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Abstract 

With the increasing availability of large data sources, there is an interest in combining 
survey data with information from these other sources to improve the quality of domain-
level statistics. An area-level model approach is considered in the context of small area 
estimation to integrate survey data with an aggregated source of information. The proposed 
method is applied to the real problem of estimating the inbound tourism spending, using 
aggregated Payment Processors’ data and survey data from Visitor Travel Survey (VTS) 
in Canada. The area-level model is also used to provide timely forecast estimates of foreign 
tourism spending, using current aggregated Payment Processors’ data and historical VTS 
data.  
 
Key Words: Small Area Estimation, Data Integration, Modeling, Area-level Model, 
Prediction, Small domains 
 

 
1. Introduction 

 
The demand for domain-level estimates has been increasing over recent years. Surveys 
conducted by national statistical agencies produce reliable estimates for domains with 
sufficient sample units. However, the survey estimates may be unreliable when the domain 
of interest has few sample units. Moreover, with increasing levels of nonresponse in 
household surveys, producing data at finer levels of detail has become more challenging. 
To reduce response burden and improve standard (direct) estimates derived from surveys, 
Statistics Canada has been investigating alternative data sources. Alternative data sources 
may include administrative data and other source of information that are not collected from 
surveys. One possible solution is to combine survey data and alternative data source using 
Small Area Estimation (SAE) methods. In this way, we can improve the quality of domain-
level statistics and benefit from the positive features of survey data and other available data 
sources.  
 
In this paper we focus on the Visitor Travel Survey (VTS) in Canada and show through an 
example that combining survey data with alternative data sources can improve domain-
level estimates. Section 2 gives a brief description of the SAE methodology with a focus 
on the area-level model and smoothing design variances. The Visitor Travel Survey, which 
is the main focus of this study, and the alternative data source used in the model, Payment 
data, are discussed in Section 3 and Section 4 respectively.  In Section 5 and Section 6, we 
review the application to VTS data, the modelling steps and present some results. We 
summarize our discussion in Section 7. 
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2. Small Area Estimation 

 
The idea behind Small Area Estimation (SAE) is to produce reliable estimates for small 
domains, where the standard direct estimates calculated using weighted survey responses 
(such as the Narain-Horwitz-Thompson estimator) cannot be used due to unacceptably 
large standard errors for areas with small sample sizes. In such situations, it is necessary to 
use indirect estimators that “borrow strength” from related areas. These indirect estimators 
tend to be more efficient than direct estimators since they increase the effective sample size 
by incorporating a number of small areas in a single model. The small area estimate has 
two parts: the direct estimate from the survey data, and a prediction based on a model.  
 
The SAE models can be classified into two types:  area-level (or aggregate) models that 
relate small area means to area-specific covariates, and unit-level models that relate the 
unit values of the study variable to unit-specific covariates. Rao and Molina (2015) is a 
comprehensive reference in this area. 
 
In this study, we apply the area-level model as the auxiliary information used in the model 
is aggregated. The theory of the area-level model is briefly described in the following 
subsection.  
 
2.1 Area-level model 

A basic area-level model, known as Fay-Herriot model (Fay and Herriot, 1979) has two 
parts: 
1. Sampling model: 𝜃𝑖 = 𝜃𝑖 + 𝑒𝑖,  
where 𝜃𝑖 is the direct estimator of variable of interest for area i, 𝑒𝑖 represents the sampling 
errors with 𝐸𝑝(𝑒𝑖) = 0 and var𝑝(𝑒𝑖) = 𝜓𝑖. The subscript p indicates that the expectation 
and variance are taken with respect to the sampling design (or the sample selection 
mechanism). The implicit assumption is that the direct estimator is unbiased under the 
sampling design. The quantity 𝜓𝑖  represents the variance of  𝜃𝑖  with respect to the 
sampling design and is typically unknown. A direct estimator of 𝜓𝑖 is denoted by �̂�𝑖   
           
2. Linking model:  𝜃𝑖 = 𝒛𝑖

𝑇𝜷 + 𝑏𝑖𝑣𝑖 
The vector of 𝒛𝑖 represents the area specific auxiliary data, 𝑣𝑖 is the area-specific random 
effects with 𝐸𝑚(𝑣𝑖|𝒛𝑖) = 0 and var𝑚(𝑣𝑖|𝒛𝑖) = 𝜎𝑣

2, 𝑏𝑖 is a positive constant and 𝜷 and 𝜎𝑣
2 

are unknown model parameters. The subscript m indicates that the expectation and variance 
are taken with respect to the model. 
 
