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Abstract
Graph sampling provides a statistical approach to study real graphs, which can be of interest in nu-
merous investigations. There have been significant contributions to the existing graph sampling the-
ory. However, a general approach to graph sampling which also unifies the existing unconventional
sampling methods, which may be envisaged as graph sampling problems, including indirect, net-
work and adaptive cluster sampling, as well as arbitrary T-stage snowball sampling, is non-existent
in the literature. We propose a bipartite incident graph sampling (BIGS) as a feasible representation
of graph sampling from arbitrary finite graphs and a unified approach to a large number of graph
sampling situations. We establish the sufficient and necessary conditions under which the BIGS is
feasible for various graph sampling methods. Under a feasible BIGS, two types of design-unbiased
estimators, the Horvitz-Thompson estimator and the Hansen-Hurwitz type of estimators, can be ap-
plied. A general result on the relative efficiency of the two types of estimators is obtained. Some
numerical results based on a limited simulation study illustrating the feasibility of the proposed
approach are presented.

Key Words: Graph sampling, adaptive cluster sampling, indirect sampling, network sampling,
T-stage snowball sampling, ancestral observation procedure

1. Introduction

Graph sampling provides a statistical approach to study real graphs, which represent the
structure of many technological, social or biological phenomena of interest. It is based on
exploring the variation over all possible subsets of nodes and edges, i.e. sample graphs,
which can be taken from the given population graph, according to a specified method of
sampling. Zhang and Patone (2017) synthesise the existing graph sampling theory, extend-
ing the previous works on this topic by Frank (1971, 1980a,b, 2011). A general definition is
given for probability sample graphs, and the unbiased Horvitz and Thompson (HT) (1952)
estimator is developed for arbitrary T -stage snowball sampling (T-SBS) from finite graphs.

The unconventional sampling methods, such as, multiplicity sampling (Birnbaum and
Sirken, 1965), adaptive cluster sampling (ACS) (Thompson, 1990) and indirect sampling
(Lavallée, 2007) are envisaged, for the first time, as graph sampling problems by Zhang
and Patone (2017). Various graph representations of these sampling methods are provided.
However, a general approach to graph sampling unifying the existing unconventional sam-
pling methods, as well as arbitrary T-SBS, is non-existent in the literature.

We propose a bipartite incident graph sampling (BIGS) representation of sampling from
finite graphs as a flexible and unified approach to a large number of graph sampling situ-
ations. The main contribution of this paper is to establish the sufficient and necessary
conditions under which the BIGS is feasible for various graph sampling methods. We de-
rive the number of stages required for a feasible BIGS representation of an arbitrary T-SBS
from a finite population graph. BIGS representation of T-SBS enables simple computation
of the inclusion probabilities of sample motifs, without requiring recursive computations.
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The Hansen and Hurwitz (HH) (1943) type estimator has been used in many works
on network sampling, as summarised by Sirken (2005). The HT estimator is presented as
a method of estimation in graph sampling theory (e.g. (Frank, 1971; Zhang and Patone,
2017)). Under feasible BIGS, there are several choices of unbiased estimators applicable
that allows one to explore the potentials of efficiency gains in graph sampling. We provide
a general result on the relative efficiency of the HT and the HH type of estimators, which is
unknown in the literature discussing both estimators (e.g. Thompson, 1990, 1991, 2012).

The rest of the paper is organised as follows. Graph sampling is described in Section
2. BIG sampling is presented in Section 3, followed by Section 3.1 in which the sufficient
and necessary conditions for a feasible BIGS representation of graph sampling are estab-
lished. In Section 4, formal BIGS representations are described for the aforementioned
unconventional sampling methods. In Section 5, we develop the BIGS representation of
general T -stage snowball sampling, including the relevant results for identifying the sam-
ple motifs eligible for estimation. In Section 6, the general condition governing the relative
efficiency of the HT and HH-type estimators under BIG sampling is presented. In Section
7, some numerical results are provided for an example of T -stage snowball sampling from
an arbitrary population graph. Finally, some concluding remarks are given in Section 8.

