
Section 3.1 describes the fitness function along with the Super Learner algorithm modified
by Synthetic Minority Over-sampling Technique (SMOTE) sampler for imbalanced labeled
data in Section 3.2. A novel Constrained BPSO with mutation and resetting operator algo-
rithm has been proposed in Section 3.3 with a parameter initialization setting. In section 4,
the proposed algorithm is applied to a self-reported oral health survey of children to detect
active cavity. Some discussions are followed in Section 5.

2. Algorithm Background

2.1 Particle Swarm Optimization

Particle swarm optimization (PSO) was first presented by Eberhart and Kennedy in 1995 to
mimic the natural behavior of swarms in an optimization routine [17]. Multiple variations
have been developed to work on various fields such as optimal design [18], circle detection
[19], medical diagnosis [20], and so on. It releases a swarm of particles to search the
available parameter space to find the solution of the optimization problems. Each position
of the particle represents one possible solution at that evolution.

PSO initializes population of solutions with sizemwithin the available searching space.
In each iteration, as shown in Figure 1, each particle will updated their velocity ~vi =
(vi1, vi2, · · · , vid) and position ~xi = (xi1, xi2, · · · , xid) given formulas (2.1) and (2.2) for
a d− dimensional searching space.

~vi(t+ 1) = w~vi(t) + c1r1(~x
best
i (t)− ~xi(t)) + c2r2(~x

best(t)− ~xi(t)) (2.1)

~xi(t+ 1) = ~xi(t) + ~vi(t+ 1) (2.2)

where r1, r2
i.i.d.∼ U [0, 1] and t represents the iteration times. The best solution is ~xbest

i for
each individual particle i across evolution and ~xbest within the entire swarm, marking as
personal best solution pbest and global best solution gbest.

For each iteration, the velocity ~vi(t+1) and position ~xi(t+1) for particle i are updated
based on ~xbest

i and ~xbest using formulas (2.1) and (2.2). Therefore, the efficiency of the
PSO depends on the choice of m, w, c1 and c2, which often need to be tuned case by case.
w is the inertia weight to control the impact of velocities in the previous iteration on the
current one. Inertia weight is a pivotal factor to balance the local and global search. w > 1
strengthens the global exploration overexploitation, while w < 1 focuses more on the local
searching in the favor of current best positions. c1 and c2 are individual and social learning
rates respectively to represent the relative influence of the best positions of pbest and gbest.

A Binary version of PSO has been proposed for discrete problems, like feature selection
[21]. For feature selection with d− dimensional space, the position for each particle is a set
of Boolean lattices with either 0 or 1 to indicate the presence or absence of a feature. Binary
PSO (BPSO) aims to restrict each particle to move across the vertices of a d− dimensional
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Figure 1: Example of Particle Updates in PSO

hyper-cube by using sigmoid transformation function,

S(u) =
1

1 + exp (−u)
. (2.3)

Instead of using formula (2.2), the position ~xi(t) could be updated using

xij(t) =

{
0, if σ < S(vij(t))

1, otherwise
. (2.4)

in which σ ∼ U [0, 1]. vij(t) is the velocity generated in formula (2.1) for particle i on j-th
dimension in t−th iteration.

2.2 Multi-objective Optimization

The multi-objective optimization makes the optimal decision by trading off two or more
conflicting objectives. The standard form of such problem could be written as

min
x
F (x) = {f1(x), f2(x), · · · , fk(x)}

s.t. gi(x) ≤ 0, i = 1, 2, · · · , u, (2.5)

hj(x) = 0, j = 1, 2, · · · , v.

where fr(x), r = 1, 2, · · · , k are various objective functions regarding to the vector of
decision variable x. gi(x), i = 1, 2, · · · , u and hj(x), j = 1, 2, · · · , v are inequality and
equality constraints with u ≥ 0, v ≥ 0. Intuitively, the maximization optimization could
be treated by taking negative sign on the objective functions in (2.5).

A common way to simplify problem (2.5) is to weight the multi-objectives as a single
objective, like classification accuracy and redundancy of the selected feature sets [7, 11].
However, tuning the weight is always tricky and various case by case, which is hard to be
generalized and explained in a real case. Multi-objective methods, on the other hand, are
designed to optimize all objectives simultaneously.

Let y and z be two possible solutions for the minimization problem (2.5). y is domi-
nated by z (i.e. y Î z) if and only if

∀i : fi(y) ≤ fi(z) and ∃j : fj(y) < fj(z), i, j = 1, 2, · · · , k.

