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Abstract 

In their celebrated 1992 JASA paper, Deville and Särndal introduced the term “calibration 

weighting” to describe mild adjustments of the design weights in a survey sample that, in 

the absence of unit nonresponse, force weighted estimates for a vector of calibration 

variables to equal known population totals. Their paper showed that linear-regression 

weights and raking weights were examples of calibration weights.  

 

Few know, however, that in a 1991 paper in the ASA PROCEEDINGS OF THE SECTION 

ON SOCIAL STATISTICS, Ralph Folsom employed what would later be called 

calibration equations to adjust for unit nonresponse. He showed that using raking weights 

leads to nearly unbiased estimated totals when the log of the probability of a unit response 

is a linear function of the raking variables. He also showed how to create (not-yet-called 

calibration weights when the probability of unit response is a logistic function of the 

calibration variables. Folsom and collaborators would later expand his 1991 work and 

develop the GEM (general exponential model) stand-alone software, which later became 

the basis of the WTADJUST procedure in SUDAAN. 
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1. Introduction 

 

1.1 Outline of Paper 

In Section 2, we introduce Deville and Särndal’s (1992) seminal “calibration weighting” 

paper. They describe an approach in which the design weights of a sample may be (mildly) 

adjusted so that under the new calibrated weights, weighted totals of auxiliary variables 

equal their known population totals. Henceforth, we will refer to the resulting adjustments 

made to the design weights as poststratification (PS) adjustments. Their approach assumes 

the absence of unit nonresponse (NR).  

 

In Section 3, we discuss how one year earlier, Folsom (1991) described a similar approach, 

in which raking equations were constructed to achieve PS adjustments to the design 

weights based on auxiliary variables with known population totals. Folsom (1991) 

extended and modified this approach so that calibration equations could be constructed to 

satisfy NR adjustments as well.  

 

Finally, in Section 4, we show how Folsom and collaborators expanded his original work, 

together with the work done by Deville and Särndal (1992), to develop the general 
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exponential model (GEM), which is a unified approach that allows adjustments for PS, NR, 

and (they claimed) extreme values (EVs). Fitting the GEM model is the basis for the 

WTADJUST procedure in SUDAAN. 

 

1.2 Notational Preliminaries 

Consider a population � = �1, … , �, … , �	, and sample 
 ⊆ �. The sampling design �⋅� 

is a probability mass function defined on the set of all 2� subsets of �, and is used to select 

a particular sample, s (i.e., ��� = �
 = ��). Define the sample membership indicator 

�� = 1 if � ∈ � and �� = 0 otherwise. Assume that for each unit � ∈ �, the first-order 

inclusion probability �� = ���� = �� ∈ �� = ∑ ����⊂�:�∈�  is positive, and known for 

each � ∈ �. The design weights are defined as �� = 1 ��⁄ ;  � ∈ �. 

 

Denote #�  as the study variable, and suppose there also exists a p-vector of auxiliary 

variables $� = %&�', … , &�()*
, for which there exists a vector + such that +*$� = 1 for all 

� ∈ �. Assume that $� is observed for all � ∈ �. In the absence of unit nonresponse, #� 

would also be observed for all � ∈ �.  

 

Denote the population totals of #�  and $�  as ,- = ∑ #��  and ./ = ∑ $�� , respectively, 

where ∑ 0�1  is used as shorthand for ∑ 0��∈1 . Their corresponding � -estimators are 

defined as ,̂-3 = ∑ ��#��  and .̂/3 = ∑ ��$�� , respectively. 

 

2. Deville and Särndal’s (1992) “Calibration Weighting” Approach 

 

2.1 Overview 

The objective of the Deville and Särndal (1992) [henceforth referred to as D&S] approach 

is to create new “calibrated” 4� weights, based on (mildly) adjusted �� weights, to satisfy 

the following constraint, hereinafter referred to as a PS constraint: 

 

 ∑ 4�$�� = ∑ $�� = ./.       (1) 

 

Note that PS constraint (1) requires a couple of assumptions to be met. We have already 

mentioned one of them: $� is observed for all � ∈ �. In addition, we require the population 

totals ./ to be known (e.g., from an external source like the US Census Bureau). 

 

Their approach is to determine a distance function between the �� and 4� weights, and 

then to minimize the distance function (summed over the sample) subject to PS 

constraint (1). This can be viewed as a constrained optimization problem using Lagrange 

multipliers. 

 

2.2 Example 

D&S illustrate their approach with an example using the distance function 4� − ���6 ��⁄ . 

Minimization of this distance function (summed over the sample) subject to PS 

constraint (1) results in the calibration weights 4� = ��1 + $�* 8� , where 8 =
∑ ��� $�$�* �9'./ − .̂/3�. Note that the adjustment factor 4� ��⁄ =  :�8� = 1 + $�* 8  
is linear in 8. 