2. Graph sampling

Let G = (U,A) be the population graph, with node set U and edge set A. We focus on
simple graphs in this paper for simplicity, such that there can be at most one edge between
a pair of nodes (i, j), where i, j ∈ U . Let aij = 1 if edge (ij) ∈ A and 0 otherwise. By
definition aji 6= aij if the graph is directed, but aij ≡ aij if the graph is undirected. The
theory developed below can be easily adapted to multigraphs, where there can be more than
one edge between any pair of nodes.

The measurement units of interest are called the motifs in G. Denote by Ω = Ω(G) the
set of all motifs in G. For any k ∈ Ω, let Mk be the nodes involved in the motif k, of order
|Mk|. The motif of these Mk nodes is denoted by [Mk], such that for any k 6= l ∈ Ω, we
have [Mk] = [Ml], but Mk 6= Ml, nor is it necessary that |Mk| = |Ml|.

Zhang and Patone (2017) give the following general definition of sample graphs from
G. Let s0 be an initial sample of nodes taken from the sampling frame F , where s0 ⊂ F ⊆
U , according to the sampling distribution p(s0), and

∑
s0
p(s0) = 1 and πi = Pr(i ∈ s0) >

0 for any i ∈ F . Given s0, graph sampling proceeds according to a specified observation
procedure (OP), for edges that are incident to the nodes in s0. The observed edges, denoted
by As for As ⊆ A, are specified using a reference set sref , where sref ⊆ U ×U , such that
any existing edge (ij) in A is observed if (ij) ∈ sref . That is, sref specifies the parts of
the adjacency matrix that are observed under the given OP. Denote by Inc(aij) = {i, j} the
nodes that are incident to the edge (ij). Let Inc(As) = ∪aij∈AsInc(aij) be the set of nodes
incident to the edges As. The sample graph is given by

Gs = (Us, As) and Us = s0 ∪ Inc(As) .

The motifs that are observed in the sample graph Gs can now be given as follows: ∀k ∈ Ω,
we have k ∈ Ωs = Ω(Gs), iff Mk ×Mk ⊆ sref . In particular, notice that Mk ⊆ As does
not imply k ∈ Ωs in general, but k ∈ Ωs must imply Mk ∈ Us.

3. BIG sampling

Graph sampling can be given a BIGS representation, provided the following. Let

B = (F ∪ Ω;H)
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be the BIG associated with the population graph G and the motif set Ω = Ω(G), where the
edges H exist only between F and Ω but not between any i, j ∈ F or k, l ∈ Ω, and an edge
exists from any i ∈ F to k ∈ Ω iff k ∈ Ωs whenever i ∈ s0, so that graph sampling from
G can be represented as sampling from B by incident OP (Zhang and Patone, 2017) given
s0. This clarifies the term bipartite incidence graph.

For any graph sampling from given G, let δi,k = 1 for any i ∈ F and k ∈ Ω, iff k ∈ Ωs

whenever i ∈ s0, or Pr(k ∈ Ωs|i ∈ s0) = 1, according to the graph sampling design, which
consists of p(s0) and the OP given s0. For any i ∈ F , let

αi = {k : k ∈ Ω, δi,k = 1} ,

which contains all the successors of i in B; for any k ∈ Ω, let

βk = {i : i ∈ F, δi,k = 1} ,

which contains all the predecessors of k in B. In other words, (ik) ∈ H or hik = 1 in B,
iff δi,k = 1 for i ∈ F and k ∈ Ω. The sample BIG is given by

Bs = (s0,Ωs;Hs) and Ωs = α(s0) = ∪i∈s0αi and Hs = H ∩ (s× Ωs) . (1)

3.1 The sufficient and necessary conditions

The feasibility of a BIGS representation of graph sampling fromG can be determined based
on the sufficient and necessary conditions given in Theorem 1

Theorem 1. Graph sampling from G = (U,A) with associated motifs Ω of interest, based
on p(s0) and the given OP, can be represented by ancestral BIG sampling from B, iff

(i) ∀k ∈ Ω and i ∈ F , δi,k = 1 or 0 in G can be determined given i ∈ s0 alone;

(ii) ∀k ∈ Ω, we have βk 6= ∅ in B, or equivalently ∪
i∈F

αi = Ω in B;

(iii) graph sampling OP in G ensures the observation of β
(
α(s0)

)
\ s0 in B.

