
A Comparison of Classification and Regression Tree Methodologies 
When Modeling Survey Nonresponse 

William Cecere1, Amy Lin1, Michael Jones 1, Jennifer Kali1, Ismael Flores Cervantes1 
1Westat, 1600 Research Blvd, Rockville, MD 20850 

Abstract 
When computing survey weights for use during the analysis of complex sample survey data, an adjustment 
for nonresponse is often performed to reduce the bias of the estimates. Many algorithms and methodologies 
are available to analysts for modeling survey nonresponse for these adjustments. Lohr et al. (2015) 
discussed the benefits of using classification trees for estimating response propensities in surveys and how 
these methods could be used to reduce nonresponse bias. In this paper, we extend their findings and 
recommendations based on expanded simulations for more complex sample designs, such as a stratified 
design with equal sample size allocation. We evaluate the effect of some classification tree-based methods 
on the reduction of nonresponse bias and investigate the performance of the methods when they are used 
to adjust survey weights. We discuss the benefits of using these methods for estimating response 
propensities in surveys. 
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1. Introduction 

One of the major challenges during the creation of survey weights is to account for nonresponse. Missing 
information that results from sampled units who refuse to participate can negatively impact the quality of 
the estimates made from the survey data. When undertaking this task, researchers are faced with the choice 
of methods and options to use to best adjust for nonresponse; that is, to adjust the sampling weights that 
produce estimates with reduced nonresponse bias while minimizing their variance. Brick and Montaquila 
(2009) provide an overview of a wide range of nonresponse adjustment weighting methods. A popular 
method among survey statisticians is the weighting class adjustment method (Lessler & Kalsbeek, 1992). 
The weighting classes are created either by fitting regression models to predict for response propensity and 
making cutpoints of the estimated propensity or by utilizing terminal nodes of classification or regression 
trees (Lohr et al., 2015). 
 
This paper focuses on nonresponse adjustments for weighting classes based on the terminal nodes of 
classification trees fitted to the observed response status (i.e., respondent and nonrespondent). Researchers 
have made progress in this area over the past few years. For example, Toth and Phipps (2014) explored the 
use of regression trees as a tool to study the characteristics of survey nonresponse, and Lohr et al. (2015) 
compared the estimates of nonresponse adjusted weights from various classification tree and random forest 
algorithms. Lohr et al. explored the choices of the parameters for these methods; for example, the inclusion 
or exclusion of survey weights, and different pruning methods and loss functions. More recently, Lin and 
Flores Cervantes (2019) compared nonresponse adjusted estimates based on weighting-class nonresponse 
adjustments to estimates with weights adjusted using a two-step modeling approach based on the gradient 
boosting algorithm. This method incorporated both the probability of response and estimated survey 
outcomes into the nonresponse adjustment to reduce bias while controlling for variance (Little & 
Vartivarian, 2005). 
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Our research builds upon the results of Lohr et al. (2015), which favored the conditional inference tree 
method (i.e., R package ctree, explained in Section 2), advised against recursive partitioning (i.e., R package 
rpart), and found no benefit of using survey weights when modeling response propensity. We also expanded 
the results in Lin and Flores Cervantes (2019), which found limited benefits of the gradient boosting (i.e., 
R package xgboost), over the weighting class approach with weighting classes created using a recursive 
partitioning algorithm for survey data (i.e., R package rpms). We expand upon these findings by comparing 
other tree algorithms in addition to those recommended by these papers, for the creation of nonresponse 
weighting classes. We compare the algorithms empirically through a Monte Carlo simulation study using 
an artificial population and response based on the data from the American Community Survey (ACS) Public 
Use Microdata Sample (PUMS). The performance of the method is evaluated using the empirical bias and 
variance of the estimators of four outcomes. 
 
The rest of the paper is organized as follows. In Section 2, we describe the nonresponse adjustment 
algorithms included in the comparisons. Section 3 describes the details of the simulation, such as the source 
for the population frame, predictors, and dependent variables, in addition to the sample design. Section 4 
describes the simulation study, while Section 5 summarizes the simulation results. We finish in Section 6 
with conclusions and recommendations for future research. 
 

2. Nonresponse Weighting Candidate Models 

There is an extensive list of tree algorithms in the literature (see Loh, 2014). We evaluated four methods in 
this study, which were chosen based on recommendations from the literature. The methods are 
 
• Conditional Inference Tree (ctree) algorithm from the PARTYKIT package in R. 
• Random Effects Models (REEM) from the REEMtree package in R. The two later methods performed 

well in Lohr et al. (2015).  
• CHAID algorithm from SAS, which is also a popular choice. The examined options of CHAID were 

the Gini and entropy options. 
• Recursive Partitioning for Modeling Survey Data (rpms) algorithm from the RPMS package in R, 

which is a relatively new method designed specifically for surveys.  
 
