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Abstract
This paper studies the problem of consistent estimation of two-level superpopulation parameters

from informatively cluster-sampled survey data, using possibly random weights. Conditions that
random weights should satisfy are first formulated. Next an inclusive definition is given for in-
formative sampling allowing for random weights. The notion of identifiability of superpopulation
parameters is defined under the standard survey data structure in which (possibly random) single-
inclusion weights are observed together with attribute data for sampled units. A review is given
of previously proposed methods of estimation using the survey design only through the observed
single-inclusion weights. Finally, a new class of informative within-cluster sampling designs is in-
troduced and used to demonstrate exact nonidentifiability of parameters for the infinite-population-
cluster biased sampling case, and asymptotic nonidentifiability for finite (large) population clusters.

Key Words: Biased Sampling, Consistency, Informative sampling, Nonidentifiability, Random
weights, Superpopulation, Two-level model.

1. Introduction – Survey Sampling with Random Weights

In design-based sampling theory (Särndal et al. 1992, Lohr 2009), the finite population
U being sampled is viewed as an index set for a fixed but not directly observable set
of multiple attributes (Yi, Zi) ∈ R × Rp associated with each population unit, and the
probability-sampling design specifies probabilities with which the various potential sam-
ples S are drawn as subsets from U . The sampling mechanism is often summarized through
the single-inclusion probabilities πi = P (i ∈ S) and weights wi = 1/πi. In practice, non-
response usually intervenes, so that the only units i that are truly observable are those within
the respondent set R within the sample S. The individual response indicators Ri are often
modeled as conditionally independent given D ≡ {(Yl, Zl) : l ∈ U}, with probability or
propensity of response by the i’th unit taking the form

P (Ri = 1 | D) = g(Yi, Zi) (1)

(Pfeffermann and Sverchkov 2009, Kim & Shao 2014) depending on the underlying pop-
ulation data D only through a function g of the i’th unit’s variables (Yi, Zi). The weights
applied to respondents are often manipulated into adjusted weights w∗i through raking or
calibration (Deville and Särndal 1992) in order to make estimates of explanatory-variable
totals

∑
i∈S Riw

∗
iZi,b conform to known population totals

∑
i∈U Zi,b. Because these

manipulations involve the random sample-inclusion indicators I[i∈S], the response indica-
tors Ri, and sometimes also values of missing explanatory-variable components that may
be randomly imputed in model-based fashion, the adjusted weights w∗i themselves become
random variables, which are released together with the sampled data (generally only the
respondent data) as part of the generic survey data structure.

Many authors allow random weights to enter explicitly into their survey models. In
a series of contributions over many years, Pfeffermann and Sverchkov (2009) studied
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methods of estimating propensities (1) via regression-type models in survey sampling,
in terms of regressors Xi (and sometimes of informative dependence on Yi) and creat-
ing inverse-probability survey-weighted estimates from them. Use of random weights in
inverse-probability-weighted estimators has a history also in econometrics (Magee 1998)
and biostatistics (cf. Tsiatis 2006, Chapter 6). Other survey researchers directly incorporate
random survey weights into models (Zheng and Little 1993, Beaumont 2008) as predictors
in modeling, not paying too much attention to large-sample asymptotic frameworks and
design- and model-consistency. The role of random survey weights in large-sample asymp-
totics is an understudied topic: there is much left to do beyond the theory of generalized
raking initiated in Deville and Särndal (1992).

Theoretical treatments of large-sample survey inference (e.g., Krewski and Rao 1980,
Rao and Scott 1983, Särndal et al. 1992, Deville and Särndal 1992, Fuller 2009) often
view the finite-population survey data (Yi, Zi, i ∈ U) as one stage of a triangular array
of increasingly large super-population data consisting either of constants (as per Rao and
Särndal) or of random variables (Fuller 2009) generated by a stochastic mechanism – often
unknown to the statistical data analyst, but sometimes specified in the form of a parametric
model — including sufficient independence structure to enable rigorous proofs of limit
theorems for weighted sums of functions of unit-level data over survey respondents.