Given (i), we can define the edge set H of B = (F,Ω;H). Given (ii), BIG sampling
covers all the motifs in Ω, since Pr(k ∈ Ωs) is then positive for any k ∈ Ω. Given (iii), it is
possible to calculate the inclusion probability of k ∈ Ωs, based on p(s0) for s0 ⊂ F . Thus,
conditions (i) - (iii) are sufficient. They are also necessary, because removing any of them
would render the BIGS representation infeasible.

4. BIGS representation for unconventional sampling methods

Below we describe formally BIGS representation as a unified approach to indirect sam-
pling, network sampling and ACS.

4.1 Indirect sampling

Generally for indirect sampling, let F be the sampling frame, and Ω the set of measurement
units of interest, which are accessible via the sampling units inF . For instance, F can be the
hospitals and Ω the patients treated by the hospitals in F (e.g. Birnbaum and Sirken, 1965).
Analogically, F can be all the parents and Ω the children to the people in F (e.g. Lavallée,
2007). For any i ∈ F and k ∈ Ω, we have (ik) ∈ H or hik = 1 iff k can be reached
given i ∈ s0, denoted by δi,k = 1. This completes the definition of population graph
B = (F,Ω;H). The knowledge of multiplicity that is collected under indirect sampling
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ensures then ancestral BIG sampling from s0 ⊂ F , where the sample BIG is given by (1),
with the associated out-of-sample ancestors β

(
α(s0)

)
\ s0 in B.

The probability of inclusion in Ωs can be derived from the initial sampling distribution
p(s0), for s0 ⊂ F . The (first-order) inclusion probability of k ∈ Ωs is given by

π(k) = 1− π̄βk = 1− Pr
(
∩i∈βk i 6∈ s0

)
, (2)

where π̄βk is the exclusion probability of βk in s0, i.e. the probability that none of the
ancestors of k in B is included in the initial sample s0. Notice that the knowledge of the
out-of-sample ancestors βk \ s0 is required to compute π̄βk . Similarly, the second-order
inclusion probabilities of k 6= l ∈ Ωs is given by

π(kl) = 1−
(
π̄βk + π̄βl − π̄βk∪βl

)
. (3)

4.2 Network sampling

Sampling of siblings via an initial sample of households provides an example of network
sampling (Sirken, 2005). Since the siblings may belong to different households, some
of which are outside of the initial sample, the network relationship among the siblings is
needed. Network sampling as such can be viewed as a form of indirect sampling, since the
sampling unit (household) is not the unit of measurement (siblings), and the latter cannot
be sampled directly. Notice that the term network has a specific meaning here, unlike when
network refers to a whole valued graph (Frank, 1980a,b), e.g. an electricity network, where
the nodes and edges have associated values that are of interest.

Let F denote the sampling frame, which is the list of households from which the initial
sample s0 can be selected. Provided the OP under network sampling is exhaustive, in the
sense that all the siblings are observed, if at least one of them belongs to a household in s0,
one can treat each network of siblings as a motif of interest, such that Ω consists of all the
networks of siblings. For any i ∈ F and k ∈ Ω, let (ik) ∈ H iff at least one of the siblings
in Mk belongs to household i. This yields the population graph B = (F,Ω;H). Network
sampling with observation of multiplicity is then equivalent to ancestral BIG sampling in
B, where Ωs = α(s0), with the associated out-of-sample ancestors β

(
α(s0)

)
\ s0, such

that the inclusion probabilities of the motifs can be calculated by (2) and (3).

4.3 Adaptive cluster sampling (ACS)

As a standard example of ACS (Thompson, 1990), let F consist of a set of spatial grids
over a given area. Let yi be the amount of a species, which can be found in the i-th grid.
Given i ∈ s0, one would survey all its neighbour grids (in four directions) if yi exceeds a
threshold value but not otherwise. The OP is repeated for all the neighbour grids, which
may or may not generate further grids to be surveyed. The process is terminated, when the
last observed grids are all below the threshold. The interest is to estimate the total amount
of species (or mean per grid) over the given area.