Pareto-optimal solutions denote ones which is not dominated by any other solutions in
the set. Figure 2, for example, presents a minimisation problem with two objective function
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Figure 2: A Multi-objective minimisation problem with two objective functions

f1 and f2. Since f1(xA) < f1(xB) < f1(xC) < f1(xD) and f2(xD) < f2(xB) <
f2(xA) < f2(xC), C is not dominated by D but by A and B. A, B and D are all Pareto-
optimal solutions, which composing the non-dominated set. Such solution in the non-
dominated set is also known as the Pareto front.

For multi-objective PSO, the position and velocity of particles will be updated based
on those Pareto fronts in each iteration instead of a single best solution. The crowding
distance has been introduced to rank the solutions within the non-dominated set to deter-
mine the best solutions ~xbest among the entire swarm and ~xi

best for each particle i during
the evolutionary process [22]. Besides, due to the chance of various scales for objective
functions, we applied the Relative Crowding Distance (RCD) instead, which scaling the
crowding distance by its maximum distance for each objective metric. The overall relative
crowding distance quantifies the sum of the relative distance of its two neighbor solutions
corresponding to each objective function.

Multi-objective BPSO using the ideas of crowding, mutation, and dominance to select
features can balance accuracy and mutual information [13]. In the next section 3.1, we
convert the feature selection into a two-objective optimization problem by trading off the
redundancy and classification ’accuracy’ for imbalanced labeled data.

2.3 Super Learner

Super Learner aims to ensemble multiple candidate learners for prediction by considering
the over-fit problem. The main idea of it is to unify the loss-based estimation in the form of
a new learner and pick the optimal weights for a given prediction problem based on cross-
validated risk [15]. Theoretical results show that Super Learner is asymptotically efficient
as well as or better than any of the candidate learners on finite samples [16].

Figure 3 presents the general steps for Super Learner. The input data is first divided into
V folds. For each time, only one fold serves as the validation set, while the remaining folds
are used as a training set to train different machine learning algorithms like ML1, ML2, and
so on, in the figure. Models are validated by each validation set respectively. The result is
weighted to maximize some target metrics. For imbalanced data, α is obtained by optimiz-
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Figure 3: Super Learning (ML: Machine Learning)

ing metric AUC instead of usual unified loss function, α̂ = arg maxα
∑n

i=1(Yi−S(yi|α))2.
Many potential candidate learners are available for Super Learner, such as Least Angle
Regression, Logic Regression, D/S/A algorithm (Deletion/ Substitution/ Addition), Clas-
sification and Regression Tree (CART), Random Forest, Ridge Regression, and Multiple
Adaptive Regression Splines (MARS) and so on. In this paper, we will utilize Super Learn-
ing with Logistic Regression, Support Vector Machine (SMV) with Radial Kernel, and K-
Nearest Neighborhood (KNN). The results of Super Learner and all candidate learners will
be compared in section 4.3.

3. Proposed Algorithm

3.1 Fitness Function

This work aims to select an optimal feature subset by minimizing redundancy of the fea-
ture set and maximizing classification performance. The final model should result in the
most compact feature subset yielding the largest partial AUC with a specified boundary on
sensitivity.

3.1.1 Entropy, Mutual Information, and Redundancy

Entropy (H) is a measure of the uncertainty of a random variable, which is defined as

H(X) = −
n∑
j=1

p(xj) logb p(xj)

where xj is the j-th possible event for variable X and b is the base of the logarithm used.
With the log base b = 2, the unit of H(X) is called bits. Intuitively, high entropy implies
that each event has about the same probability of occurrence, while events with different
probability of occurrence will lead to a low entropy.

Mutual information (MI) is widely used to quantify the statistical independence among

 
2003



variables [23]. In the case with two random variables,

I(X1, X2) = H(X1) +H(X2)−H(X1, X2) =
∑

x1∈X1,x2∈X2

p(x1, x2) logb
p(x1, x2)

p(x1)p(x2)

Comparing with correlation, MI investigates the distance between two probability distri-
bution without any assumption of linearity, normality, or even monotonicity of random
variables. It could be extended to n variables easily as

I(X1, X2, · · · , Xn) =

n∑
i=1

H(Xi)−
n∑
i<j

H(Xi, Xj) · · · − (−1)n−1H(X1, X2, · · · , Xn)

The sum of MI among two random variables,
∑
I(Xi, Xj), was used largely as a criterion

for feature selection [13, 24]. However, for multiple categorical variables, MI may not be
used to describe the statistically independent relationship [25].

