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Abstract
The Fay-Herriot model is a popular linear mixed effects model for estimating small area means.

Many approximations for the mean squared error (MSE) of the empirical best linear unbiased pre-
dictor of the small area means have been produced for this model. Amongst other things, these MSE
approximations depend on the estimated sampling variance and estimates of the model parameters.
However, estimation of the random effects variance can be difficult when the sampling variances
are comparatively large and dispersed, which in turn can impact the estimation of the MSE. We
compare the estimation of the random effects variance and the corresponding MSE estimates for
various approaches such as those proposed by Prasad and Rao and by Fay and Herriot, under differ-
ent sampling variance patterns and random effects distributions. For illustration, we use data from
the American Community Survey and tax records to estimate childhood poverty in the U.S.
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1. Introduction

Small area estimation (SAE) deals with estimation of one or more characteristics of sub-
populations which may lack samples that are large enough to produce reliable estimates. In
this case, small areas often refer to geographic areas, in which the available sample from
an area may be small. For instance, the American Community Survey (ACS) is an annual
survey administered by the U.S. Census Bureau, which collects more detailed information
on the U.S. population than does the decennial census. These data can be used to investi-
gate outcomes such as poverty status for children in small areas, such as counties. In these
cases, the sample sizes for some small areas may be very small, or even zero. SAE is often
primarily focused on point estimates, such as prediction of the mean for each small area.
However, estimation of the mean squared error (MSE) is also an important and challenging
problem (Pfeffermann 2013).

The Fay-Herriot model, which is an area level model, is very popular in SAE for
producing small area estimates. For m small area population means, denoted by θi, i =
1, ...,m, with direct estimates given by Yi, the model takes the form

θi = x′iβ + vi Yi = θi + ei ,

where xi denotes the p vector of covariates, with coresponding vector of regression co-
efficients β. We assume that the sampling errors ei ∼ N(0, Di) are independent, and
also independent of the random model errors vi. We further assume that E(vi) = 0, and
V (vi) = σ2. Let us denote Y = (Y1, ..., Ym)T , X = (x1, ..., xm)T , Σ = D + σ2I , where
D = diag(D1, ..., Dm) and I is the identity matrix. We assume that rank(X) = p.

The best linear unbiased predictor (BLUP) of θi for the Fay-Herriot model when σ2 is
known is given by:

θ̃i(σ
2, Y ) = Yi −Bi(Yi − xTi β̃),
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which is a weighted average of the direct survey estimate Yi and the synthetic regression
predictor xTi β̃, where β̃ = (XTΣ−1X)−1XTΣ−1Y . Here, Bi = Di/(σ

2 + Di) is the
shrinkage coefficient, which shrinks more to the synthetic regression for large sampling
variances Di. Note that the estimation of the small area mean θi is dependent on the
estimate of the variance term σ2 through Bi and β̃. Rao and Molina (2015) provide a
thorough overview of small area models.

Many estimators of σ2 have been proposed. One of the least computationally burden-
some estimators was introduced by Prasad and Rao (1990), and others (Lahiri and Rao,
1995). This closed form estimator is given by:

σ̂2PR =
Y T (I −H)Y − tr[D(I −H)]

m− p
, (1)

where H = X(XTX)−1XT .
Fay and Herriot (1979) originally proposed an estimator based on the solution to the

estimating equation below

Q(σ2) = Y T [Σ−1 − Σ−1X(XTΣ−1X)−1XTΣ−1]Y = m− p, (2)

where the corresponding estimator of the variance is denoted by σ̂2FH = Q−1(m − p),
provided Q(0) > m− p. Here, Q(σ2) is a monotonically decreasing function of σ2.

Other approaches include the use of the maximum likelihood (ML) or residual maxi-
mum likelihood (REML) to obtain estimates of the variance (Datta and Lahiri 2000).