One can consider each cluster of contiguous grids, where the associated yi’s all exceed
the threshold value, as a network. Let a grid with yi below the threshold value form a
singleton network consisting only of itself. The OP is network exhaustive, since all the
grids in a network are observed if at least one of them is selected in s0. A singleton network
is an edge grid, if it is contiguous to a non-singleton network. Observing a non-singleton
network will lead one to observe all its edge grids, but not the other way around.

The ACS can be represented as BIG sampling from B, where the grids are both the
sampling units of F and the motifs of Ω. Let hik = 1 if k is observed under ACS whenever
i ∈ s0, for i ∈ F and k ∈ Ω. However, the OP of ACS is not ancestral when an edge grid is
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selected in s0, but none of the grids in its non-singleton neighbour network (NNN) is in s0.
In this case, one would not observe its ancestors, i.e. its NNN, in this B and its inclusion
probability cannot be calculated based on the observed sample.

Thompson (1990) proposes the idea of eligibility of edge grids for estimation. An
edge grid is eligible only if it is selected in s0 directly, in the case of which its inclusion
probability is known, but not when it is observed via its NNN. The corresponding estimator
is called the modified HT estimator. Under a feasible BIGS representation, one can set
hik = 0 in restricted B denoted by B∗, where grid i belongs to the NNN of the edge
grid k, such that k is eligible for estimation only when it is selected in s0 directly. The
unmodified HT estimator can be used under this BIGS representation. The same estimates
are obtained under either of these strategies. However, the Rao-Blackwellised version of
the unmodified HT estimator is unchanged, unlike that of the modified HT estimator, which
differs generally from the corresponding original estimator.

5. T -stage snowball sampling (T -SBS)

Goodman (1961) considers snowball sampling (SBS) on a special directed graph, where
each node has one and only one out-edge. Frank (1977) and Frank and Snijders (1994)
consider one-stage SBS from arbitrary population graphs. Zhang and Patone (2017) derive
the HT-estimator for general T -stage snowball sampling (T -SBS). Additional stages of
sampling are generally needed in order to identify the ancestors of all the motifs observed
under T -SBS though.

Let G = (U,A) be an undirected simple graph. Let s0 be the initial sample of seeds
taken from F = U , according to p(s0), where s0 ⊂ U . Let s1 = s0 ∪ α(s0) be the sample
of nodes observed after the first stage given an OP, where s1 \ s0 is the first-wave snowball
sample, which are the seeds for the second stage snowball sample, and so on. Denote by
sT the observed sample of nodes after T stages, by which time sT may have only covered
a part of a network.

For any population graph G, a motif in Ω(G) may be unobserved under T -SBS, even
though it is observable under SBS with an infinite number of stages. Moreover, not all the
observed motifs after T stages are eligible for estimation, and additional stages of sampling
may be required in order to observe all the ancestors that could have led to an observed
motif by T -SBS. However, more motifs of interest may be observed during the additional
sampling, which again may or may not be eligible for estimation.

Let νij be the length of the geodesic from i to j in G, which is the shortest path from
i to j in G, for any k ∈ Ω and i 6= j ∈ Mk. Since the shortest path from i to j varies
with the OP, let us assume incident reciprocal observation for simplicity. For any k ∈ Ω
and i ∈ Mk, let di,k be the SBS observation distance from i to k, which is the minimum
number of stages required to observe k ∈ Ωs under SBS from G, when starting from i.
Lemma 1 defines the observation distance di,k.

Lemma 1. ∀k ∈ Ω and i ∈Mk, if the nodes Mk are connected in G, then

di,k =

{
maxj∈Mk

νij if | arg maxj∈Mk
νij | = 1

1 + maxj∈Mk
νij otherwise

,

or if there exists a single node other than i which is unconnected to i in G, then

di,k = 1 + max
j∈Mk;i

νij

where Mk;i consists of the nodes in Mk that are connect to i in G.
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Corollary 1. If there exists k ∈ Ω, where there are at least two nodes, i 6= j ∈ Mk, such
that di,k = dj,k =∞ in G, then BIGS representation of T -SBS from G is infeasible.

5.1 BIGS representation using all the motifs observed under T -SBS

The geodesic-distance matrix based on the sample graph Gs is generally not the same as
that of the population graph G. Additional sampling in G is then necessary, in order to
identify the ancestors of any observed motif in Ωs, as specified below.