Thus, survey sampling theory even when design-based often incorporates a stochastic
data-generating mechanism for both the population attributes and explanatory variables as
well as the survey (single-inclusion) weights. A general formal structure simultaneously
accounting for superpopulation data and random sampling that might depend stochastically
on that data has been given by Rubin-Bleuer and Kratina (2006). Seen in this way, a
distinguishing characteristic of the survey data-structure is the assumed observability of
the (adjusted) weights w∗i along with the data from sampled survey respondents (those
i ∈ U for whom i ∈ S and Ri = 1).

The published weights, even if random, are generally assumed in sample survey theory
to possess characteristics of design weights enabling consistent estimation of population
totals, in the sense that for bounded functions h(Yi, Zi) of respondent data, as superpopu-
lation size N = |U| and sample size n = |S| increase to∞,

N−1
[∑
i∈S

Riw
∗
i h(Yi, Zi) −

∑
i∈U

h(Yi, Zi)
]
→ 0 in probability (2)

under the probabilistic mechanism or model (if there is one) for the superpopulation jointly
with the probabilistic mechanism of sampling. If the Yi, Zi are random variables, then the
natural and nearly universal way to guarantee (2) is to assume E(w∗i I[i∈S]Ri |Yi, Zi) =
1 or 1/w∗i = E(I[i∈S]Ri |Yi, Zi). Wherever the convergence (2) reflects consistency of
estimation, that property would also be called model and design-consistency. In settings
where the superpopulation models express independence (possibly across clusters) of iden-
tically distributed unit-level data, the quantities N−1

∑
i∈U h(Yi, Zi) would themselves

obey laws of large numbers and tend to a superpopulation expectation h∗ = E(h(Yi, Zi))
not depending on i.

Under the conditional independence ofRi’s assumed in (1), with the function values (1)
bounded away from 0 and some assumed independence (e.g., across clusters) of (Zi, Yi),
(2) would hold when w∗i = wi/g(Yi, Zi). While property (2) cannot generally be proved
for weights manipulated by common steps of data-imputation followed by raking or cal-
ibration, it seems universally if implicitly to be assumed in survey analysis, sometimes
with adjusted weight-ratios w∗i based on consistent estimates of the propensity function
g. The assumption (2), which we impose throughout the present paper, is quite different
from assumptions related to unobserved data elements being missing at random (MAR).
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That issue is related to the dependence of the propensity g(Yi, Zi) on attributes Yi not ob-
servable for all i ∈ U when weights must be developed in terms of covariates Zi whose
empirical distribution over U is known. We are instead concerned in this paper with general
forms of biased sampling, not discernible from single-inclusion weights, that could impair
identifiability of parameters even when the superpopulation model is parametric.

This paper is organized as follows. Section 2 formulates an identifiability problem for
estimation of superpopulation parameters from data in a complex survey sampling design
using only the observed single-inclusion weights and sampled data, under general informa-
tive sampling. The superpopulation and sampling design are restricted throughout to have
a two-level cluster structure. Next, we give a brief review in Section 3 of methods that
have been proposed, including methods for which model-consistent estimation has been
proved to be possible based on the additional (seldom available) information of joint in-
clusion probabilities. Of the methods using only single-inclusion weights, the only known
consistency results considerably restrict the generality of informative sampling allowed.
Then, in Section 4, a class of (theoretical) informative-sampling designs is introduced for
the purpose of proving exact and asymptotic nonidentifiability of superpopulation parame-
ters from the sampled data together with single-inclusion weights. Exact nonidentifiability
is provedwhen pairs are sampled from infinite population clusters, and an asymptotic non-
identifiability result is sketched when pairs are sampled from large finite clusters whose
size is at least of the same order as the overall number of clusters.

2. Non-identifiability in a Parametric Survey Sampling Context

In the previous Section, we summarized the characteristic features of a survey sampling
data structure, consisting of superpopulation data tuples (Yi, Zi) ∈ R × Rp, observable
along with a system of (single-inclusion) random weights w∗i for all population units in a
sampled-respondent set R = {i ∈ S : Ri = 1}, for which the convergence (2) holds
for all bounded functions h, as the size of R increases to∞ (possibly in a triangular-array
framework). The data structure is that of biased sampling with observable random weights,
but with otherwise unrestricted higher-order joint probabilities governing the sample se-
lection. Our objective in this section is to make the framework and estimation problem
much more concrete, restricted to a two-level population with independent and indepen-
dently sampled clusters, in order to formulate a nonindentifiability result concerning the
estimation of parameters in an underlying superpopulation.