Redundancy (R) also evaluates independence among variables stochastically as MI via
log-linear models. It is also known as total correlation and multiinformation [26, 27]. Fea-
tures might share some information between each other and turn to be redundant. For a
given set with d random variables X = {X1, · · · , Xd}, redundancy measures the amount
of information sharing among variables. As a generalization of the mutual information, it
is in the form as,

R(X1, X2, · · · , Xd) =

k∑
i=1

H(Xi)−H(X1, X2, · · · , Xd)

= I(X1, X2, · · · , Xd) + I(X2, · · · , Xd) + · · ·+ I(Xd−1, Xd)

=
∑
x1∈X1

· · ·
∑
xd∈Xd

p(x1, x2, · · · , xd) logb
p(x1, x2, · · · , xd)
p(x1)p(x2) · · · p(xd)

(3.1)

Noticeably, for d = 2, R(X1, X2) = I(X1, X2). R(X1, X2, · · · , Xd) is non-negative
with equation attained if and only if Xis are mutually independent. The property of mono-
tonicity ensures that the amount of redundancy of variables can never decrease with more
variables added [28]. In the proposed algorithm, we evaluate the feature redundancy to take
consideration on the number of features and their dependence together.

3.1.2 Partial Area under the ROC curve

The Receiver Operating Characteristics (ROC) curves were originally developed for the
signal detection theory [29] and later used widely to evaluate machine learning algorithms
for binary classification problems in numerous fields like economics [30], medical [31],
and health field [32].

Actual Positive Actual Negative
Predicted Positive True Positive (TP) False Positive(FP)
Predicted Negative False Negative (FN) True Negative (TN)
TPR = Sensitivity = Recall = TP

TP+FN = 1− FNR
TNR = Specificity = TN

TN+FP = 1− FPR

Table 1: Confusion Matrix for Binary Classification
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Figure 4: Partial AUC with Minimum Sensitivity Allowance as 0.8

For classification problems with imbalanced labeled data, ROC is one of the gold-
standard in the literature to evaluate the classifier’s ability. A ROC curve could be presented
as the relationship between the True Positive rate (TPR, i.e. sensitivity) and the False
Positive rate(FPR, i.e. 1 - specificity) as defined in Table 1 under various thresholds. The
perfect classifier has a 100% TPR and 0% FPR with ROC curve passing the upper left
corner (0, 1) in Figure 4.

The Area under the ROC curve (AUC) is a natural summary statistic to compare the
performance among classifiers. It quantifies the rank power of the positive prediction prob-
abilities exceeding the negative ones in general. However, it is biased to use AUC to select
the potential optimal classifiers. In the practice, the two boundary regions on the ROC
curve (i.e, with specificity near 1 and sensitivity near 0, or the opposite) are useless. The
area under certain regions on the ROC curve is more preferable.

Partial AUC (pAUC) focuses on the area with a specified boundary of sensitivity and
specificity [33] . The proposed algorithm aims to select features yielding high specificity
with a prerequisite sensitivity level. Let Y denote the continuous outcome of a classifier
and X is the feature space. For each threshold c, a subject is labeled as positive if Y > c
or negative otherwise. Denote + as actual positive and − as negative. It follows that
TPR(c) = p(Y > c|+) and FPR(c) = p(Y > c|−). Then, for the classifier with feature
space X , the ROC curve in Figure 4 is defined as {(s,ROC(X; s)), s ∈ (0, 1)} where
ROC(X; s) = FPR(TPR−1(s)). Given a lower bound of sensitivity s ∈ (0, 1), the shade
area in Figure 4 is

pAUC(X; s) =

∫ 1

s
ROC(X; t)dt (3.2)

3.2 Super Learning with the SMOTE re-sampler

Class imbalance is a common problem encountered when working with machine learning
algorithms. It often leads to a significant impact on classification performance, especially
for the minority group. A good performance could be easily achieved by labeling all sam-
ples as the majority class. However, such a classifier is worthless in practice. Re-sampling
techniques are routinely used to balance the frequencies of classes and convert the data to
suit the well-designed machine learning algorithms.
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Various under-sampling and over-sampling approaches have been developed. Under-
sampling refers to the re-sample procedure to remove some instances from the over-represented
(majority) class when the quantity of data is sufficient. On the contrary, over-sampling
means to add instances for the under-represented (minority) class. Synthetic Minority
Over-Sampling Technique (SMOTE) [34] has shown to perform better on classification
and feature selection [12]. In SMOTE, the majority class is under-sampled by removed
randomly; while the minority class is over-sampled by creating ”synthetic” examples based
on its k nearest neighbors instead of bootstrapping with replacement.