Lemma 2. For any k ∈ Ωs, if |Mk| > 1 then one needs at most T − 1 stages of additional
SBS fromMk to observe all the ancestors of sample motif k under T -SBS fromG, if |Mk| =
1 then one needs at most T stages of additional SBS from Mk.

Suppose T -SBS from G is a probability sampling design for Ω(G) that is of interest.
For BIGS representation of T -SBS from G, let F = U and Ω = Ω(G). By Theorem 1, one
needs to set hik = 1 for any i that is the ancestor of motif k under T -SBS from G. One
can set hik = 1 in the sample graph Bs directly, provided k ∈ Ωs can be observed in Gs
starting from i ∈ s0. Moreover, having identified all the ancestors of each observed motif
k ∈ Ωs by additional sampling, as guaranteed under Lemma 2, one can set hik = 1 for
all the out-of-s0 ancestors of k under T -SBS from G. In this way, ancestral observation is
achieved for all the motifs in Ωs, such that they all can be used for estimation.

5.2 BIGS representation for eligible motifs under T -SBS

Here, we present strategies of BIGS representation that are feasible based on the eligible
motifs observed under T -SBS, without additional sampling for ineligible motifs. Let B
be the population BIG representing T -SBS from G, where all the observed motifs can
be used for estimation. For each k ∈ Ω with ancestors βk in B, let β∗k be a non-empty
subset of βk, where ∅ 6= β∗k ⊆ βk. Consider BIG sampling with restricted ancestors from
B∗ = (F,Ω;H∗), where H∗ contains only the edges from β∗k to k, for each k ∈ Ω. Since
β∗k is non-empty for every k ∈ Ω, conditions (i) and (ii) of Theorem 1 remain satisfied
under BIG sampling from B∗. A motif k is observed in the sample B∗s , iff s0 contains at
least one of the nodes in β∗k , regardless of the nodes in βk \ β∗k . Condition (iii) of Theorem
1 is satisfied provided the knowledge of β∗k , given which the inclusion probabilities can be
calculated by (2) and (3) on replacing βk and βl by β∗k and β∗l , respectively.

To ensure that BIG sampling from B∗ is a feasible representation of T -SBS from G,
we need to define β∗k appropriately for the observed eligible motifs. By Corollary 1, BIGS
representation is feasible for any motif consisting of connected nodes. Let the observation
diameter of a motif k ∈ Ω(G) be

φk = max
i∈Mk

di,k

which is finite for any motif of connected nodes with |Mk| < ∞. Then, by definition, an
observed motif with finite φk is eligible for estimation under φk-SBS from G, provided we
restrict its ancestors to β∗k = Mk. The result below follows.

Theorem 2. Provided finite observation diameter φk of all k ∈ Ω, BIG sampling from B∗
is a feasible representation for T -SBS from G, where β∗k = Mk and T = maxk∈Ω φk.

Additional sampling is not needed based on BIGS from B∗ with restricted ancestors as a
feasible representation of T -SBS from G. But fewer observed motifs are used compared to
BIGS representation with B, which would generally require additional sampling. So there
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is a trade-off between statistical efficiency and operational cost. In case the uncertainty
is too large to be acceptable, based on the eligible motifs in B∗s under T -SBS with T =
maxk∈Ω φk, additional SBS may be administered. This raises the need to update the BIGS
representation for T ′-SBS, where T ′ > T .

Let βt(Mk) contain all the nodes outside of Mk, which have maximum geodesic dis-
tance t to Mk. That is, starting from any node in βt(Mk), it takes at most t stages of SBS
to observe at least one of the nodes Mk. Under SBS beyond T = maxk∈Ω φk, the nodes in
βt(Mk) may be identified as ancestors of eligible motifs, for t = 1, 2, ... Let the diameter
of motif k be given by

λk = max
i,j∈Mk

νij

By Lemma 1, we have φk ≤ 1 + λk given finite φk. The result below follows.

Theorem 3. Provided finite observation diameter φk of all k ∈ Ω, BIG sampling from B∗
is a feasible representation for T -SBS from G, where β∗k = Mk ∪ βt(Mk) with t ≥ 1, and
T = maxk∈Ω Tk with Tk = λk + 2t for each k ∈ Ω.