For each of these methods that we covered, we attempted both the classification and regression versions. 
The results were quite similar across the tree methods, except for some differences for SAS-CHAID. We 
will discuss only the results of the classification trees in this paper except for the results of rpms, which 
does not offer them. A more detailed discussion of the differences between the use of regression and 
classification trees for weighting can be found in Lohr et al. (2015). 
 
2.1 SAS HPSPLIT Algorithms 
The HPSPLIT procedure in SAS/STAT® software (2015) builds classification and regression trees. The 
procedure offers several options for partitioning criteria. Three commonly used options are included in this 
research. The first criterion maximizes reduction in node impurity as measured by the Gini index. Another 
uses entropy information for classification. The third type of criterion is based on a CHAID algorithm, 
which utilizes chi-square tests to partition the data into trees. The natural logarithm of the p-value from the 
selected statistical test determines the best split (Kass, 1980). The splitting measures available in the 
HPSPLIT procedure have the potential of overfitting the training data with the full tree, resulting in a model 
that does not adequately generalize to new data. To prevent overfitting, HPSPLIT implements the method 
pruning: the full tree is trimmed to a smaller subtree that balances the goals of fitting training data and 
predicting new data.  
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2.2 ctree Algorithm 
In the R package PARTYKIT (Hothorn et al., 2017), the function ctree implements an algorithm that builds 
classification trees using the conditional distribution of the response variables given the covariates, 
assuming that the observations are independent. At each step, the method determines whether further 
partitioning is needed by testing the independence between the response variable and each covariate. If the 
null hypothesis is not rejected for each covariate, then it stops splitting. On the other hand, if the test is 
rejected for at least one covariate, it selects the covariate with the strongest association (i.e., the minimum 
p-value from the set of independence tests for all covariates) to be the basis of the split. The method then 
finds the split that results in the maximum difference of target between two nodes. 
 
2.3 REEM Algorithm 
It is often the case that practitioners want to account for PSU-to-PSU variability in the models for 
nonresponse. One solution is to treat the PSU as a fixed effect covariate. However, often there are a large 
number of PSUs in a survey, and some tree methods have a selection bias toward variables with a large 
number of categories such as the PSUs, as Lohr et al. (2015) suggest. As an alternative for accounting for 
area effects, Sela and Simonoff (2012) outlined an approach that uses the Expectation-Maximization (EM) 
algorithm for clustered data. REEMtree uses the R package RPART for tree building with the addition of a 
linear model for random effects. The algorithm in the function takes an iterative approach and alternates 
between fitting random effects through maximum likelihood estimation and fitting a tree after removing 
the random effects. The resulting response propensities are a combination of estimates from leaves and 
estimated random effects. 
 
2.4 rpms Algorithm 
A relatively new classification algorithm revised in this paper is the Recursive Partitioning for Modeling 
Survey Data algorithm implemented in the function rpms of the R package of the same name (Toth, 2018). 
As implied by the name, the algorithm recursively classifies data using independent variables. This package 
is appropriate for survey data as it was developed explicitly to include parameters for sampling weights, 
clusters, and stratum definitions from complex survey designs into the trees. The rpms function fits a linear 
model to the data conditioning on the splits selected through a recursive partitioning algorithm. The models 
of the created classification trees are design consistent and account for clustering, stratification, and unequal 
probabilities of selection at the first stage. 
 
This paper compares the empirical bias and variance of the estimates computed using the listed methods of 
four outcome variables and the strength of association between the modeled propensities and the outcome 
variables across methods.  
 