 

The resulting estimator of ,-  is the familiar generalized regression estimator ,̂-;<=; =
∑ 4�#�� = ,̂-3 + ./ − .̂/3�>?�, where >?� = ∑ ��� $�$�* �9' ∑ ��� $�#�.  
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2.3 Generality of D&S Approach 

The power of the D&S approach is its generality, because different distance functions yield 

different calibration weights. The authors provide seven case examples of distance 

functions, and the corresponding adjustment factors that they yield. In other words, the 

D&S approach gives rise to a flexible family of estimators of totals satisfying PS 

constraints based on auxiliary variables. 

 

However, the D&S approach assumes there is no unit nonresponse. 

 

3. Folsom’s (1991) Raking Approach 

 

3.1 Overview 

Folsom (1991) does not appear to be available anyway online, and we only managed to 

find a yellowed hardcopy of the paper in the US Census Bureau library! Folsom uses 

similar raking techniques for both PS and NR adjustments to the weights. 

 

3.2 Folsom’s Raking Approach to PS Adjustments 

Folsom’s raking algorithm is set up to find an adjustment factor :�8� so that it satisfies 

the following calibration equation based on auxiliary variables: 

 

 ∑ 4�$�� ≡ ∑ ��:�8�$�� = ∑ $�� = ./.     (2)  

 

Note that calibration equation (2) (Folsom called it a “raking equation”) is identical to PS 

constraint (1), but here the relationship 4� = ��:�8�  is explicitly expressed. Using 

justification from earlier work (which he references), Folsom chooses the form of the 

adjustment factor to be an exponential function, 

 

:�8� = exp $�* 8�,       (3) 

 

which is nonlinear in 8. Folsom solved the calibration equations to determine :�8� by 

iteratively reweighted least squares. 

 

D&S derive an identical exponential adjustment factor (Case 2 in their paper). But they 

note that the range of exp $�* 8� is 0, ∞�! A range this large has the potential to cause an 

adjusted weight to become an EV.  

 

D&S therefore suggest the following modification to trim the range of this adjustment 

factor (Case 6): 

 

:�8� = EF9'�GF'9E�HIJ 1$KL 8�
F9'�G'9E�HIJ 1$KL 8� ,      (4) 

 

where M = N − O� 1 − O�N − 1��⁄ , for O and N user-specified lower and upper bounds, 

respectively, with 0 < O < 1 < N. It can be shown that adjustment factor (4) has the user-

specified range: O < :�8� < N, which may be useful for preventing EVs after weight 

adjustments have been applied.  

 

In Section 4, we show how Folsom and collaborators use a similar modification to D&S’s 

modified adjustment factor (4) in their development of the GEM. 
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3.3 Folsom’s Approach to NR Adjustments 

Recall that PS constraint (1) (equivalently, calibration equation (2)) requires that $�  is 

observed for all � ∈ �. Folsom shows that this requirement also needs to be met for the 

calibration equation he developed to adjust weights for NR. However, in the presence of 

NR (i.e., where #� is not observed for some units in �), how do we meet this requirement? 

 

Folsom suggests that in the presence of NR, knowledge about $�  for all � ∈ � may be 

available in the equivalent of a double sampling design. An example of a double sampling 

design is one in which the Phase 1 sample is a large screening sample of households where 

detailed roster information is collected. The Phase 2 sample is a smaller subsample of 

single persons selected from respondents of the Phase 1 sample (and serves as our sample 

�).  

 

Folsom assumes that information about $� for all � ∈ � would be available from what is 

equivalent to the Phase 1 sample of a double sampling design. He then showed that we can 

use this information, as well as modeled information about the NR mechanism itself, to 

develop an appropriate calibration equation for NR. 

 

To characterize the NR mechanism, we first need to define a response indicator variable: 

 

Q� = R1,  if  � ∈ �  responds;        
0,          if  � ∈ �  responds not.  

 

If the binary variable Q� is associated with any of the available auxiliary variables, then we 

can create a logistic regression model formalizing those associations in what is usually 

called a response propensity model: 

 

�Q� = 1� = 1 + exp −$�* 8��9';   � ∈ �.    (5) 

 

Now we have all the pieces to create the NR calibration equation. We need to find an 

adjustment factor :�8� so that it satisfies the following calibration equation based on 

auxiliary variables: 

 

 ∑ Q�4�$�� ≡ ∑ Q���:�8�$�� = ∑ ��$�� ≡ .̂/3.    (6)  

 

Note that the control totals in calibration equation (6) are random, because we have all the 

information we need to create them. We may not have access to fixed (i.e., population) 

control totals for the auxiliary variables in question. 

 

Examination of calibration equation (6) suggests that an intuitively obvious adjustment 

factor would be the inverse of the response propensity function (5). In other words, the 

adjustment factor should have the form, 

 

:�8� = \�Q� = 1�]9' = 1 + exp −$�* 8�� ≥ 1.   (7) 

 

As indicated, the NR adjustment factor (7) has the essential property that it cannot be less 

than 1. In contrast, the PS exponential adjustment factor (3) has 0 as a lower bound, and 

hence would not be as suitable for NR adjustments. Equation (5) assumes that the 

probability of response is a logistic function of $�. Folsom also considered the possibility 

that the probability of response had the form:   
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               �Q� = 1� = exp−$�* 8� ;  � ∈ �. 