6. Estimation under BIG sampling

For each motif k ∈ Ω(G), let yk be an associated value, which is considered as an unknown
constant. Let the target of estimation be the total of yk over Ω, denoted by

θ =
∑
k∈Ω

yk .

In the case of yk ≡ 1, θ is simply the total number of motifs in Ω, which is called a graph
total (Zhang and Patone, 2017); more generally, θ is a total over Ω in a valued graph.

The two unbiased estimators of Birnbaum and Sirken (1965) can be applied to any
graph sampling from G, provided a feasible BIGS representation of it satisfying conditions
(i) - (iii) of Theorem 1. For simplicity below, we always denote the population BIG by B,
without distinguishing in notation whether restricted ancestors B∗ are used for the eligible
motifs. The HT estimator based on Ωs = Ω(Bs) is given by

θ̂y =
∑
k∈Ωs

yk/π(k) =
∑
k∈Ω

δkyk/π(k) , (4)

where δk = 1 if k ∈ Ωs and 0 otherwise, and π(k) is given by (2), for any k ∈ Ωs.
Generally, to calculate the inclusion probabilities π(k) and π(kl), we need to know βk for
each k ∈ Ωs. In the special case of SRS of s0, we only need the cardinality of βk to
calculate π(k).

The HH-type estimator based on the initial sample s0 is given by

θ̂z =
∑
i∈s0

zi/πi =
∑
i∈F

δizi/πi and zi =
∑
k∈αi

ωikyk and
∑
i∈βk

ωik = 1 , (5)

where δi = 1 if i ∈ s0 and 0 otherwise, and πi is the inclusion probability of i ∈ s0 under
p(s0), and the ωik’s are constants of sampling, by which {yk : k ∈ Ω} are transformed to
the constructed measures {zi : i ∈ F}. We let ωik = 0 if i 6∈ βk or k 6∈ αi in B. As noted
by Birnbaum and Sirken (1965), the estimator (5) is unbiased for θ since

θ =
∑
k∈Ω

yk =
∑
k∈Ω

yk
(∑
i∈βk

ωik
)

=
∑
i∈F

( ∑
k∈αi

ωikyk
)

=
∑
i∈F

zi .
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Notice that in the special case of |βk| = 1 for all k ∈ Ω, there exits only one-one or
one-many relationship between the sampling units in F and the motifs in Ω, just like when
the |Mk| elements are clustered in the sampling unit i under cluster sampling. The two es-
timators θ̂y and θ̂y are then identical. More generally, different choices of ωik’s would give
rise to different estimates, such that θ̂z by (5) defines in fact a family of unbiased estima-
tors. Birnbaum and Sirken (1965) consider the equal-share weights ωik = |βk|−1. Under
BIG sampling, this estimator and the HT-estimator have the same ancestral observation re-
quirement. Patone (2020) proposes unequal weights ωik ∝ |αi|−1. Additional sampling
is generally needed to calculate these weights. For the feasible BIGS representation in
Theorem 3, one may need upto φk + t extra stages to observe αi for any i ∈ βt(Mk).

Theorem 4 below is a general result regarding the relative efficiency between θ̂y by
(4) and θ̂z by (5), which applies to all situations where BIG sampling from B provides a
feasible representation of the original graph sampling from G.

Theorem 4. For θ̂y by (4) and θ̂z by (5) under BIG sampling from B, we have

V (θ̂z)− V (θ̂y) =
∑
k∈Ω

∑
l∈Ω

∆klykyl where ∆kl =
∑
i∈βk

∑
j∈βl

πij
πiπj

ωikωjl −
π(kl)

π(k)π(l)
.

7. Numerical work

Figure 1 shows a population graph G of 40 nodes and 72 edges. Let the motifs of interest
be connected components of order |Mk| ≤ 4, including node (K1), 2-clique (dyad, K2),
2-star (S2), 3-clique (triangle, K3), 4-clique (K4), 4-cycle (C4), 3-star (S3) and 3-path (P3).
The 40 nodes are all known. The totals of the other motifs (illustrated in Figure 2) are

(θK2 , θS2 , θK3 , θK4 , θC4 , θS3 , θP3) = (179, 72, 19, 3, 7, 141, 408) .