3. Simulation 

The sampling frame for the simulation study was created using the household-level 2013-2017 American 
Community Survey (ACS) Public Use Microdata Sample File (PUMS). The sampling frame served as the 
population for a simulation study mirroring a national mail survey of households. The frame consisted of a 
one-time simple random sample of 200,000 households (excluding group homes) of the ACS PUMS 
dataset. A total of 5,000 repeated simple random samples of 2,500 households were drawn from each 
stratum from this fixed population for a total sample of 10,000 households in a simulation run. Table 1 
shows the population size, sampling rate, and response rate for each stratum for the population. The 
sampling rates were constant across strata. 
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Table 1: Sampling frame, population size, sampling rate, and response rate by sampling stratum 

Region Population size Sample size Sampling rate Response rate 
1 Northeast 35,454 2,500 7.10% 28.40% 
2 Midwest 44,284 2,500 5.60% 32.30% 
3 South 76,633 2,500 3.30% 27.20% 
4 West 43,629 2,500 5.70% 24.30%  

Total 200,000 10,000 5.00% 28.05% 
 
Unlike other simulation studies where a response model for the propensity to respond, φ , is posited using 
a set of predictors, in our analysis, the response indicator r  is derived by the ACS variable RESMODE, 
which indicated the data collection mode that was used to collect the household ACS data, as shown in 
Table 2: 
 

Table 2: Response status definition 

Response 
status r  

Description Definition 

0 Nonrespondent RESMODE =1 Household in ACS responded by mail 
1 Respondent RESMODE =2 Household in ACS responded by CATO/CAPI 
  RESMODE =3 Household in ACS responded by Internet 

 
For our simulation, those who responded to the ACS by mail were treated as respondents, while CATI/CAPI 
respondents and internet respondents were treated as nonrespondents. Although this definition allowed us 
to compute realistic estimates in the presence of nonresponse and also obtain population values, this may 
produce biased estimates if any of the predictors in the model do not explain the response mechanism. On 
the other hand, one disadvantage is that since the response model is not known, we cannot evaluate if any 
of these methods can eliminate the response model when the predictors in the response model are available 
for the creation of the weighting classes. 
 
The four variables selected as the outcome variables in the simulation study are listed in Table 3. The 
empirical study compared estimates of means and proportions of these outcome variables. 
 

Table 3: Response status definition 

Dependent variable Description Type  Values 
HINC Household income for the past 12 months Continuous  
WIF Number of workers in the family during 

the past 12 months  
Count (truncated) 0 workers, 

1 worker, 
2 workers, 
3 or more 
workers 

HINS Indicator flag for all members in the 
household to have health insurance 
coverage. The flag was created 
summarized from the person-level health 
coverage indicator from the ACS person-
level file). 

Binary 1: yes  
0: no  

FS Indicator flag for any yearly food 
stamp/SNAP recipient in the household 

Binary 1: Yes 
0: No 
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The population frame included 39 variables selected as predictors for nonresponse. Of those variables, 35 
were household-level characteristics, while the remaining 4 were person-level characteristics derived by 
summarized to the household level the corresponding person-level variables. The 39 predictors included 4 
continuous variables and 35 categorical variables. The categorical variables were recoded such that the 
smallest category contained at least 5 percent of the households in the population. Households with 
predictors with missing values were excluded from the population. Most tree algorithm packages used in 
the simulation do not handle predictors with missing values. 
 
The models predicting response propensities were fit using the methods in the statistical software packages 
discussed in Section 2. The fitted response propensity models were then used to compute weighting classes 
and nonresponse adjustment factors to adjust the design weights. Final weighted estimates of mean or 
proportions adjusted for unbalanced sample selection and nonresponse bias were computed for the outcome 
variables discussed above and compared against the true values from the population. The statistics 
examined for comparing the estimators 𝑌𝑌��𝐸𝐸 are the empirical relative bias, and empirical relative root mean 
squared error, defined as 
 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵:𝑅𝑅𝑅𝑅�𝑌𝑌��𝐸𝐸�% = 100 × 𝐵𝐵−1 ∑ 𝑌𝑌��𝐸𝐸,𝑏𝑏−𝑌𝑌�

𝑌𝑌�
𝐵𝐵
𝑏𝑏=1 , as 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �𝑀𝑀𝑀𝑀𝑀𝑀(𝑌𝑌��𝐸𝐸)
𝑌𝑌�2

 , 

where B  is the number of simulations runs and 𝑀𝑀𝑀𝑀𝑀𝑀�𝑌𝑌�𝐸𝐸� is the empirical mean squared error of 𝑌𝑌��𝐸𝐸 

computed as 𝑀𝑀𝑀𝑀𝑀𝑀�𝑌𝑌�𝐸𝐸� = ∑ (𝑌𝑌��𝐸𝐸,𝑏𝑏−𝑌𝑌�)2𝐵𝐵
𝑏𝑏=1

𝐵𝐵
. 

 
Each statistical software package contains unique sets of parameters to control for tree fitting. Special effort 
was made to apply global settings among all packages to minimize subjective differences in bias and 
variance evaluation. 
 