Super Learner is an ensemble algorithm that obtains the optimal combination of mul-
tiple machine learning algorithms. In the case of cross-validation, we apply the SMOTE
technique on the training subset only and leave the validation subset aside to be more con-
sistent with the actual scenario. Algorithm 1 shows the pseudo-code of Super Learner with
the SMOTE re-sampler and AUC maximized.

Algorithm 1 Super Learner with the SMOTE re-sampler and AUC maximized (Adapted
from [35])

1. Split data set into training and validation sets based on V-fold cross validation
scheme:

• Randomly divide the dataset into V-equal size folds.

• Let v−th group as validation subset V (v) and the rest combined as training
subset T (v), v = 1, 2, · · · , V .

• Applied SMOTE technique on the training subset only.

2. Train each candidate learner Lm ,m = 1, 2, · · · ,M using V-cross validation and
store the prediction on its corresponding validation subset V (v) as Ψ̂m,T (v)(X), X ∈
V (v).

3. Propose a linear regression with a vector of weights α, S(y|α) =∑M
m=1 αmΨ̂m,T (v)(X) where αm ≥ 0 and

∑m
i=1 αm = 1.

4. α̂ = arg maxα AUC.

5. Integrate the final Super Learner as Ψ̂(X) = S(y|α̂).

Unlike other machine learning algorithms, Super Learner is designed to find the best-
weighted average on performance, instead of tuning for the single best hyper-parameters
or model. Classifiers with various tuning parameters will be all included. Although the
hyper-parameter tuning helps to improve the performance of a super learner, the impact of
it is minor [36].

3.3 Feature Selection Procedure

To select the most compact feature subsect that yields the largest partial AUC with a pre-
specified boundary of sensitivity, the dual-objective problem (2.5) targets to minimize the
redundancy and maximize the pAUC. Then, it could be written using formulas (3.1) and
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(3.2) as

min
X
{R(X),−pAUC(X; s)}

s.t. sensitivity > s (3.3)

whereX = (x1, x2, · · · , xd) is the d dimensional feature space and s is the predefined sen-
sitivity minimum boundary. In this section, a novel constrained BPSO with mutation and
resetting operators has been proposed to perform the feature selection on the imbalanced
labeled data. Super Learner is the recommended classification algorithm over its candidate
learners.

3.3.1 Standard Multi-objective BPSO algorithm with Super Learning

The swarm intelligent algorithms are summarized into 5 main steps: swarm initialization,
fitness function evaluation, checking stop conditions, updating the particles or agents, and
returning the global best solution.

The swarm is randomly initialized in the d− dimensional feature space. For each parti-
cle, it evaluates two metrics, redundancy and pAUC, via a k−fold (k = 5) Cross-Validated
Super Learner with candidate learners including Logistic Regression, SVM with Radial
kernel, and KNN. The samples are first divided into training set Xtrain and testing set Xtest
randomly. And it further splits the training set Ztrain = {Xtrain, Ytrain} into 5 folds with
one fold severing as the testing subset Ztrain, (k) and the remaining folds as training subset
Ztrain, (-k) for each time k = 1, 2, · · · ,K. Model is trained by the training subset Ztrain, (-k)
first and then validated by the validation subset. pAUC on the validation sets under the
proposed algorithm will be aggregated as

pAUCCV =
K∑
k=1

pAUC(Ztrain, (k); s)

K
. (3.4)

The redundancy and the cross-validated pAUC on the training set Xtrain are recorded
to identify the non-dominated set A and ranked in the ascending order based on Relative
Crowding Distance. A gbest is randomly selected from a specified top portion of the sorted
non-dominated set (e.g. 10%). Furthermore, for each particle, pbest is replaced by the
current solution if it is dominated by the current one. After updating the gbest and pbest,
the velocity and position for each particle will be used to calculate the position and velocity
of particles for the next iteration based on formulas (2.1) and (2.4). All the procedures
will be repeated until the maximum iteration or convergence conditions are reached. The
algorithm will return the non-dominated set of solutions A with the performance on the
testing set Ztest including redundancy, pAUC, threshold, sensitivity, and specificity.

To evaluate the performance and compare different classification methods, the data set
has been split into 5 folds in advance. The procedure as shown in Figure 5 has been repeated
5 times with only 4 out of 5 folds serving as the training set and the remaining one as the
testing set for each time.

3.3.2 Mechanisms to improve convergence in BPSO

One drawback of the original BPSO in section 2.1 is prematurely convergent to sub-optimal
points. Mutation and swarm best-resetting operators are two common modifications to
improve the variability of the BPSO, especially for more challenging optimization tasks
[37].
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Figure 5: Super Learning hybridized Multi-objective Particle Swarm Optimization
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Formula (2.1) update the particle velocity by taking reference on the personal best
solution pbest and global best solution gbest. Therefore, the qualities of pbest ~xbest

i and
gbest ~xbest have a great impact on the performance of PSO. In fact, it shares a high chance
to trap in the sub-optimal if one solution happens to be better than any of the previous
solution. All the particles might be concentrating on that sub-optimal.