One challenge with estimating the variance is the issue of non-positive estimates. Es-
timates of σ2 obtained using the PR approach may be negative, while estimates obtained
using ML or REML can be zero, and the FH estimating equation may not have a positive
solution. In these cases, the variance estimates must be adjusted to be positive. Thus, we
define σ̂2 = max(0.1 ∗ mini(Di), σ̃

2), where σ̃2 is obtained using one of the estimation
methods discussed above.

We denote the corresponding empirical best linear unbiased predictor (EBLUP) of θi
based on the estimate of σ2 as θ̂i,EBL = θ̃i(σ̂

2, y). For the purpose of computing the MSE,
we decompose the prediction error θ̂i,EBL − θi as

θ̂i,EBL − θi = {θi,BP (β, σ2, Y )− θi}+ {θ̃i(σ2)− θi,BP }+ {θ̂i,EBL − θ̃i(σ2)},
where θi,BP = Yi −Bi(Yi − xTi β).

Using this decomposition, and assuming the normal distribution for the random effects,
the MSE of the EBLUP is

MSE(θ̂i,EBL) = E{θi(β, σ2, Y )− θi}2 + E{θ̃i(σ2)− θi}2 + E{θ̂i,EBL − θ̃i(σ2)}2

= g1i(σ
2) + g2i(σ

2) + E{θ̂i,EBL − θ̃i(σ2)}2,
where g1i = Di(1−Bi) and g2i = B2

i x
T
i {XTΣ−1X}−1xi.

In general, there is no simple expression of the third term of this MSE decomposition.
Much work has been done under the assumption of normality of random effects to produce
approximations of the third term, accurate to o(m−1). See for instance Prasad and Rao
(1990), Datta and Lahiri (2000) or Datta, Rao and Smith (2005) and also Battese, Harter
and Fuller (1988). However, there is comparatively less work in cases where the normality
of the random effects does not hold. It can be shown that this MSE approximation to the
order o(m−1) depends on σ2 and the fourth moment of the random effect vi. We introduce
a bootstrap approach to estimating MSE. Section 2 discusses the botstrap distribution, as
well as the bootstrap estimation of the MSE. In Section 3 we provide the results of a set of
simulation studies to compare the bias of various estimators of MSE, including the boot-
strapping approach. Section 4 discusses a small data example, and Section 5 includes some
concluding remarks.
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2. Bootstrap MSE

In the absence of normality of the random effects, bootstrap offers one option for estimat-
ing the MSE. The use of bootstrapping in general for producing estimates of MSE is not
new. For example, Pfeffermann and Correa (2012) proposed a parametric bootstrapping
approach for estimating MSE, while others such as Hall and Maiti (2005) suggested a non-
parametric boostrap. In this work, we propose the use of a distribution matching the second
and fourth moments of the random effects for use in estimating MSE under non-normality.
Hall and Maiti (2005) demonstrated that a three-point distribution is adequate to match a
distribution with three moments - the mean, variance and fourth moment. We followed
their recommendation in developing a bootstrap distribution. Initially, we pursued the use
of a three-point distribution to match these moments; however, preliminary simulations re-
vealed two issues. One was that the distribution was not always suitable for obtaining MSE
estimates with low bias due to the coarseness of the distribution. Secondly, in some cases
the estimates of the kurtosis were extremely large, due to the bounding from the skewness
as discussed in Section 2.2. Thus, we incorporated a continuous modification to the boot-
strap distribution to smooth the random effect distribution, as well as piecewise function
based on the estimate of the kurtosis.

2.1 Bootstrap Distribution

For the model error random effect vi, we want to draw our bootstrap samples from a distri-
bution matching the second and fourth moments calculated from the sample. We define

d =

{
1
3 1 < γ̂2 < 3
1
12 γ̂2 ≥ 3

, (3)

where γ̂2 is the estimate of the kurtosis of vi. Estimation of γ2 is discussed in Section 2.2.
We use d to calculate

c = max
(2d(3− γ̂2)±

√
2(γ̂2 − 3)d(1− 6d)

4(3− γ̂2)d2 + 2d(1− 6d)

)
, (4)

which will be positive. Next set α = 1√
1+2dc

.

