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Abstract
Dealing with missing data problems for skewed data is one of the most difficult tasks in imputation
since most of data augmentation methodologies assume multivariate normality. The performance
of imputation and the accuracy of parameters inference become questionable when the violation
of above assumption occurs. One approach to solve the normality violation is to apply normal-
izing transformation prior to the imputation phase. However, this approach may introduce new
problems such as altering dependence structure among random variables. This article describes
the multiple imputation approach based on the Copula transformation, which we use to effectively
transform multivariate non-normal data into normal. We compare the performance of the Copula
transformation method with traditional normality-based multiple imputation approaches through
real non-normal multivariate datasets. We demonstrate that our approach significantly mitigates the
impact of blind assumption of multivariate normality for the non-normal multivariate data under the
scenario when the data are missing completely at random (MCAR).

Key Words: Copula transformation, Gaussian Copula, Missing data, Multiple Imputation, Skewed
data

1. Introduction

Imputation has been treated as a flexible and effective method to handle missing data prob-
lems since it utilizes all the available information in the data. Instead of deleting incomplete
cases, we fill in some plausible values for the missing data so that the standard complete-
data analysis methods are still largely applicable. The first suggestion in the very early
years was to replace a missing value by corresponding average, but it was soon realized
that doing so results in an underestimation of variability. Among various imputation meth-
ods, multiple imputation (MI), first proposed by Rubin (1977), has been widely used for
the last few decades as this method enables us to provide valid inference through repeated
imputation. However, most of multiple imputation methods, such as Markov chain Monte
Carlo (MCMC) (Schafer, 1997) and fully conditional specification (FCS) (van Buuren et
al., 2006; van Buuren, 2007) methods using linear regressions, assume that the data are
from a multivariate normal distribution. The multivariate normality (MVN) assumption fa-
cilitates us to conveniently impute plausible values since the conditional distribution of the
missing data given the observed data is also multivariate normal. However, the violation of
MVN assumption may result in grossly inaccurate imputations and hence provide inference
about parameters which may be utterly invalid. Case in point is the imputation of nonneg-
ative data based on MVN assumption where negative imputed values, may inevitably be
produced.

In order to deal with the missing value problem for the non-normal data, a common
approach is to individually apply transformation on each variable so that each of the cor-
responding marginal distribution is approximately normal. Such a method may not work
effectively, especially the highly skewed data. Enders (2010) specifically points out two
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main potential problems resulting from such data transformations namely, (i) difficulty in
choosing an appropriate transformation and (ii) the drastic change in the correlation or more
generally the dependence structure after the transformation. An ideal solution must remain,
as much as possible, the original association structure among all the random variables.

Bahuguna and Khattree (2020) provide and illustrate via a number of examples a
generic all purpose multivariate transformation based on copula. The advantage of the ap-
proach is that, under mild assumptions, by using Gaussian copula, any skewed multivariate
data can be transformed to data having multivariate normal distribution without losing the
dependence structure among the random variables. The objective of our work is to explore
multiple imputation possibilities based on copula-transformation methods, formalize it and
then evaluate its performance in terms of imputation discrepancy and parameter estimation.

This article is organized as follows. First, we revisit in Section 2 the basic concept of
copula and the Sklar’s theorem (Sklar, 1959) and illustrate the implementation of copula
transformation in missing data imputation. A large simulated data and a real data set is
considered next in Sections 3 and 4 respectively to illustrate how the copula-transformed
approach performs superiorly under the missing completely at random (MCAR) missing
mechanism. Few general remarks are made at the conclusion of the article.

2. Copulas and copula transformation

We here introduce an approach for imputation by using the copula transformation which,
using the Gaussian copula effectively normalizes the data and retains its dependence struc-
ture. To set the stage with a context, we first revisit the definition of copula and an important
result – Sklar’s theorem, which is the basis for the copula transformation, we reply on.

2.1 Copula function and Sklar’s theorem

Copula is a multivariate probability distribution function where each marginal probability
distribution is uniform. Formally speaking, a function C is a d-dimensional copula if there
is a random vector U = (U1, U2, . . . , Ud)

′, such that for i = 1, . . . , d, Ui ∼ Uniform(0, 1),
and

C(u1, u2, . . . , ud) = P [U1 ≤ u1, U2 ≤ u2, . . . , Ud ≤ ud].

The most central theorem in copula theory is the Sklar’s theorem (Sklar, 1959), which
is stated as follows.

Theorem 3.1 (Sklar’s Theorem): A function F : Rd → [0, 1] is the distribution
function of a random vector X = (X1, X2, . . . , Xd)

′ if and only if there is a copula C from
[0, 1]d to [0, 1] and d univariate distribution functions F1, F2, . . . , Fd such that

C(F1(x1), F2(x2), . . . , Fd(xd)) = F (x1, x2, . . . , xd).