A mutation operator is originally inspired by the Genetic Algorithm, which allows some
particles to try unseen areas on the parameter space [38]. Both Multi-objective PSO and
BPSO improved their performance when modified by mutation operator [13, 39]. It sug-
gests introducing a trivial mistake on the position as,{

xij = ¬xij r ≤ R
xij = xij otherwise

, i = 1, 2, · · · ,m, j = 1, 2, · · · , d (3.5)

where R is a pre-specified mutation probability and r ∼ U [0, 1]. In this proposed algo-
rithm, R = 1/d with d as the dimension of feature space. Therefore, after updating the
velocities and positions via formulas (2.1) and (2.4), one bit of parameters is expected to
flip for each particle. However, high dimensional data might require a higher mutation
probability R.

Meanwhile, the personal best solution pbest needs reset if it gets trapped in one position
for more than Imax iterations. Normally, a solution with all bits 0 except one element as
1 replaces pbest in such a scenario. However, since one of our objective redundancy is
consistent with the number of features selected, such manual rest might produce a trivial
non-dominated solution. Instead, pbest is reset as the current position xi for particle i. Imax
is pre-assigned as 3 in this work.

3.3.3 Additional notes for the proposed algorithm

The proposed algorithm for the problem 3.3 as described in Algorithm 2 targets to find the
best subset with low redundancy and high partial AUC with constraints on sensitivity, like
the minimum allowance as 0.8. However, after obtaining the potentially optimal classifiers,
the classification threshold for testing or unseen data should be determined for utilization.
In most of the algorithms, the default thresholds are 0.5 which is usually inappropriate for
imbalanced classification problems. Some previous works also provide a good insight to
use the prediction probability and auto-tuning the threshold for testing data [40].

Also, to avoid over-fitting on the redundancy, the case in the non-dominated set with
the lowest-performing on specificity will be deleted in each of the iterations. In multi-
objective methods, the best solution for only one of the objectives will always be preserved
in the non-dominated set. However, a solution with minimum redundancy but low pAUC
is useless.

3.4 Implementation

In this study, we consider dual objectives, minimizing redundancy and maximizing pAUC.
An extra sensitivity constraint is taken into consideration when calculating pAUC using
formula (3.2) and determining the threshold. Algorithm 2 summarizes a pseudo-code for
the proposed constrained BPSO with mutation and resetting operator for various classifica-
tion algorithms, like Super Learning with SMOTE re-sampler in Algorithm 1. The inertia
weight is set as w = 1.4 with learning rates as c1 = c2 = 2 [41]. r1, r2, σ, r are four ran-
dom values independently sampled from (0,1) uniformly. Velocities are restricted within
the range of [−6, 6] to utilize the sigmoid transformation function in formula (2.3). A com-
mon choice for m is between 20 and 40 [37]. Mutation probability is R = 1/d where d
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is the dimension of the feature space. The proposed algorithm with various swarm size
m = 10, 20, 30 has been tested with Tmax = 60 iterations in section 4.2 to investigate
of swarm size on the performance on the training set. The maximum iteration is set as
Tmax = 50 when comparing across Super Learner and its candidate learners including Lo-
gistic Regression, SVM with Radial kernel, and KNN in section 4.3 on the testing set. For
each classifier, PSO updates its particles based on the average cross-validated performance
on the validation sets.

Algorithm 2 Proposed Multi-objective Constrained Binary PSO Algorithm MCBPSO with
Mutation and Resetting Operator
Data: Labelled training set Ztrain = [Xtrain, Ytrain], labelled testing set Ztest = [Xtest, Ytest],

pre-specified lower boundary of sensitivity s.
Result: A set of non-dominated Boolean lattice solutions to indicate selected variables as

X = arg minX{R(X),−pAUC(X; s)} on training set Ztrain.
Initialize the swarm and parameters in section 3.4.
Begin:

for each particle i, i = 1, 2, · · · ,m do
Assigned classifier (e.g., Super Learner with the SMOTE sampler in Algorithm 1):
Conduct 5-fold cross validation (CV) on the training set Ztrain.
Determine the threshold θ by max(sensitivity + specificity) when sensitivity > s.
Record two objective metrics, redundancy and average CV pAUC, in formulas (3.1)
and (3.4) on the training set Ztrain.