We will drawF bootstrap samples. For the f th bootstrap sample, drawUi,f ∼ Uniform(0, 1)
and let

Wi,f =
√
c[I(Ui,f < d)− I(Ui,f > 1− d)]. (5)

Also, draw zi,f ∼ N(0, 1). Then, the bootstrap random effect, denoted by v∗i,f is given by

v∗i,f = α(zi,f +Wi,f )σ̂, (6)

for i = 1, ...,m. Based on these bootstrapped random effects, we have

θ∗i,f = xTi β̂ + v∗i,f . (7)

Next, draw the bootstrap sampling errors e∗i,f∼N(0, Di) and define our bootstrap direct
estimate y∗i,f as

y∗i,f = θ∗i,f + e∗i,f . (8)

Based on the bootstrap sample y∗f = (y∗1,f , ..., y
∗
m,f )T , we refit the model using the

bootstrapped dataset in the same way as the original dataset and obtain σ̂2∗f using any
chosen estimator and g1i(σ̂2∗f ). The EBLUP of θ∗i,f is computed as θ̂∗i,f for i = 1, ...,m.
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Note that:

E[g1i(σ̂
2)] = g1i(σ

2) + bi(φ) + o(m−1) (9)

E[g1i(σ̂
2∗
f )] = g1i(σ

2) + 2bi(φ) + o(m−1), (10)

where , φ = (σ2, γ2)
T and bi(φ) is of order O(m−1) which is the result of the bias and

variance in estimating φ. Let

mse∗F,i =
1

F

F∑
f=1

(θ̂∗i,EBLUP,f − θ∗i,f )2.

Then,

E[mse∗F,i] = E
[ 1

F

F∑
f=1

(θ̂∗i,EBLUP,f − θ∗i,f )2
]

= g1i(σ
2) + bi(φ) + gi(φ) + o(m−1), (11)

and gi(φ) is of order O(m−1).
We note that

E
[
g1i(σ̂

2)− 1

F

F∑
f=1

g1i(σ̂
2∗
f )
]

= −bi(φ) + o(m−1) (12)

Using equation (11) and (12), we define the bootstrap estimator of MSE is

msei,bootstrap =
1

F

F∑
f=1

(θ̂∗i,EBLUP,f − θ∗i,f )2 +
[
g1i(σ̂

2)− 1

F

F∑
f=1

g1i(σ̂
2∗
f )
]

= g1i(σ̂
2) +

1

F

F∑
f=1

[(θ̂∗i,EBLUP,f − θ∗i,f )2 − g1i(σ̂2∗f )]

It can be shown that E[msei,bootstrap] = MSE(θ̂i,EBL) + o(m−1).

2.2 Estimation of the Skewness and Kurtosis

We now discuss estimation of the skewness and kurtosis γ1 and γ2. These estimators are
used in the bootstrap distribution which matches the second and fourth moment of the
random effect, discussed in Section 2.1. Note that

E
[ m∑

i=1

ê3i

]
=

m∑
i=1

E[v3i ] +O(1) = mσ3γ1 +O(1),

where êi is the residual based on ordinary least squares. Then, our estimator of the skewness
coefficient is given by:

γ̂1 = (σ̂2)−3/2
1

m

m∑
i=1

ê3i . (13)

and based on

E
[ m∑

i=1

ê4i ] =
m∑
i=1

[γ2σ
4 + 6σ2Di + 3D2

i

]
+O(1)

= mγ2σ̂
4 + 6σ2

m∑
i=1

Di + 3

m∑
i=1

D2
i +O(1),
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an estimator of the kurtosis coefficient is

γ̃2 =

∑m
i=1 ê

4
i − 6σ̂2

∑m
i=1Di − 3

∑m
i=1D

2
i

mσ̂4
(14)