In addition to the above model assumptions, the errors 𝑒𝑖 and 𝑣𝑖, i=1,…, M, are usually 
assumed to be normally distributed and mutually independent. The quantity M is the 
number of areas used for modelling. By combining the sampling and linking model, we 
obtain the Fay-Herriot model: 
𝜃𝑖 = 𝒛𝑖

𝑇𝜷 + 𝑎𝑖, 
 
where 𝑎𝑖 = 𝑏𝑖𝑣𝑖 + 𝑒𝑖 , 𝐸𝑚𝑝(𝑎𝑖|𝒛𝑖) = 0, 𝑣𝑎𝑟𝑚𝑝(𝑎𝑖|𝒛𝑖) = 𝑏𝑖

2𝜎𝑣
2 + �̃�𝑖  and �̃�𝑖 = 𝐸𝑚(𝜓𝑖|𝒛𝑖) 

is a smoothed design variance 1 . The subscript mp indicates that the expectation and 
variance are taken with respect to both the model and sampling design.  

                                                 
1 Estimation of the smoothed design variance is discussed in Sub-section 2.2. 
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Assuming that �̃�𝑖 and 𝜎𝑣
2 are known, the theory of general linear mixed models provides a 

framework to derive the optimal predictor for 𝜃𝑖 called Best Linear Unbiased Predictor or 
BLUP. 
The BLUP can be expressed as the weighted combination of direct estimator (𝜃𝑖) and 
“regression synthetic" estimator (𝒛𝑖

𝑇�̃�): 
�̃�𝑖 = 𝛾𝑖𝜃𝑖 + (1 − 𝛾𝑖)𝒛𝑖

𝑇�̃�, 
where �̃� = [∑ 𝒛𝑖

𝑚
𝑖=1 𝒛𝑖

𝑇/(𝑏𝑖
2𝜎𝑣

2 + �̃�𝑖)]
−1

[∑ 𝒛𝑖
𝑚
𝑖=1 𝜃𝑖/(𝑏𝑖

2𝜎𝑣
2 + �̃�𝑖)] and 𝛾𝑖 =

𝑏𝑖
2𝜎𝑣

2

𝑏𝑖
2𝜎𝑣

2+�̃�𝑖
 . 

 
In practice, �̃�𝑖 and 𝜎𝑣

2 are usually unknown, and are replaced by their estimators. The result 
is the Empirical Best Linear Unbiased Predictor (EBLUP): 
 

 𝜃𝑖
𝐸𝐵𝐿𝑈𝑃 = 𝛾𝑖𝜃𝑖 + (1 − 𝛾𝑖)𝒛𝑖

𝑇�̂�, 

where 𝛾𝑖 = 𝑏𝑖
2�̂�

𝑣

2
𝑏𝑖

2�̂�
𝑣

2
+ �̂̃�

𝑖
⁄  and �̂� = [∑ 𝒛𝑖

𝑚
𝑖=1 𝒛𝑖

𝑇/(𝑏𝑖
2�̂�𝑣

2 + �̂̃�𝑖)]
−1

[∑ 𝒛𝑖
𝑚
𝑖=1 𝜃𝑖/(𝑏𝑖

2�̂�𝑣
2 +

�̂̃�𝑖)]. 
 
There are different procedures for estimating 𝜎𝑣

2 , such as the restricted maximum 
likelihood (REML), Fay-Herriot procedure (FH) as outlined in Fay and Herriot (1979), the 
Adjusted Density Maximization (ADM) by Li and Lahiri (2010), and the method of fitting 
constants (Henderson’s method) . The main difference between these methods is how  𝜎𝑣

2  
is computed, using an iterative scoring algorithm.  
 
We used REML method, which is based on the following (iterative) scoring algorithm: 
 

�̂�𝑣
2(𝑎+1)

= �̂�𝑣
2(𝑎)

+ [
1

2
𝑡𝑟(𝑷𝑩𝑷𝑩)]

−1
[

1

2
𝒚𝑇𝑷𝑩𝑷𝒚 −

1

2
𝑡𝑟(𝑷𝑩)], 

where 𝑩 = 𝑑𝑖𝑎𝑔(𝑏𝑖
2)  is a diagonal matrix, 𝑷 = 𝑽−1 − 𝑽−1𝒁(𝒁𝑇𝑽−1𝒁)−1𝒁𝑇𝑽−1,                    

  V = 𝑑𝑖𝑎𝑔(𝑏𝑖
2�̂�𝑣

2(𝑎)
+ �̃�𝑖), 𝒚 is a column matrix with entries equal to 𝜃𝑖, and 𝒁 is a matrix 

with row entries equal to 𝒛𝑖
𝑇. 