end
Denote the positions of particles ~xi(t), i = 1, 2, · · · ,m, in the swarm as set B.

while t <= Tmax do
Identify the non-dominated solutions inB based on the two objective metrics and delete
the solution with the lowest specificity.
Calculate the Relative Crowding Distance (RCD) and sort non-dominated set A in the
ascending order by its RCD.
for each particle i, i = 1, 2, · · · ,m do

Randomly selected a solution from top 10% of non-dominated set A as gbest ~xbest;
if pbest is dominated by current position or stationary for more than 3 iterations
then

Reset pbest ~xibest by ~xi(t);
end
Update the velocity ~vi(t + 1) and position ~xi(t + 1) of particle i as formulas (2.1)
and (2.4);
Perform mutation operator on position ~xi(t + 1) with mutation probability R =
1/d.

end
Add the updated particles in set B.

end

In addition to the cross-validation on the classification algorithms, to evaluate the pro-
posed algorithm, the samples are divided into 5 folds by their labels with one fold serving
as the testing set for each time and the remaining 4 folds as the training set in advance. Each
fold shares the same percentage of the positive event (disease). Algorithm 2 is conducted
on each training set and evaluated on the testing set. The results of average performance
on the testing sets are reported including the number of total features selected, redundancy,
pAUC, sensitivity, and specificity.
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4. Application to Active Cavity Outcome Prediction

4.1 Description of dataset

Oral health is one of the essential components of well-being and overall health. Today,
children and adolescents are exposed to diets with high levels of sugar, which leads to
dental problems and oral diseases [42]. Most oral health problems, such as active cavities,
bad breath, and cold sores, are treatable with proper dental care, especially at an early
stage. In the United States, a major challenge is the cost of dental care and access to oral
health screenings for children. Especially for large populations, the individual oral health
screening is infeasible for everyone. Effective screening programs, including surveys that
would assist in identifying early diseases in high-risk children who require intervention,
are desired. However, the complexity of the surveys will need to be carefully addressed by
identifying the effective and optimal sets of survey items. Therefore, it is critical to design
a screening survey toolkit through proper feature selection methods to identify children and
adolescents with existing oral health problems.

The Patient-Reported Outcome Measurement Information System (PROMIS) was ini-
tiated in 2004 to develop and validate a system of highly reliable, precise measures of
Patient-reported health status for physical, mental, and social well-being [43]. Liu et al.
applied the PROMIS methodology to develop an oral health item bank (OH-PROMIS sur-
vey) for administration to children [44].

The survey with 139 items for children with ages from 8-17 covering physical, mental,
social, global health. All of those items are categorical data, except child age, grade, and
family size. The nominal items are encoded as dichotomous variables by one-hot encoding.
The ethnicity of the children, for example, is coded as one category per variable. Mean-
while, the ordinal items, especially the ones on the Likert scale, are treated as continuous
variables and re-scaled to a standard normal distribution for classification algorithms. Af-
ter encoded, it turns to be with 192 items. Two faculty pediatric dentists from the UCLA
School of Dentistry examined children. Around 12% of the children are labeled having
active cavities, which is imbalanced to work with the traditional classification algorithms.

Field test data were collected from diverse dental clinics and private practices through-
out the Greater Los Angeles Area from August 2015 to May 2018. Participating sites
cover low-income neighborhoods to high-income communities with diverse racial and eth-
nic compositions. A total of 380 children participated in the study. To our best knowledge,
this database is the unique questionnaire available to focus on the current oral health status
of children and adolescents with self-reported outcome labeled by a dental exam result.

The term survey item is equivalent to the feature mentioned above. And therefore, the
propose of this study turns to select a condense survey-item subset with good performance
on the partial AUC. In the next subsections, we will compare the variability of PSO using
different swarm size, prediction performance on the testing sets for various methods, and
potential feature subsets for the active cavity.
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Figure 6: Average Redundancy (A) and Cross-Validated Partial AUC with Sensitivity >
0.8 (B) in Non-Dominated Sets for each Iteration by Different Swarm Size

4.2 Performance with different swarm size

One of the criteria factors for the efficiency of the PSO algorithm is the swarm size of
m. Figure 6 presents the average redundancy and cross-validated partial AUC of the val-
idation sets in the non-dominated sets in each iteration with different swarm size. The
redundancy tends to decrease among the iteration, while the cross-validated partial AUCs
on the training set are increasing. As more particles getting involved in the algorithm for
each run, the results become more stable in the target direction. With swarm size m = 30,
the average redundancy dropped down to about 0 soon after 15 runs and the corresponding
cross-validated pAUC is increasing and gradually stays around 0.07. A larger swarm size
will provide more solutions in one iteration but takes much more time. Meanwhile, an
average unique solution in each runs for the proposed algorithm with different swarm size
with m = 30, 40, and 50 are about the same as 94%, 93%, and 92% correspondingly. In the
following experiment, we will take swarm size m = 30 for illustration.