Note that the estimator of the skewness coefficientt γ̂1 may be positive or negative.
However, since γ2 ≥ γ21 +1, we must have the corresponding inequality satisfied by γ̂1 and
γ̃2 (Pearson 1916). If that inequality is not satisfied by γ̃2 and γ̂1, we modify the definition
of γ̃2 as:

γ̂2 = max
(
γ̃2, (γ̂

2
1 + 1)(1 +

1√
m

)
)
. (15)

In the above, we used the multiplier (1 + 1√
m

) so that the equality γ̂2 = γ̂21 + 1 does
not hold. We note that for the purposes of our bootstrap distribution, the estimation of the
skewness coefficient is used only in the bounding of the kurtosis.

3. Simulation Study

We conducted a simulation study in R to compare the performance of the bootstrapping
method of estimating MSE with traditional estimators. This simulation considered the
bootstrapping approach using three estimators of σ2, including the Fay-Herriot, maximum
likelihood and residual maximum likelihood, respectively represented as FH(B), ML(B)
and REML(B) in the tables and figures. Each setting was investigated with 1,000 bootstrap
samples. We provided comparisons to the traditional estimators introduced by PR/LR, FH,
as well as using ML and REML. Simulations were set up following a subset of the simu-
lations conducted by Datta, Rao and Smith (2005), as well as under a sampling variance
pattern based on the public use 2017 ACS 5-year data (U.S. Census Bureau 2018).

3.1 Datta-Rao-Smith Simulation Setup

Following a subset of the simulation setup utilized in Section 5 of Datta, Rao and Smith
(2005), we conducted simulations using two sampling variance patterns for 15 small areas.
Pattern (1), corresponding to Pattern (a) in Datta, et al. had five unique, relatively small
sampling variance values: 0.7, 0.6, 0.5, 0.4, 0.3. Pattern (2), which corresponds to Pattern
(c) in Datta, et al., had relatively dispersed sampling variance values: 4.0, 0.6, 0.5, 0.4, 0.1.
We did not consider Pattern (b) as we were investigating more extreme sampling variance
patterns. For each of the sampling variance patterns, we set the random effects variance,
σ2 = 1. We investigated the normal and double exponential distributions for the random
effects. We used a covariate with the coefficient β = 1, with the values of the covariate
generated from an exponential distribution with mean 1.

Ten thousand datasets were generated for each of the simulation setups. With 15 small
areas and five distinct sampling variance values per pattern, each of the unique sampling
variance values was represented in three small areas per dataset. The results of the simula-
tions were grouped by the value of the sampling variances.

The sampling variances under Pattern (a) were relatively small, and not too dispersed.
For this sampling variance pattern, we saw that the percentage bias when using the PR,
FH, ML and REML are similar to the resluts obtained by Datta, Rao and Smith (2005).
Generally, there was little discrepancy among these four approaches, regardless of whether
the normal or double exponential distribution were used for the random effects distribution.
We also saw that the relative biases for the bootstrapping approaches were in line with the
biases observed for the traditional estimators. The results of these simulations are given in
Table 1.
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Table 1: Percent Bias Results for Pattern (a)
m = 15, 1,000 bootstrap samples, 10,000 datasets, σ2 = 1

Di PR FH ML REML FH(B) ML(B) REML(B)

N
or

m
al

0.7 -1.70 -2.10 -3.50 -2.50 -2.50 -3.30 -2.50
0.6 -1.60 -2.10 -3.60 -2.60 -2.30 -3.40 -2.80
0.5 3.00 2.50 1.90 2.20 1.90 1.60 1.90
0.4 4.40 4.10 7.00 4.10 1.80 4.30 1.80
0.3 3.20 2.80 4.70 3.20 2.40 3.50 2.40