Figure 1: A population graph with |U | = 40 and |A| = 72.

For feasible BIGS representation with restricted ancestors β∗k = Mk, the number of
SBS stages required for the HT-estimator θ̂y by (4) and the HH-type estimator θ̂zβ by (5)
with weights ωik = |βk|−1 is given by Theorem 2, i.e. T = φk, whereas one may need
up to φk additional stages for the estimator θ̂zα using weights ωik ∝ |αi|−1. Moreover,
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Figure 2: Motifs of interest

for BIGS representation with restricted ancestors β∗k = Mk ∪ β(Mk), the number of stages
required for θ̂y and θ̂zβ is given by Theorem 3, i.e. T = λk + 2t and t = 1, whereas up
to φk + t = φk + 1 additional SBS stages may be needed for θ̂zα. Similarly in the case of
β∗k = Mk ∪ β2(Mk) with t = 2.

Consider SBS of maximum 4 stages following SRS of s0 with |s0| = 2. Since the
diameter of the population graph G is six here, a large part of it may already have been ob-
served by 4-SBS; indeed, G is fully observed from 215 out of 780 possible initial samples.
In addition, we consider induced OP following SRS of s, for which sref = s× s. The size
of s is set to be the expected number of observed nodes under T = 1 and T = 2, which are
9 and 21, respectively. Denote by θ̂ the resulting HT-estimator.

Table 1: Mean squared errors of graph total estimators under induced OP from SRS of
size n = 9 or 21, and SBS of maximum 4 stages from SRS of initial sample of size 2.

Estimator K2 S2 K3 K4 C4 S3 P3

Induced OP, n = 9 θ̂ 1 263 47 134 2 869 2 167 5 168 231 805 797 578
Induced OP, n = 21 θ̂ 152 4 533 198 41 116 11 523 52 488

β∗k = Mk

θ̂y 471 5 269 193 10 38 5 092 27 717
θ̂zβ 475 5 447 199 10 39 5 368 29 441
θ̂zα 116 613 160 10 28 – –

β∗k = Mk ∪ β(Mk)
θ̂y 306 1 614 92 4 7 1 382 –
θ̂zβ 281 1 485 98 5 7 1 403 –

In Table 1, we present the mean squared errors (MSEs) of the different estimators.
Feasible BIGS representation is used for estimation under T -SBS. In case an estimator is
not feasible for a certain motif using maximum 4-SBS, the result will be unavailable in
the table. Induced OP is understandably much less efficient than incident OP, as the order
of the motif of interest increases; compare e.g. the results for SRS of size 21 and 2-SBS,
where both have the same expected number of nodes in the sample graph.
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Under T -SBS from the population graph in Figure 1, the HT-estimator θ̂y and the HH-
type estimator θ̂zβ are about equally efficient for the motifs considered here. The HH-type
estimator θ̂zα can be much more efficient, especially for the lower-order motifs K2 and S2.
Under SRS of s0, the variance of the HH-type estimator (5) is minimised, if the constructed
zi’s happen to be constant across the sampling units. With unequal-share weights, zi is
proportional to |αi|. Setting ωik ∝ |αi|−1 tends to even out the zi’s, since a sampling unit
with many successors will receive relatively little share from each motif observed from
it, although its z-value is based on more motifs than another sampling unit with fewer
successors. We refer to Patone (2020) for more discussions of θ̂zα.

8. Conclusion

Graph sampling (Zhang and Patone, 2017) provides a general statistical approach to study
real graphs. We develop feasible BIGS representation that is applicable to a large number
of graph sampling situations, which are based on different incident observation procedures.
It avoids the recursive computations that are needed to calculate the inclusion probabilities
of the sample motifs under T -stage snowball sampling (Zhang and Patone, 2017). It en-
ables one to identify the motifs that are eligible to estimation in a given sample. It allows
one to extend the scope of HH-type estimators developed for indirect sampling (Birnbaum
and Sirken, 1965), providing a unified framework for achieving efficiency gains beyond
the standard HT-estimator. A generalised incidence weighting estimator under BIGS is
developed by Patone and Zhang (2020).
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