If the marginals Fi are continuous, then C(·) is unique.
This theorem indirectly implies that vectors from two different continuous multivariate

distributions can be transformed to each other provide they share the same copula. Specif-
ically, consider two different continuous multivariate cumulative distributions denoted by
F (·) and G(·) and assume that they share a common copula. Then,

F (x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd)) (1)

= C(u1, u2, . . . , ud)

= G(G−1
1 (u1), G−1

2 (u2), . . . , G−1
d (ud))

= G(s1, s2, . . . , sd),
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where Fi(·) and Gi(·) are the corresponding marginal cumulative distribution functions
to F (·) and G(·), respectively. Thus, a set of data on (x1, . . . , xd) can be transformed as
(s1, . . . , sd) and vice versa, via the multivariate uniform variable (u1, . . . , ud). The process
of copula transformation is pictorially depicted in Figure 1.

It must be noted that there are two important components to be estimated in the pro-
cess of multivariate variables transformation according to common copula in (1): (i) the
marginal distribution functions Fi’s and Gi’s and (ii) copula function C(·). Let x′i =
(x1i, x2i, ..., xni) be the observed values for a random sample for the i-th variate Xi. We
nonparametrically estimate the marginal cumulative distribution function F (t) by using
empirical distribution function as

F̂i(t) =
1

n+ 1

n∑
k=1

I[xki ≤ t],

where I[·] is an zero-one indicator function. Accordingly, the corresponding uniformly
distributed sample (often called pseudo-observations) u′i = (u1i, u2i, ..., uni) is obtained
by

uji = F̂i(xji) =
1

n+ 1

n∑
k=1

I[xki ≤ xji] for j = 1, · · · , n. (2)

Since our purpose is to normalize the multivariate variables, we assume that the com-
mon copula between original multivariate random vector and the transformed one is a Gaus-
sian copula Φµ,Σ(·). Accordingly, we specify each marginal distribution Gi as standard
normal, i = 1, · · · , d. That is,

F (x1, . . . , xd) = CΣ(u1, . . . , ud)

= Φµ,Σ(Φ−1(u1), . . . ,Φ−1(ud))

= Φµ,Σ(s1, . . . , sd)

where Φµ,Σ(·) is the cumulative distribution function of a multivariate normal vector with
mean vector µ and covariance matrix Σ. Φ(·) is the cumulative distribution function of the
standard univariate normal and Φ−1(·) is its inverse function.

According to the Sklar’s theorem the copula C(·) is uniquely determined by the mul-
tivariate distribution function if all its marginal distribution functions are continuous. The
underlying copula of a multivariate data may not be the Gaussian copula; however, we can
use Gaussian copula to approximately construct data (S1, . . . , Sd) with the same depen-
dence structure as for the original raw data (X1, · · · , Xd).

An important point must be made. Note that, (X1, · · · , Xd), (U1, · · · , Ud) and (S1, · · · , Sd)
all have the same rank-correlation matrix. Thus if τij is the (rank) correlation between ui

(x1, x2, · · · , xd)

Copula: C(·)
(u1, u2, · · · , ud)

(s1, s2, · · · , sd)

F (·) G
−1 (·)

Figure 1: Directional diagram of copula transformation.
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and uj then the Pearson’s correlation ρij between Yi and Yj is given by

ρij = 2 sin
(π

6
τij

)
, i, j = 1, · · · , d, i 6= j. (3)

The derivation of the above equation can be found in Meyer (2013). Since we plan to
transform data to (S1, · · · , Sd), each having a marginal distribution as standard normal, we
hence assume that µ = 0 and the assumed variance covariance matrix is R = (ρij).

3. An illustration using simulated data

To illustrate the performance of copula transformation for skewed data, we here use a sam-
ple data of size n = 10, 000 from a bivariate Lomax (Pareto Type II) distribution (Lindley
and Singpurwalla, 1986) for which the probability density function is given by,

f(x1, x2) =
θ1θ2β(β + 1)

(1 + θ1x1 + θ2x2)β+2
, x1, x2 > 0, β, θ1, θ2 > 0.

For our simulation, we assume β = 3.1, θ1 = 0.5 and θ2 = 1.5. The skewness of above
distribution depends only on parameter β. With β = 3.1, data are highly skewed. Plot in
Figure 2 (a) presents this highly skewed data.