 
2.2 Smoothing direct variances 

Since the design variance 𝜓𝑖  is unknown the smoothed design variance �̃�𝑖  cannot be 
calculated. Instead, it is assumed that a design-unbiased variance estimator �̂�𝑖 is available 
from which the smoothed variance can be calculated. Although �̂�𝑖 is unbiased, it can be 
unstable when the area sample size is small. To address this issue, the variance estimate 
�̂�𝑖 was modelled and its predicted value was used as the estimate of the smoothed variance. 
More precisely, we have: 

𝐸𝑚𝑝(�̂�𝑖) = 𝐸𝑚(𝜓𝑖) = �̃�𝑖 
A simple unbiased estimator of the smooth design variance �̃�𝑖 is  �̂�𝑖 . However, the latter 
may be quite inefficient when the domain sample size is small. A more stable estimator is 
obtained by modelling  �̂�𝑖  given  𝒛𝑖 . Dick (1995), Rivest and Belmonte (2000) and 
Beaumont and Bocci (2016) used the method of Generalized Variance Functions (GVF). 
In our application, the GVF method did not provide satisfactory results, so it was decided 
to use a piecewise smoothing approach, instead. More details about the piecewise 
smoothing is given in Section 5.   
 
For more information on estimation of the smoothed design variance see Hidiroglou, 
Beaumont and Yung (2019). 
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3. VTS data 

 
The objective of the VTS is to provide a full range of statistics on the volume of 
international visitors to Canada and detailed characteristics of their trips such as 
expenditures, activities, places visited and length of stay. The target population of the VTS 
is all U.S. and overseas residents entering Canada. Excluded from the survey's coverage 
are diplomats and their dependents, refugees, landed immigrants, military, crew and former 
Canadian residents.  
 
On a quarterly basis, the VTS provides information on the purpose of trip, size of travelling 
party, places visited, activities participated in during the trip, length of trip and trip 
spending. VTS data are collected in two ways: (i) border services officers distribute 
invitation cards at selected border points (the cards invite travellers to complete the 
electronic version of the questionnaire online); (ii) Statistics Canada interviewers visit 
selected international airports and interview international travellers in departure lounges 
with tablets. Airport interviews are based on sampling of predetermined time periods or 
flights. This part of the VTS is also referred to the Air Exit component. The primary 
objective of the Air Exit component is to improve the quality and reliability of trip and 
spending estimates for foreign air travellers to Canada, from major markets. The Air Exit 
component targets U.S. and overseas travellers at major airports across Canada returning 
directly to the USA or to selected overseas countries. 
Invitation cards for the e-questionnaire are distributed at 137 designated ports of entry, and 
are actively distributed to U.S. and international travellers who enter Canada by one of the 
following modes of transportation: automobile, commercial plane, commercial bus or 
commercial boat. 
 
In this study, we focus on the trip spending, which has six categories: transportation, 
accommodation, food and beverages, recreation, clothing and gift, and “other” spending. 
Direct domain-level estimates of tourism foreign spending can be obtained from the VTS, 
but they may not be reliable due to the small sample sizes. 
 

4. Payment data 

 
Statistics Canada received Payment processors’ data from two data providers, through 
Destination Canada. The Payment data includes a portion of aggregated credit and debit 
card payments made by international visitors to Canada. The data is aggregated by 
Merchant Category Code2 (MCC), FSA3 (Forward Sorting Area) and the country of origin 
of the card.  
 
Payment data has some limitations in terms of under-coverage or over-coverage. Cash 
spending or other payment methods are not covered in Payment data. Moreover, the 
Payment data consists of the aggregated spending information from only two data 
providers. Hence, the entire payment market is not covered and which creates an under-
coverage issue. The other challenge, in terms of under-coverage, is related to travel 
booking websites. Travel packages that are bought on non-Canadian sites (i.e., domain 
extension not .ca) are not included in the Payment data. 
 
                                                 
2 MCC is a four-digit number that classifies a business by the type of goods or services it provides. 
3 FSA code denotes a particular postal district and shows the alleged location of the business. 
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In terms of over-coverage, the Payment data includes some non-tourism spending such as, 
the inclusion of sales in merchant categories not related to tourism or expenditure made by 
non-travellers using a foreign credit or debit card. For example, spending by landed 
immigrants, who are still using their cards from back home, can be a part of Payment data. 
Also, Payment data could include purchases made on-line by someone who did not travel 
to Canada (i.e., exports) and thus could over-estimate tourism spending.  
  