2.1 Parameter Estimation in Complex Surveys

In superpopulations where outcome variables (Yi, Zi) are modeled as independent iden-
tically distributed (iid) across i ∈ U , with parametric joint density f(yi, zi, θ), and then
sampled by a complex probability design, the census loglikelihood

∑
i∈U log f(Yi, Zi, θ)

is asymptotically approximated by the survey-weighted pseudo-loglikelihood∑
i∈S

wi log f(Yi, Zi, θ) (3)

introduced by Binder (1983), and this asymptotic approximation has been used to justify
consistent and asymptotically normal inference based on the maximizer of (3) in θ. The
same idea works under more general conditions on random or nonrandom (Yi, Zi) for (3)
or for the conditional pseudo-loglikelihood

∑
i∈S wi log f(Yi |Zi, θ). The applicability

and justification of this estimation technique at population level when no model is actually
assumed at unit level (and the target estimand is the maximizer of the census-loglikelihood
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with respect to θ) has given rise to so-called model-assisted inferential procedures (Särndal
et al. 1992). The same approach yields design- and model-consistent inferences for θ under
general conditions including informative sampling. However, in superpopulation models
with dependence across units, such as those in which only clusters are independent, this
pseudo-loglikelihood approach to inference must be modified. We will consider how this
may be done in two-level superpopulations with random effects shared within clusters, that
are sampled from a complex cluster design.

2.2 Cluster Superpopulation, with Independent Cluster Sampling

This section establishes notation for cluster samples, allowing superpopulation data to be
dependent within clusters, but independent across them, sharing a single random effect
among all observations Yi within cluster. Then we specialize to two-level models with a
single random-effect variate shared within each superpopulation cluster, iid across clusters,
and no explanatory variables. While it is not always true that design inclusion-probabilities
are given with separate known factors for sampling of clusters and sampling within the
clusters, this hierarchical sampling structure is assumed for single-inclusion probabilities
throughout the present paper.

The underlying frame population index set is U , with |U| = N elements, but its in-
dices i are viewed as standing in one-to-one correspondence with double indices i↔ (j, k)
where U is partitioned into clusters Uk, k = 1, . . . ,M, with respective numbers of ele-
ments Nk, and where k = k(i) is the cluster such that i ∈ Uk, and j indexes units within
cluster. In this way, Yj,k, Zj,k, wj,k can be written interchangeably for Yi, Zi, wi. Assume
further that the sampling design is a hierarchical cluster design, so that wj,k = ωk ·wj|k for
j = 1, . . . , Nk, k = 1, . . . ,M , where ωk is a single-inclusion cluster weight and wj|k is a
within-cluster single-inclusion conditional weight with

SC = {k(i) ∈ {1, . . . ,M} : i ∈ S} , Sk = {j = 1, . . . , Nk : (j, k) ∈ S} (4)

1

ωk
= P (k ∈ Sk

∣∣ {Yi, Zi : i ∈ U}), 1

wj|k
= P ((j, k) ∈ S

∣∣ k ∈ Sk , {Yi, Zi : i ∈ Uk})

(5)
and within-cluster sampling is assumed to be done independently across clusters.
Denote the numbers of sampled clusters, of sampled units within clusters, and of total
sampled units respectively by

m = |SC | , nk = |Sk| , n = |S| =
∑
k∈SC

nk (6)

Then a parametric, clustered superpopulation model could take the form that for iid
random-effect variables ak ∼ fC(a, η2), k = 1, . . . ,M , conditionally given Zk ≡ (Zj,k :
j = 1, . . . , Nk),

Y k ≡ (Yj,k : j = 1, . . . , Nk) ∼ fk(y |Zk, ak, η1) independently across k = 1, . . . ,M
(7)

with θ = (η1, η2) as unknown parameter. The rest of the paper restricts attention to a more
specific, two-level form of such a model and assumes the variables Yj,k are conditionally
iid across j within cluster k, and that there are no explanatory variables Zj,k. That is, the
model takes the simplified two-level form

ak
iid∼ fC(a, η2) and Yj,k

iid∼ f(y | ak, η1) (8)

where the functions fC , f are assumed known and the parameters θ = (η1, η2) unknown.