We may also transform the data to symmetry by log-transformation or more gener-
ally by Box-Cox transformation (Box and Cox, 1964). The empirically obtained optimum
choice for the latter is λ1 = 1.54 × 10−5 and λ2 = 1.89 × 10−5 (by using the maximum
likelihood estimation). As these power parameters are very close to zero, the Box-Cox
transformed data behave very similar to the logarithm transformed data. See the two scatter
plots in Figure 2 (b) and (c). However, the effects of either of these two transformations are
not very satisfactory since these corresponding scatters do not seem to be elliptic thereby
suggesting that the joint distribution of transformed data may not be sufficiently close to
bivariate normal. The univariate histograms, also shown in the same figures also indicate
that the marginal distributions are somewhat skewed and are not quite close to normal dis-
tribution. In contrast, the scatter of copula transformed data in Figure 2 (d) exhibits an
approximate ellipse-shape. The marginal distributions of both transformed variables also
exhibit symmetry in their empirical histograms.

We now consider the missing data problem. We also change the notations somewhat.
We assume that missingness occurs only in one variable, to be denoted by Y = (Y ′obs, Y

′
mis)
′

while each variable Xi in X is fully observed. We also assume that missingness is of
missing completely at random (MCAR) type. The algorithm for imputation through copula
transformation is given below.

Algorithm - Univariate Missing Data Pattern:

1. Transform the complete data on covariates X to uniformly distributed data UX by
empirical distributions defined in (2).

2. For the observed data Yobs, transform variable Y to uniformly distributed variable
UY by empirical distribution defined in (2).

3. Convert the data (UX, UY ) to standard normal data (SX, SY ) by using the standard
inverse multivariate normal cumulative distribution. That is, each column vector is
transformed by Si = Φ−1(Ui). At this stage, the data set (SX, SY ) are assumed
to be distributed as multivariate normal distribution with zero mean and variance-
covariance matrix R = (ρij) where ρij is defined in (3).
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(a) Raw bivariate Lomax data (b) Logarithm-transformed data

(c) Box-Cox transformed data
(λ1 = 1.54 × 10−5, λ2 = 1.89 ×
10−5)

(d) Gaussian-Copula transformed
data

Figure 2: Raw data and transformed bivariate Lomax data with different transformation
methods

4. Use a suitably chosen imputation procedure (e.g. regression, MCMC, FCS) to impute
all missing values and obtain the dataset (SX, S

∗
Y ) along with filled in imputed data.

5. Back-transform the filled-in data to original scale via U∗Y = Φ(S∗Y ) according to the
inverse of empirical marginal distribution function of Y , i.e., Y ∗ = F−1

Y (U∗Y ).

Algorithm is pictorially depicted in Figure 3. The implementation of algorithm is read-
ily available in SAS as described in Lun and Khattree (2019).

Incomplete Data
(X, Y )

Uniform Data
(UX, UY )

Standard Normal Data
(SX, SY )

Standard Normal Data
(SX, S

∗
Y )

Uniform Data
(UX, U

∗
Y )

Imputed Data
(X, Y ∗)

U = Fi(·) S = Φ−1(·)

U = Φ(·)Y ∗ = F−1
Y (·)

Nomalitity-based Imputation

Figure 3: Procedure of imputation implementation using copula transformed data.
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Table 1: Missingness pattern of UCI air quality data set: label = 1 indicates the observed
variate and label = 0 indicates missing variate.

# Instances C6H6.GT. NOx.GT. NO2.GT. CO.GT. NMHC.GT. # Missing variables

827 1 1 1 1 1 0
6114 1 1 1 1 0 1

24 1 1 1 0 1 1
428 1 1 1 0 0 2

3 1 1 0 1 0 2
36 1 0 0 1 1 2

364 1 0 0 1 0 3
1195 1 0 0 0 0 4

26 0 1 1 1 1 1
291 0 1 1 1 0 2

5 0 1 1 0 0 3
1 0 0 0 1 1 3

12 0 0 0 1 0 4
31 0 0 0 0 0 5

4. Imputation on real data: skewed air quality data

We use a dataset of air quality (De Vito et al., 2008) from the University of Califor-
nia Irvine Machine Learning Repository (https://archive.ics.uci.edu/ml/
datasets/Air+quality). This highly skewed dataset records 9358 instances of hourly
averaged responses from an array of five metal oxide chemical sensors embedded in an Air
Quality Chemical Multisensor Device. These are Ground truth hourly averaged concen-
trations for CO (CO.GT), Non Metanic Hydrocarbons (NMHC.GT), Benzene (C6H6.GT),
Total Nitrogen Oxides (NOx.GT) and Nitrogen Dioxide (NO2.GT). There exist various
missingness patterns including univariate and multivariate missingnesses and these are
summarized in Table 1. As shown there, there are only 827 instances that are fully ob-
served; 6114 instances are recorded with only NMHC missing; 24 instances are recorded
with only CO missing; others instances have two or more variates missing in a variety of
missingnesses. Due to the presence of large amount of missing data, data analyses are re-
stricted to those fully observed cases, which are only small portion of the original data set.
For example, Luo and Qi (2019) used only 355 observations of this data set in their study.