In addition to the coverage issues mentioned above, there are some inconsistencies between 
the targeted concept in the VTS and Payment data. In the VTS, for estimating (inbound) 
tourism spending, the targeted concept is spending made by international travellers related 
to trips that ended in a given quarter. However, in Payment data, the recorded information 
refers to the time of transactions which are not necessarily made during a trip but are made 
in advance of a trip. For example, spending related to accommodation or transportation are 
usually made ahead of the actual trip. 
 
Despite these limitations, the correlation between payment data and VTS is fairly strong. 
The correlation coefficients are between 0.7 and 0.9, depending on the variable of interest.  
 

5. Application to VTS data 

 
As mentioned earlier, the goal is to investigate whether applying an area-level model to the 
data can improve the quality of VTS domain estimates, when an aggregated source of 
information is used as the auxiliary variable in the model. The domain of interest is defined 
based on the country of origin of visitors, and Tourism Regions (TR), which are 
geographical areas with certain boundaries in each of the provinces or territories. There are 
84 TRs in 10 provinces and 3 territories in Canada. We tested the model and checked the 
availability of data and defined the domain of interest as 11 country groups by 22 groups 
of Tourism Regions. A separate model was fitted for each spending category. The domain 
of interest is defined as: 11 country groups × 22 grouped tourism regions (M=242). 
 
The modelling steps can be classified into four main steps: 1) calculating direct estimates 
and their variances at the domain of interest, 2) smoothing direct variances, 3) fitting the 
SAE model and 4) model validation. The last two steps are repeated until satisfactory 
results are achieved.  
 
The small area estimates are obtained through the use of the small area estimation module 
of the Statistics Canada’s generalized software G-EST version 2.03 (Estevao et al., 2019). 
 
5.1 Calculating VTS estimates and their variances 

Let 𝜃𝑖 be the population parameter (i.e., inbound tourism spending) for a given domain i 
(and for a given quarter). The  𝜃𝑖 values are calculated using survey weights: 
 

𝜃𝑖 = ∑ 𝑤𝑘𝑦𝑘,
𝑘∈𝑠𝑖

 

where 𝑦𝑘  represents spending by unit k in domain i, and 𝑤𝑘  is the sampling weight 
assigned to unit k on the VTS sample. 
 
The variance of VTS estimates, �̂�𝑖,  is calculated using mean bootstrap weights (Yung, 
1997).  

�̂�𝑖 =
𝑅

𝐵
∑ (𝜃𝑖𝑏 − �̅�𝑖)2𝐵

𝑏=1 , 
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where B, the number of bootstrap replicates, R, the number of bootstrap samples, 𝜃𝑖𝑏 is the 
estimate of total spending for domain “i” obtained from the bth bootstrap replicate and �̅�𝑖 
is the mean of the totals obtained from B replicates. 
 
5.2 Smoothing VTS variances 

As mentioned earlier, smoothing direct variances is done to reduce the variability of �̂�𝑖. 
The resulting variances generally have less variability and fewer outliers. This usually leads 
to a better fit of the small-area models. The GVF method described in Section 2.2 didn’t 
provide good results for VTS data. We used piecewise linear regression method (suggested 
by Beaumont and Bocci) for smoothing variances. The Piecewise linear regression is used 
to address possible nonlinear relationships between the dependent and independent 
variables. In a nutshell, the data points are divided in a certain number of consecutive 
segments. A linear function is assumed for each segment in such a way that the overall 
curve is continuous.  
 
The estimator of the smooth design variance �̃�𝑖 is obtained by applying a piecewise linear 
regression on the variance estimates �̂�𝑖: 
 

�̂�𝑖

√𝑋𝑖
= 𝛼0 + 𝛼1

𝑋𝑖

√𝑋𝑖
+ 𝛼2

(𝑋𝑖−𝑐1)+

√𝑋𝑖
+ 𝛼3

(𝑋𝑖−𝑐2)+

√𝑋𝑖
+ ⋯ + 𝛼𝑘+1

(𝑋𝑖−𝑐𝑘)

√𝑋𝑖

+
+ 𝜀𝑖, 

where 𝑋𝑖 is the spending from the Payment data and 𝜀𝑖 is a random error with zero mean 
and constant variance. The number of segments is chosen using a stepwise selection 
method with initial 9 cut-points. The square root transformation in the model is due to the 
structure of �̂�𝑖 (i.e., the relationship between �̂�𝑖  and 𝑋𝑖). 
 