 
96



2.3 Informative Sampling

Various authors have used the terminology of “informative sampling” to reflect aspects of
biases in survey sampling, in ways that are not always the same. The common thread is
that sampling of a population of random variables is informative if the probability law,
or empirical distribution, of variables in the sample differs from the corresponding law
or distribution in the underlying population. It is very common for probability sampling
with unequal probabilities to have this property (Lohr 2009). A more helpful version of
the term applies in a conditional setting, where at least some components (collectively
Xi) of the variables Zi are known or available for all members of a population before
sampling, and where interesting outcomes Yi do not have the same probability or empirical
distribution given Xi, or within subpopulations defined by Xi. This is the sense in which
informative sampling is discussed by many survey research statisticians (in lines of research
summarized, e.g., by Pfeffermann and Sverchkov 2009, Kim and Shao 2014). Informative
sampling is then closely related to the conditional dependence of Ii∈S] or I[i∈R] on Yi
given Zi, and is recognizable as a form of nonignorable missing data. In the setting of a
quasi-randomization model (1) with non-random base weights and Zi = Xi, sampling is
noninformative when the propensity function g does not depend on its Y argument.

However, in nearly all instances where noninformative sampling is discussed, it is de-
scribed in terms of single-inclusion probabilities, because the great majority of inverse
probability weighting strategies employ only single-inclusion probabilities. This is partic-
ularly true in treatments of biased sampling and missing data in biostatistics (following
J. Robins and co-authors as cited and summarized in Tsiatis 2006), where finite-population
aspects of sampling are less emphasized and individual experimental units are generally
treated as independently sampled even if (through shared random effects) stochastically
dependent. But in survey-sampling, also, almost all phenomena studied by survey method-
ologists under the heading of informative sampling could arise also if the sampling were
done by independent unit-level (Poisson) sampling, or by Probability Proportional to Size
(PPS) sampling with replacement. Exceptions to this are Korn and Graubard (2003), Rao
et al. (2013), Yi et al. (2016), Savitsky and Williams (2019, 2020) and Slud (2020), who
are all concerned with estimation of superpopulation model parameters in complex cluster-
sampled surveys, and all explicitly allow sampling mechanisms that may depend on super-
population cluster data so as to influence joint inclusion probabilities. We provide now an
inclusive definition of informative sampling.

In the cluster setting of Section 2.2, sampling is called informative if for at least some
sets sC = {k1, . . . , kr}, sk ⊂ Uk, the joint densities of observed variables differ from the
corresponding joint densities in the frame population given that these are the selected sets
SC , Sk, i.e.,

L
(
ak, (Yj,k : j ∈ sk), k ∈ sC)

∣∣∣ SC = sC , Sk = sk ∀k ∈ SC , (Zj,k : j ∈ sk, k ∈ sC)
)

6= L
(
ak, (Yj,k : j ∈ sk), k ∈ sC)

∣∣∣ (Zj,k : j ∈ sk, k ∈ sC)
)

where L(· | ·) denotes (conditional) probability law. Here SC and Sk respectively denote
random sets of selected clusters and of selected units within cluster k, and sC , sk respec-
tively denote particular sets of clusters and units that might have been selected. Under our
assumptions of independent sampling and independent data across clusters, informative-
ness means that for some k, sk,
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L
(
ak, (Yj,k : j ∈ sk)

∣∣∣ Sk = sk, (Zj,k : j ∈ sk), k ∈ SC
)

6= L
(
ak, (Yj,k : j ∈ sk)

∣∣∣ Zj,k : j ∈ sk
)

In what follows, potential informativeness of sampling is considered both at the cluster and
the within-cluster stages, where by definition clusters are sampled noninformatively if