We impute only the univariate missing instances for CO and NMHC, respectively, and
compare the performance of imputations for the raw data (RAW), upon applying logarithm-
transformation data (LOG) and by using Gaussian copula transformation data (CPL). Im-
putation method is selected as the single imputation kipmt = 1 using linear regression
model ignoring model error and under the assumption of MCAR. This is implemented in
function mice() with method = ’norm.nob’ in mice package (van Buuren, 2019)
in R (R Core Team, 2019). We will compare the relative placements of missing values with
in the patterns of 827 fully observed instances. Any substantial departure from the patterns
indicates the inadequacy of the approach.

As shown in Figure 4 (a) for the imputation of missing variate CO.GT by using raw
data, most of the imputed values fall within the scatterplots of observed instances but some
of them somewhat depart away from the trend of the scatterplot between CO and NO2. On
the other hand, both imputations through logarithm-transformed and copula-transformed
data show imputed values well within or around the other observed data values correspond-
ing to fully observed cases. See Figures 4 (b) and (c). Logarithm transformation indeed
does equally well for this particular data set. However, such a transformation for every
variable is neither always possible nor will it be always superior.

 
1927

https://archive.ics.uci.edu/ml/datasets/Air+quality
https://archive.ics.uci.edu/ml/datasets/Air+quality


(a) Imputation on raw data (b) Imputation via log-transformation

0.0
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7.5
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NO2.GT.

C
O

.G
T. factor(Flag)

Observed

Imputed

(c) Imputation via copula-
transformation

Figure 4: Scatterplots of NO2 vs. observed and imputed CO obtained by linear regression
imputation through the (a) raw data, (b) log-transformation and (c) copula transformation
for UCI air quality data

We now consider imputations for the missing variate NMHC.GT, which has missing
values in 6114 instances out of a total of 9358 observations. Thus, the number of missing
instances is over seven times the fully observed cases (=827). Thus, imputation for such
high missing rate (6114/(6114+827) = 88%) may not be quite appropriate in real context as
the imputed data may overly distort the underlying true distribution due to the preponder-
ance of missing data. Nonetheless, we will proceed by using the same single imputation
through linear regression method out of curiosity about the distributions of the resulting
imputed values obtained by previous three approaches and compare these with those for
the fully observed cases.

A box-plot of 827 complete cases (CCA) is given in Figure 5 (a). As shown in Figure
5 (b), the imputation assuming multivariate normality of raw data (RAW), produces many
negative values of NMHC, which could not be viewed as valid since it is a measure of
concentrations and nonnegative. Consequently, the median of imputed data (=75.64) turns
out to be much lower than that of data with fully observed cases (=157). The imputation
via logarithmically transformed data (LOG) results in all non-negative imputations with
the median of imputed values (=129.38), which is much closer to that of fully observed
cases compared with the imputation through raw data. However, there are a few very large
imputed values, some even over 2000. This indicates the possible drawback of logarithm
transformation method where some imputed values may go out of valid range.

However, all imputed values obtained by applying Gaussian copula-transformation
(CPL) are confined within the valid range in Figure 5 (b). No negative value or exces-
sively large imputation are observed. The median of imputed data is 124.98, which is also
much closer to that of fully observed cases when compared with the median obtained from
imputed values assuming multivariate normality of raw data. This illustrates the possible
superiority of the Gaussian copula transformation approach. To establish that conviction
more firmly, we have taken upon extensive simulation studies, which we present else where
as a separate communication.

5. Concluding Remarks

We have introduced an imputation method through copula-transformation for univariate
missing pattern under MCAR missing mechanism. Technique is general in that no assump-
tion on raw data is made except that its copula is Gaussian.
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Figure 5: Boxplots of complete cases and imputed NMHC data for 6114 missing instances
through raw (RAW), logarithm-transformed (LOG) and copula-transformed (CPL) data for
UCI air quality data set

To illustrate the usefulness of our approach we have taken two data sets. The first
one is a large simulated data exhibiting strong skewness. The second data set is a real data
which not only exhibits skewness but also has a large proportion of a variety of missingness
patterns. We have demonstrated via these two examples, the utility of our approach and
shown, how our method is superior to other traditional approaches. We strongly believe
that our general purpose imputation approach holds much promise of real applications. A
sample SAS code is also available for the implementation of our approach.

It was pointed out to us that Robbins, Ghosh and Habiger (2013) have also used im-
putation through a Gaussian copula for skewed data in an application. Their suggestion is
more specialized in that they assumed the skew-normal distribution for the observed data
while we have chosen to be the less restrictive by relying on the empirical CDF to obtain
the uniform intermediate random variables.

Simulation studies, to be presented else where, indicate that this approach does have
considerably much superior performance with respect to several criteria. They reinforce
our confidence further on the suggested approach.
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