5.3 Piecewise area-level model 

The basic area-level model did not provide satisfactory results, so we applied the piecewise 
area-level model, which is a modification of the basic area-level model. The piecewise 
area-level is useful when a single linear model does not provide an adequate explanation 
on the relationship between the variable of interest and covariates. The area specific 
auxiliary variable, 𝑋𝑖 (i.e., spending from the Payment data), is partitioned into intervals 
and a separate line segment is fit to each interval: 
 
𝜃𝑖

𝑆𝐴𝐸
= 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2(𝑋𝑖 − 𝑐1)+ + 𝛽3(𝑋𝑖 − 𝑐2)+ + ⋯ + 𝛽𝑘+1(𝑋𝑖 − 𝑐𝑘)+ + 𝑏𝑖𝑣𝑖 + 𝑒𝑖, 

where  𝑐𝑘  is the value of the kth breakpoint and (𝑋𝑖 − 𝑐𝑘)+ = {
0                      𝑖𝑓 𝑋𝑖 ≤ 𝑐𝑘

𝑋𝑖 − 𝑐𝑘          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 and 

𝑏𝑖 values are set equal to 𝑋𝑖 . For the VTS data, the number of breakpoints is set to less than 
or equal to two and the cut-points are spaced equally. 
 
It should be mentioned that there is no need to develop new theories for the piecewise area-
level model, as the above equation can be easily written as the Fay-Herriot model:  
 

𝜃𝑖
𝑆𝐴𝐸 = 𝛾𝑖𝜃𝑖 + (1 − 𝛾𝑖)𝒛𝑖

𝑇�̂�, 
where 𝒛𝑖 =  (1, 𝑋𝑖 , (𝑋𝑖 − 𝑐1)+, (𝑋𝑖 − 𝑐2)+, … , (𝑋𝑖 − 𝑐𝑘)+)𝑇  and 𝜷 = (𝛽0, 𝛽1, … , 𝛽𝑘+1).  
 
5.4 Model validation 

The accuracy of small area estimates depends on the reliability of the Fay-Herriot model. 
It is therefore essential to make a careful assessment of the validity of the model before 
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releasing estimates. For instance, it is important to verify that a linear relationship actually 
holds between 𝜃𝑖 and 𝒛𝑖, at least approximately.  
 
A simple way to verify the linearity assumption is to graph the standardized residuals, �̂�𝑖, 
against the predicted values 𝒛𝑖

𝑇�̂�. 
 

�̂�𝑖 =
𝜃𝑖 − 𝒛𝑖

𝑇�̂�

√𝑏𝑖
2�̂�𝑣

2 + �̂̃�𝑖

 

 
The standardized residuals are key statistics that can also be used to verify other model 
assumptions such as the normality of the model errors. The linear assumption is reasonable 
when the graph does not reveal any particular trend. For the VTS data, the graph of 
standardized residuals vary by spending categories.   
 
5.4.1 Outlier treatment 
The outliers (i.e., areas that do not follow the same model as the other areas) of the area-
level model need to be identified and if necessary the model should be re-fitted. Outliers 
are identified iteratively by examining the standardized residuals from that model. If �̂�𝑖’s 
are normal then  �̂�𝑖

2~𝒳1
2 .  Let �̂�𝑖𝑚

2  be the largest squared standardized residual among the 
m domains used in the modelling.  We find the value c such that 𝑃(�̂�𝑖𝑚

2 ≤ 𝑐) = 1 − 𝛼  , 
for a given 𝛼.  If the largest squared residual is greater than c (i.e.,�̂�𝑖𝑚

2 > 𝑐)   then the 
corresponding domain is considered an outlier.  That domain is set aside and the direct 
estimate will be retained for this domain.  From the remaining domains, the model is 
recalculated and an outlier, if any, is again identified.  The iterative process is repeated 
until no more outliers are found.  In our investigations, we tried 𝛼 = 0.05.   
 
5.4.2 MSE estimation 
The Mean Square Error (MSE) is a useful concept for evaluating the gains of efficiency 
resulting from the use of the small area estimate 𝜃𝑖

𝑆𝐴𝐸 over the direct estimate 𝜃𝑖:  
 

𝑀𝑆𝐸(𝜃𝑖
𝑆𝐴𝐸) = 𝐸𝑚𝑝(𝜃𝑖

𝑆𝐴𝐸 − 𝜃𝑖)2. 
 