 

This leads to the less-suitable raking adjustment factor in equation (3).  

 

In the PS adjustment approach, you select your own auxiliary variables (obviously, from 

among those where $� is observed for all � ∈ �, and the population totals ./ are known). 

In contrast, in the NR adjustment approach, the response propensity model selects the 

auxiliary variables (obviously, from among those where $� is observed for all � ∈ �, taken 

from the Phase 1 sample). Thus, the NR adjustment approach implicitly assumes that NR 

is dependent on the auxiliary variables in the response propensity model, but independent 

of the response (i.e., study) variable. In other words, the approach is based on a missing-

at-random (MAR) assumption, which is much less heroic than a missing-completely-at-

random (MCAR) assumption. 

 

In addition, Folsom derives variance estimators that capture the impact of his calibration 

methods on the estimators of totals using the adjusted weights. We will not discuss them 

here, but will point out that Folsom correctly accounted for his estimators using 

information outside the respondent sample in variance estimation. Often when raking or 

another calibration weighting technique is employed,  users mistakenly treat the calibration 

weights as design weights in variance estimation.     

 

4. Folsom and Collaborators’ Generalized Exponential Model (GEM) 

 

4.1 Overview 

Folsom and collaborators (Folsom and Singh, 2000; Chen, Penne, and Singh, 2000; Singh 

and Folsom, 2000; and Vaish, Gordek, and Singh, 2000) propose a generalized weight-

adjustment approach that can simultaneously address the following sampling concerns: 

 

• NR bias – by using NR adjustments 

• Coverage bias and variance inflation – by using PS adjustments 

• Variance inflation in small domains due to EVs – by setting appropriate lower and 

upper bounds to adjustments. 

 

4.2 GEM Adjustment Factor 

Folsom and collaborators use adjustment factor (4) (i.e., D&S Case 6 adjustment factor) as 

the basis for their generalization. Recall that for adjustment factor (4), users can specify 

the lower and upper bounds of the range of the adjustment factor: O < :�8� < N, where 

0 < O < 1 < N. Note that the fixed “centering constant” is equal to 1. 

 

Folsom and collaborators extend adjustment factor (4) to obtain the GEM adjustment factor 

as follows:  

 

:�8� = EKFK9_K�GFK_K9EK�HIJ 1K$KL 8�
FK9_K�G_K9EK�HIJ 1K$KL 8� ,      (8) 

 

where M� = N� − O�� `� − O��N� − `���⁄ , with 0 < O� < `� < N�, for each � ∈ �.  

 

The GEM adjustment factor (8) differs from the D&S adjustment factor (4) in that it has 

lower and upper bounds (O� and N�, respectively) that can be specified by users for each 

unit � ∈ �; in addition, a variable centering constant `� replaces the fixed constant 1 (and 
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can be specified for each unit � ∈ �). It can be shown that adjustment factor (8) has the 

user-specified range: O� < :�8� < N�, for each � ∈ �.   

 

Folsom and collaborators also demonstrate that the GEM-calibrated estimator of ,-  is 

asymptotically design-consistent under mild assumptions. Their estimated variance 

captures the impact of GEM modeling.  

 

4.3 GEM Example 

An example is provided to illustrate how GEM can be used to address the three sampling 

concerns described in Section 4.1. 

 

We first need to determine appropriate lower and upper bounds to prevent the adjustments 

from creating EVs among the adjusted weights. The GEM adjustment factor has the 

flexibility to specify different lower and upper bounds for each unit in the sample, but in 

practice Folsom and his collaborators argue that it will usually be sufficient to specify the 

bounds within each of three weight domains (i.e., high EV, non-extreme, and low EV). 

Then set the lower and upper bounds appropriately for each of the three domains, separately 

for NR and PS adjustments (discussed below). For example, the domain consisting of non-

extreme weights (which should be the largest domain, by far) would probably not require 

any further adjustments to the lower and upper bounds already set for NR and PS 

adjustments.  

 

NR and PS adjustments are typically applied in two steps. First, NR adjustments are applied 

to the design weights, then PS adjustments are applied to the NR-adjusted weights.  

 

For NR adjustments, all lower bounds must be set to be at least 1 (this ensures that the 

adjustment factor itself has a lower bound of 1, which is required for NR adjustments, as 

indicated in Section 3.3). The centering constant always needs to be greater than the lower 

bound (a value of 2 or the inverse of the response propensity for each sampling unit would 

work – in practice, it does not really matter which of the two is used). Finally, set the upper 

bound appropriately for each of the three EV weight domains. (One of us does not like 

creating EV weight domains for NR adjustments; Kott and Liao, 2012, p. 108.)   

 

For PS adjustments, the centering constant always needs to be set equal to 1. Set lower and 

upper bounds appropriately for each of the three EV weight domains. 
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