D
ou

bl
e

E
xp

0.7 -0.20 -1.50 -3.80 -2.60 -2.90 -5.80 -3.90
0.6 -1.90 -3.10 -4.90 -4.10 -4.60 -7.20 -5.50
0.5 1.90 0.80 0.50 0.60 -1.10 -3.00 -1.40
0.4 3.80 2.90 6.40 2.90 -1.50 0.30 -1.50
0.3 4.50 4.10 7.7 4.60 0.40 0.40 0.40

Table 2: Percent Bias Results for Pattern (c)
m = 15, 1,000 bootstrap samples, 10,000 datasets, σ2 = 1

Di PR FH ML REML FH(B) ML(B) REML(B)

N
or

m
al

4.0 -0.30 -3.70 -7.10 -3.00 -0.80 -4.50 1.40
0.6 52.20 -1.00 -5.70 -2.80 0.00 1.80 3.80
0.5 62.90 -3.90 -7.80 -5.40 -2.90 -0.30 1.00
0.4 97.50 0.90 0.60 -0.30 -0.30 5.10 3.70
0.1 669.90 3.10 4.00 1.00 2.10 8.10 5.20

D
ou

bl
e

E
xp

4.0 0.30 -5.80 -11.90 -7.50 -2.90 -9.60 -3.50
0.6 63.70 -3.10 -9.90 -6.20 -2.40 -4.10 -0.50
0.5 84.10 -1.10 -7.40 -4.10 -0.60 -1.30 1.90
0.4 120.20 2.10 0.60 0.30 0.30 3.50 3.60
0.1 849.00 8.50 10.50 6.50 4.30 9.50 6.50

Sampling variance Pattern (c) had more spread as compared to Pattern (a), and also had
a larger maximum sampling variance. The results for the four traditional approaches were
comparable to those obtained by Datta, Rao and Smith (2005). For these four approaches,
we observed large percentage of bias when using the PR estimator, as well as some negative
bias when utilizing the FH, ML or REML. The bootstrapping approaches yielded relative
biases that were similar in magnitude to those of the FH, ML and REML variances. The
results for Pattern (c) are given in Table 2.

3.2 ACS Simulation Setup

We conducted simulations using sampling variances based on public use ACS 5-year data
in order to investigate more extreme situations, with larger sampling variances relative to
the sampling variance patterns discussed previously. The sampling variances were gener-
ated using the percentiles of ACS 5-year county level data. We considered random effects
following the normal distribution, as well as the double exponential distribution with 50
small areas, with σ2 = 1. We used a covariate with the coefficient β = 1, with the values
of the covariate generated from an exponential distribution with mean 1. The small areas
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Figure 1: Percent Bias: ACS setup, Normal Distribution
m = 50, 1,000 bootstrap samples, 10,000 datasets, σ2 = 1

were ordered by increasing sampling variance. Ten thousand simulations were conducted
for each random effects distribution, and 1,000 bootstrap samples were used within each
simulation.

Figure 1 provides a plot of the percent bias for the four traditional estimators of MSE,
as well as the bootstrap using the FH, ML and REML estimators for variance when the
random effects are generated following the normal distribution. We observed that the tra-
ditional MSE estimators had large relative biases, though this bias leveled off for the larger
values of the sampling variance. The PR had extremely large relative bias, and for the most
part is not visible in this plot. The bootstrapping approaches performed similarly to one
another, with some negative bias for the smaller sampling variances, with this bias gen-
erally trending toward zero as the sampling variance increases. In general, the bootstrap
approaches had less bias in absolute value as compared to the traditional estimators. The
bootstrap with REML appeared to perform best out of these estimators, with respect to the
relative bias. The bootstrap with ML estimator of variance appeared to underestimate the
true MSE across all areas. A similar conclusion was reached for the double exponential
random effects distribution (see Figure 2).