4.3 Comparison

Super Learner ensembles the performance of multiple machine learning models. In this
work, the candidate learners are Logistic Regression, SVM with Radial Kernel, and KNN.
To compare the performance of Super Learner and its candidate learners, the samples have
been divided into 5 folds with only one fold as the testing set and the other 4 folds as
the training set for each time. It will repeat 5 times with different folds been tested only
once. Figure 7 shows the minimum redundancy and maximum pAUC among the non-
dominated set for the testing set. In general, the Super Learner achieved a higher pAUC
with less redundancy of the feature subset selected. In run 1 and 4, KNN performed better
on maximum pAUC than other algorithms but with the highest minimum redundancy on
the testing set. Logistic Regression obtained a higher pAUC in 3rd run but with double the
minimum redundancy. SVM with Radial Kernel works well with the 5th run and owns a
relatively small redundancy. Although Super Learner is only the best algorithm for run 2,
it ranks almost in the second-best with much smaller redundancy than the best algorithm.
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Figure 7: Minimum Test Redundancy (A) and Maximum Test Partial AUC (B) in Non-
Dominated Set in each fold by Different Classification Algorithms

The Pareto Fronts for each algorithm in each run is presented in Figure 8 with redun-
dancy less than 10 for the convince of the comparison. To show the non-dominated sets
traditionally as a minimization problem in Figure 2, we considered the negative pAUC with
the redundancy value of the selected set. All the evaluations are taken on the testing set for
each run. The solutions generated by the Super Learner dominated that of other algorithms.

Figure 8: Pareto Fronts in Run 1-5 (1-5) by Different Classification Algorithms
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Classifier Method #2 Redundancy pAUC Sensitivity Specificity

Super Learner Baseline 192 162.54 (1.51) 0.025 (0.020) 0.84 (0.15) 0.16 (0.06)
MCBPSO 8 (4) 2.70 (3.20) 0.029 (0.009) 0.72 (0.08) 0.35 (0.04)

LR1 Baseline 192 162.54 (1.51) 0.009 (0.004) 1.00 (0.00) 0.00 (0.00)
MCBPSO 11 (11) 5.49 (9.34) 0.026 (0.009) 0.71 (0.31) 0.28 (0.16)

SVM Baseline 192 162.54 (1.51) 0.018 (0.007) 0.92 (0.04) 0.12 (0.02)
MCBPSO 12 (8) 6.43 (6.51) 0.025 (0.010) 0.73 (0.09) 0.22 (0.06)

KNN Baseline 192 162.54 (1.51) 0.016 (0.007) 0.73 (0.19) 0.33 (0.12)
MCBPSO 10 (6) 4.56 (4.26) 0.027 (0.008) 0.79 (0.05) 0.23 (0.05)

1 Logistic Regression.
2 Number of Feature Selected.

Table 2: Classification Performance on Testing Sets obtained via Different Classification
Methods

There is no single algorithm fitting for all scenarios. Super Learner tunes the weights
via cross-validation to combine multiple classifiers to leverage the final performance. Ta-
ble 2 presents the average classification performance for non-dominated set on testing sets
when repeating Algorithm 2 for 5 times independently. The baseline model refers to train
the model on all available 192-item features with the same redundancy value as 162.54.
Among all baseline models, Super Learner has a higher pAUC of 0.025 than its candidate
learners including Logistic Regression, SVM with Radial Kernel, and KNN. MCBPSO
improves performance for all classification algorithms, especially for the Super Learner
related model. Super Learner selects an average of 8 features with redundancy 2.7, pAUC
0.029, sensitivity 0.72, and specificity 0.35. It obtains a higher partial AUC on the test-
ing set on average but selecting among the same number of features compared with other
candidate learners. The standard deviation is a bit large for the average number of features
selected and redundancy since the non-dominates set might include solutions with high re-
dundancy but low pAUC comparing with other non-dominated solutions. These solutions
also help since they dominate the pAUC metric of other solutions with more or equal re-
dundancy. The non-dominated set will be reviewed by dental experts to select a clinical
meaningful solution at the final stage.