The MSE is unknown but can be estimated. The MSE of the composite and synthetic 
estimators are calculated separately. The estimated MSE of the area level estimators 
depends on the procedure used for estimating the parameters (e.g., REML, ADM…). For 
the REML, the MSE of the small area estimate 𝜃𝑖

𝑆𝐴𝐸 can be calculated using: 
 

𝑚𝑠𝑒(𝜃𝑖
𝑆𝐴𝐸) = {

𝑔1𝑖 + 𝑔2𝑖 + 2𝑔3𝑖          𝑖𝑓 𝑖 = 1, … , 𝑚

𝒛𝑖
𝑇𝑣𝑎𝑟(�̂�)𝒛𝑖 + 𝑏𝑖

2�̂�𝑣
2             𝑖𝑓 𝑖 = 𝑚 + 1, … , 𝑀

 

where 
𝑔1𝑖 = 𝛾𝑖�̂̃�𝑖, 

𝑔2𝑖 = (1 − 𝛾𝑖)2𝒛𝑖
𝑇 [∑ 𝒛𝑖

𝑚
𝑖=1 𝒛𝑖

𝑇/(𝑏𝑖
2�̂�𝑣

2 + �̂̃�𝑖)]
−1

𝒛𝑖, 

𝑔3𝑖 = (𝑏𝑖
2�̂̃�𝑖)2 (𝑏𝑖

2�̂�𝑣
2 + �̂̃�𝑖)3⁄  𝑣𝑎𝑟(�̂�𝑣

2), 

𝑣𝑎𝑟(�̂�) = [∑
𝒛𝑖𝒛𝑖

𝑇

𝑏𝑖
2�̂�𝑣

2+�̂̃�𝑖

𝑚
𝑖=1 ]

−1

and  𝑣𝑎𝑟(�̂�𝑣
2) is the estimated asymptotic variance of �̂�𝑣

2. The 

reference formulas are provided in Rao and Molina (2015, Chapter 6). 
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5.4.3 Coefficient of Variation 
For evaluating the quality of estimates, coefficient of variation (CV) of the SAE estimates 
is calculated using the estimated mean square errors. The CV values are obtained by 
dividing the square root of the estimated mean square errors (MSE) of SAE estimates by 
the estimates: 

𝐶𝑉𝑖 =
√𝑚𝑠𝑒(�̂�𝑖

𝑆𝐴𝐸)

�̂�𝑖
𝑆𝐴𝐸 . 

 
6. Results 

 
For the VTS data, the performance of the models varies by spending categories. For some 
spending categories, achieving a proper model fit is a challenge and the models need to be 
adjusted iteratively.  
 
In general, for the smallest areas, the estimates are driven mostly by the predictions from 
the model. However, for the largest areas, the estimates tend to be close to the direct 
estimates. The following graph shows the CV of SAE and direct estimates for 
accommodation spending in Q2 (April-June) 2019, when domain are ordered by the 
estimated direct CV. The CV of small area estimates are smaller than direct estimates but 
the efficiency gain varies by domain. For a few domains, the EBLUP CV is larger than the 
direct CV. However, the estimated direct CV for these areas could be unreliable, as sample 
size of these domain is very small.  
 

 
Figure 1: CV of SAE and direct estimates, accommodation spending Q2 2019 
 
The small area estimates of the VTS are in general more efficient in areas with the smallest 
sample size. The efficiency is more substantial when 𝛾 values are close to zero but risk of 
bias due to model misspecification is larger in such cases. Figure 2 presents the relative 
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percent difference between SAE CV and direct CV or CV improvement (%) for 
accommodation spending in Q2 2019, when domains are ordered by domain sample size. 
 

 
Figure 2: CV improvement (%) by domain sample size, accommodation spending Q2 2019 
 
Aside from improvement in the efficiency, the number of available domain estimates 
increased. For domains with no sampled unit in the VTS, the small area estimates are 
synthetic estimates. For example, for the period of Q2 2019 the number of domain-level 
estimates increased by 31% in total. As the sample size increases, the relative percent 
difference between SAE CV and direct CV decreases.  
 

7. Concluding Remarks 

 
In general, the SAE methodology improves the quality of sub-provincial estimates. The 
comparison between direct and SAE estimates yielded varying results for different 
spending categories. Careful validation of assumptions and diagnostics plots are needed to 
avoid potential model misspecification. The basic models may need to be tailored to fit the 
data. For the VTS data, we had to use a modification of the FH model, piecewise area-level 
model. 
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