3.1 SAS HPSPLIT Algorithms 
The following parameters were set equal for all trees: 
 
• Minleafsize: the minimum number of observations in a terminal node was set to 40.  
• Maxdepth: the maximum level a tree could be grown was set to 5. 
• Prune: to avoid overfitting, one procedure is to grow the tree out as far as possible and then prune 

back to a smaller subtree (Breiman et al., 1984). The pruning method specified for this package was 
reduced-error pruning (Quinlan, 1986).  

 
The following factors were varied: 
 
• Weight: weight = 1 for all observations or weight = design weight. 
• Criterion: CHAID, Gini, or entropy. 
 
All other parameters were set equal to their default values.  
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3.2 ctree 
The following parameters were set equal for all trees: 
 
• Minbucket: the minimum number of observations in a terminal node was set to 40.  
• Maxdepth: NA 
• Prune: ctree avoids overfitting by using hypothesis tests to determine the splitting nodes stopping 

point, thus eliminating the need for pruning.  
• Weight: in contrast to the other packages studied in this paper, ctree requires integer-valued weights 

and treats the weights as observation frequencies as opposed to survey weights. This parameter was 
not used for this reason. 

• Bonferroni: use Bonferroni adjustment to compensate for multiple testing in the global null 
hypothesis, and therefore was set to Yes. 

• Alpha: 0.05 
• Mincriterion: 0.95 
 
All other parameters were set equal to their default values.  
 
3.3 REEM 
The following parameters were set equal for all trees: 
 
• tree.control: rpart.control  
• Minbucket: the minimum number of observations in a terminal node was set to 40. 
• Cp: 0.01. 
• Random: region was treated as the random effect in the mixed model. 
 
All other parameters were set equal to their default values.  
 
3.4 rpms 
• Bin_size: the minimum number of observations in a terminal node was set equal to 40.  
• Prune: similar to the conditional inference tree, Recursive Partitioning for Modeling Survey Data 

eliminates the step of pruning. 
• Strata: census region was specified as the sampling strata. 
• P-val: 0.05. 
 
The following factors were varied: 
 
• Weight: weight = 1 for all observations or weight = design weight. 
 
All other parameters were set equal to their default values.  
 

4. Results 

Table 4 shows the simulation results for each of the algorithms and the four outcomes; the mean of HINC 
(household income, past 12 months), the mean of WIF (workers in the family, past 12 months), the 
proportion of HINS (all household has insurance), and the proportion of FS (yearly food stamp/SNAP 
recipient in the household). The table also shows the values of the empirical relative bias (RelBias) and 
empirical relative root mean squared error (RRMSE) defined in the previous section. 
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Table 4: Relative Bias and Relative Root Mean Square Error 

 Outcome Variable 
HINC WIF HINS FS 

Estimates RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

RelBias 
(%) 

RRMSE 
(%) 

rpms unwgt -5.1 5.5 -2.4 3.2 1.3 1.9 13.9 15.6 
rpms wgt -5.1 5.4 -2.3 3.2 1.3 1.9 13.6 15.2 
REEMtree -4.6 5.4 1.6 3.6 2.2 2.9 11.3 13.5 
ctree -2.0 2.3 0.3 1.6 1.2 1.5 7.7 9.9 
SAS CHAID 
(unweighted) 

-9.6 11.2 8.9 11.1 6.1 7.4 17.6 20.1 

SAS Entropy 
(unweighted) 

-9.6 11.2 8.9 11.1 6.1 7.4 17.6 20.1 

SAS Gini 
(unweighted ) 

-9.3 10.8 8.5 10.6 5.6 7.1 17.2 19.7 

SAS CHAID 
(weighted)  

-4.7 6.7 3.1 6.3 2.7 4.3 11.4 14.3 

SAS Entropy 
(weighted)  

-4.9 6.3 0.1 5.7 2.2 3.7 10.7 13.7 

SAS Gini 
(weighted) 

-4.1 5.5 2.3 4.9 2.3 3.5 10.7 13.5 

 
Results for HINC show that estimated relative bias for all options is negative. The three estimators based 
on the SAS unweighted options had the largest RelBias, while the lone ctree option had the smallest bias 
(- 2.0). The estimators for SAS weighted options, REEM, and both rpms options have fairly similar 
performance for the empirical bias. The results of RRMSE were similar in rank to the bias amount with 
ctree performing the best with a RRMSE of 2.3 while the three SAS unweighted estimators had relative 
biases as high as 11.2 percentage points for CHAID and Entropy. 
 