Figure 2 provides a plot of the percent bias for the four traditional estimators of MSE,
as well as the bootstrap using the FH, ML and REML estimators for variance when the
random effects are generated following the double exponential distribution. These results
were largely similar to those under normality. We saw large, positive bias with the PR, FH,
ML and REML, while the bootstrapping approaches had less bias in magnitude, though
this bias was negative for smaller values of the sampling variances. Again, the bootstrap
with REML presented the most appealing performance with respect to the relative bias.
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Figure 2: Percent Bias: ACS setup, Double Exponential Distribution
m = 50, 1,000 bootstrap samples, 10,000 datasets, σ2 = 1

Overall, the simulations following the Datta, Rao and Smith (2005) setup showed that
when the sampling variances are small or moderate, as compared to the random effects vari-
ance, the bootstrapping approaches perform similarly to the traditional approaches. How-
ever, in cases where the sampling variances were large, the traditional approaches yield
estimates of MSE that have large relative biases. On the other hand, the bootstrapping
approaches were comparatively less biased in the more extreme scenarios. The bootstrap-
ping approaches are thus preferrable for estimating MSE, especially given that the random
effects distribution is unknown in practice.

4. Data Analysis

As an illustration of the differences among these approaches, we analyzed modified public
use data from the 2017 5-year ACS (U.S. Census Bureau 2018). We considered the poverty
rate for children under the age of 18 in the 67 counties in Pennsylvania as our outcome of
interest. The rate of Supplemental Nutrition Assistance Program (SNAP) benefit usage for
each of the counties was included as a predictor (U.S. Census Bureau 2019).The sampling
variances were scaled to be larger for illustrative purposes and the small areas were sorted
by increasing sampling variance.

Figure 3 provides a plot of the estimated MSE for each of the four traditional estima-
tors of MSE, as well as the bootstrap with three different variance estimators. The MSE
estimates obtained using the Prasad-Rao estimator were very large for counties with small
sampling variances, which stood in stark contrast to estimates obtained by any of the other
approaches. The ML, REML, bootstrap ML and bootstrap REML had similar performance
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Figure 3: Estimated MSE for ACS Example

to one another. The estimates of MSE for the FH and bootstrap FH were clustered together,
with smaller estimates of MSE as compared to other approaches. It is worth noting that
though the estimates of MSE differed, the true MSE was unknown.

The Prasad-Rao estimated values of the MSE of the EBLUPs seemed very unreason-
able. The estimator σ̂2PR in equation (1) produced a negative estimate in our application.
This negative value was truncated upward to 0.1 ∗ min(Di) = 0.000636. This value ap-
peared to be a severe underestimate of the variance (which is supported from a comparison
with the other estimates of σ2; the FH, ML and REML estimates, respectively, are 0.0466,
0.0894, 0.0930). A very low PR estimate of σ2 reduces the contributions of g1i and g2i in
the estimated MSE; the dominant term for all small areas in this application is the g3i term.
A simple algebraic calculation will show, for any of the estimation methods of σ2, that the
g3i term will be maximized for a small area i for which Di = 2σ̂2 (see Rao, Molina 2015).
Since the Di are arranged in an ascending order and D1 > 2 ∗ σ̂2PR, the corresponding g3i
will be maximized at i = 1. The domination of the g3i term and the monotonic decrease
(with i) of this term badly affect the PR MSE estimates, resulting in unreliable estimated
MSE for all the small areas.

5. Conclusions

Though point estimates are usually the primary focus in small area modeling, estimation of
the MSE is also an important consideration. In this work, we investigated a bootstrapping
approach that is free of distributional assumptions. We utilized a bootstrapping distribution
matching the variance and kurtosis of the random effect. In the case of small, less dispersed
sampling variances relative to the model error variance, the relative biases of the MSE es-
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timators using bootstrapping were similar to those produced using more traditional MSE
estimators. However, for larger and more dispersed sampling variances, the bootstrap esti-
mators incurred less bias as compared to traditional estimators. Based on the simulations
discussed in this work, the bootstrap approach using REML to estimate the variance had
the best performance in the more extreme situations, while maintaining lower bias in less
extreme settings. Looking forward, additional simulations will be conducted to investigate
the performance of the bootstrap MSE under other conditions.
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