A sample of selected items in the non-dominated set for each run is listed in Table 3.
They cover physical, mental, and social domains with some demographic background of
kids. All 5 runs selected the questions related to reasons that ever keep a child from visiting
the dentist. 4 out of 5 runs included language for media from the different sources while
primary language and ethnicity also in 3 out of 5 runs. Some questions revoked that a
child might have or worry about certain teeth problems, like teeth pain, falling teeth, teeth
appearance issues, and gums hurt. The behaviors of oral health care, brushing and flossing,
are also essential to decay teeth.

 
2014



Features MCBPSO with Super Learner
Did any of the following reasons ever keep you
from visiting a dentist?

1,2,3,4,5

In what languages are the TV shows, radio sta-
tions, or newspapers that you usually watch, listen
to?

1,2,4,5

How much are you afraid to go to a dentist? 1,2,4
Why were you afraid to go to the dentist? I am
afraid of feeling sick.

2,4,5

What do you worry about? Pain with my teeth. 1,2,4
What do you worry about? My teeth are falling
out.

1,2,4

Do you worry about any problems with your teeth? 1,2,4
Because of the condition of my teeth and mouth,
getting a date is difficult.

1,2,4

My gums hurt. 1,2,4
What is your primary language? 1,2,4
People in this neighborhood can be trusted. 1,2,4
If I care for my oral health, I will live longer? 1,2,4
Which of the following do you think caused your
pain?

1,2,4

In the past twelve months, have you had any of the
following problems? Teeth that hurt when you ate
or drank hot or cold liquids or foods?

2,3,4

Do you know what caused the pain? 2,4,5
What is your race/ethnicity? 1,2,4
Brushing my teeth, I can... 1,2,4
Flossing my teeth, I can... 2,4,5
Have you ever avoided laughing or smiling be-
cause of the way your teeth look?

2,3,4

Table 3: A List Sample of Features in the Non-dominated Set for Each Run by MCBPSO
with Super Learner

5. Discussion

This work provided a multi-objective optimization method for feature selection with the
imbalanced labeled data. In this paper, we proposed a novel Multi-objective Constrained
BPSO (MCBPSO) algorithm for feature selection. Dual objectives are taken into consid-
eration including minimizing redundancy and maximizing pAUC. The algorithm tended
to minimize the redundancy to reduce the complexity of the selected feature subset while
trying to increase the pAUC value with a minimum boundary of sensitivity. The 5-fold
cross-validated values on objectives guided the feature searching. Non-dominated set pre-
served the Pareto Fronts on those values in each iteration. All non-dominated solutions are
sorted by relative crowding distance to update the global best solution gbest and particle
best solution pbest for PSO algorithm. Mutation and resetting operators are performed to
avoid the premature convergence to a sub-optimal solution.

Super Learning with SMOTE sampler for imbalanced labeled data performed better
than its candidate learners considerably with higher average pAUC on the non-dominated

 
2015



set and about the same number of features selected for testing data. It ensembles multiple
candidate learners by finding the optimal weights via cross-validation. The candidate learn-
ers are Logistic Regression, SVM with Radial Kernel, and KNN, which are widely used
for the two-alternative classification problems. It is the first work to apply Super Learner
as the wrapper in the feature selection.

The proposed algorithm is applied to a 192-item child-reported survey to predict the
active cavity for children ages 8-17 years. It resulted in a non-dominated set with an average
of 8 features selected, redundancy 0.27, and partial AUC 0.029, which is much better than
the model using all available features. The partial AUC in this application is the area
under the ROC curve with a minimum boundary of sensitivity as 0.8. After determining
the feature subset, we further traded off sensitivity and specificity by selecting a threshold
on training data. The average sensitivity and specificity are 0.72 and 0.35 on the testing
data with subsets with 8 items on average. To improve the performance of sensitivity
and specificity, we can include more items. Dentists will further review those items and
picked a clinical meaningful feature subset based on needs. These findings can serve as
the base to inform a more effective survey, so an improved oral health screening tool can
be developed with a better combination of sensitivity and specificity to be implemented in
large populations of children.

The algorithm could further be tailored to multiple perspectives. For the scenario with
the restriction on both range of sensitivity and specificity together, the two-way partial AUC
is available [45]. Besides, it may be extended to more objectives or other objectives based
on actual needs. However, the increase in the number of objectives will load more burden
on searching and the final decision part.

In terms of Swarm Intelligent optimization, the variations of PSO along with some other
binary versions of algorithms are also available for feature selection including Artificial Bee
Colony Algorithm, Fireflies Algorithm, Glowworm Swarm Optimization, Roach Infesta-
tion Optimization, Bat Algorithm, and Grey-wolf Optimization [6]. More work needs to
be done to compare different searching algorithms on the variability towards the multi-
objective problems for feature selection problems.
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