The estimates of the mean of WIF had a mix of positive and negative relative biases. As with HINC, the 
three SAS unweighted estimators had the largest RelBias (greater than 8.0). However, while ctree gave a 
small bias of 0.3, the SAS weighted entropy had the lowest bias of 0.1. The two rpms methods were the 
only ones yielding a negative bias. In terms of RRMSE, the results were similar to the HINC ctree estimator, 
with the lowest RRMSE of 1.6. In contrast, the unweighted CHAID-SAS estimators had a RRMSE as high 
as 11.1. The RRMSE of other estimators did fairly well, each having a value below 4.0. 
 
For the estimates of the proportion HINS, the direction of the relative bias is positive for all estimates. The 
three SAS unweighted estimators had the largest RelBias as with the previous two outcomes. While the 
ctree estimator had the smallest at 1.2, both rpms weighted and unweighted estimators were fairly close at 
1.3. The SAS weighted estimators and the REEM estimators had similar relative RelBias values. The 
performance of the empirical RRMSE of the estimators was similar to the performance of the relative 
empirical bias. The ctree and rpms estimators had the lowest RRMSE values of 1.5 and 1.9, respectively, 
and the SAS unweighted estimators had RMSE values as high as 7.4.  
 
When creating estimates of FS, the RelBias was slightly larger in the positive direction. ctree had the lowest 
RelBias at 7.7 followed by SAS weighted options and REEM. The SAS unweighted options did slightly 
worse than the rpms options, with a relative bias as high as 17.6. The RRMSE values are largely 
proportional to that of the RelBias estimates, with ctree having the lowest value of 9.9. 
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It can be seen that over the four outcome variables, the SAS unweighted options consistently performed the 
worst while ctree was consistently the best. It should also be noted that in every case, the SAS Gini option 
yielded a slightly lower RRMSE than either the SAS CHAID or SAS Entropy options.  
 
Figure 1 displays the bias of each algorithm for the outcome variable FS. The horizontal black line indicates 
the true population value, and the box plots illustrate the distribution of the bias of each method over the 
5,000 simulation runs. Similar to what was discussed from Table 1, the SAS unweighted algorithms do 
poorly on bias and variance while the ctree algorithm does the best. 
 

 

Figure 1: Box plot of bias by method for outcome variable FS 
 

6. Conclusions 

Using the 2013-2017 ACS PUMS data as a pseudo-population, we investigated the use of the following six 
tree algorithms for producing nonresponse classification cells using a simulation study: rpms, ctree, and 
REEM (each part of R packages), and CHAID, Gini, and Entropy (each of the latter three called by the 
HPSPLIT procedure in SAS). The rpms and SAS algorithms allowed for weighted and unweighted analyses 
whereas REEM and ctree did not utilize weights. Our simulation results indicate that incorporating weights 
in the prediction of response propensity in classification trees outperforms unweighted classification trees 
for the three algorithms called using SAS’s HPSPLIT procedure. However, our results also showed minimal 
differences for bias and RMSE for all outcome variables between the weighted and unweighted rpms. This 
is likely due to the lack of a clustered design and low variation in design weights. Although this result 
agrees with the recommendation of Lohr et al. (2015) in that weights do not provide a benefit when 
modeling response propensity, it appears that whether or not one should use weights depends on the 
algorithm being used. Additionally, the rpms, REEM, and weighted SAS HPSPLIT results were all fairly 
comparable. Finally, ctree stood out as the algorithm that produced the smallest RelBias and RRMSE for 
all outcomes compared to the other algorithms.  
 
Our simulation selected repeated samples drawn from a fixed population with a one-stage stratified design 
with census region serving as the sampling strata. By using the ACS PUMS as our fixed population, we 
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were able to mimic a national household-level mail survey and introduce a nonresponse mechanism that 
allowed for comparisons between estimates and true population values.  
 
Simulation results may be different for more complex sample designs. For operational efficiency, national 
samples often incorporate a clustering stage, forming Primary Sampling Units (PSUs) of smaller geographic 
areas and selecting households within PSUs. There is reason to believe that rpms and REEMtree may 
perform better under a clustered sample design due to the usage of area effects. A further step would be to 
test these algorithms under a clustered design framework. 
 
Another limitation to our simulation study is the target population. Our study relied on ACS PUMS data to 
mimic a national household-level sample when in reality many surveys measure person-level 
characteristics. In addition to incorporating a cluster stage in the sample design, the evaluation of the 
algorithms would also benefit from inclusion of person-level estimates in the simulation design.  
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