L
(
ak, Y k

∣∣∣ Z l , l ∈ SC ) = L
(
ak, Y k

∣∣∣ Zk ) (9)

where recall that Y k denotes the vector of population attributes and Zk denotes the vector
of observed explanatory variables, if any, for units within cluster k. Similarly, within-
cluster sampling is noninformative if for all k = 1, . . . ,M and all within-cluster index sets
sk ⊂ Uk ≡ {1, . . . , Nk},

L
(

(Yj,k : j ∈ sk)
∣∣∣ ak, (Zj,k : j ∈ sk) , Sk = sk, k ∈ SC

)
= (10)

L
(

(Yj,k : j ∈ sk)
∣∣∣ ak, (Zj,k : j ∈ sk) , k ∈ SC

)
As we will see below, in the construction of Section 4, informative cluster sampling in

the sense just described may not manifest itself at all through single-inclusion probabilities
or weights. This observation is important because of the prominence of methods published
in the survey literature that estimate mixed-effect parameters in clustered superpopulations
using only single-inclusion weights and no other aspects of informative sampling. In the
next Section, we give an overview of such methods – for which consistency of estimation
cannot generally be proved – by contrast with several recent papers that do justify consistent
estimation in general two-level informatively sampled surveys by taking account of joint
(second-order) inclusion probabilities.

2.4 Nonidentifability

Identifiability is a basic concept of mathematical statistics, a minimal requirement for the
statistician to know that parameters can in principle be recovered from large enough data
collections. A parameter θ ∈ Θ is called identifiable from data X governed by a model, say
one with joint density f(x, θ), if the mapping θ 7→ f(x, θ) from the parameter space to the
space of possible density functions (of x) is one-to-one. When this is not true – a condition
we refer to below as exact nonidentifiability – at least two different parameter values θ0, θ1
would give rise under the model to data with exactly the same probabilistic behavior. In that
case, the statistician’s desire to learn from data about the parameter of the data-generating
model has no unique solution. A slightly different type of nonidentifiability arises when a
family of statistical problems with data Xn ∼ fn(x, θ) has the same parameter regardless
of sample size n, but there are pairs of parameters θ0, θ1 for which the likelihood ratios
fn(Xn, θ1)/fn(Xn, θ0) remain stochastically bounded or OP (1) as n → ∞ for the θ1
model, which means that

for all ε > 0, ∃ Cε <∞ : for all n,
∫

I[fn(x,θ0)>Cε fn(x,θ1)] fn(x, θ1) dx ≤ ε (11)

When (11) holds, a standard argument using the Neyman-Pearson Lemma proves that no
size-α hypothesis test with α < 1 of H0 : θ = θ0 versus alternative H1 : θ = θ1 can have
power converging to 1 as n → ∞. We refer to this second type of nonidentifiability as
approximate or asymptotic nonidentifiability. Under either exact or asmptotic nonidentifia-
bility, there can be no consistent estimator θ̂n of θ = θ1 as n→∞.
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3. Proposed Methods of Inference in Two-Level Complex Surveys

3.1 Methods using only Single-inclusion Weights

By 1990, it was known that superpopulation random effects shared throughout clusters
induce unit-level dependence making pseudolikelihood methods inapplicable. Various au-
thors proposed new methods of inference for complex surveys with clustered designs like
those introduced in Section 2.2. They began by searching for an appropriate design- and
model-consistent methodology for parameter estimation in two-level cluster samples, and
they proposed methods intended to apply also to samples that are informative within cluster.
Pfeffermann et al. (1998) devised a complicated iterative weighted least squares procedure
involving weight-rescaling, to apply to cluster-sampled linear-model data

Yj,k = β′Zj,k + ak + εj,k, ak
iid∼ N (0, η1), εj,k

iid∼ N (0, η2) (12)

They provided algorithms and simulations supporting their method, but no proofs. Korn
and Graubard (2003) restricted attention to the case without covariates, and produced sim-
ulations that showed the Pfeffermann et al. (1998) methods were not model- and design-
consistent under several sorts of highly informative sampling designs, but might be in de-
signs where sampling within clusters was noninformative.

To estimate θ = (η1, η2), Rabe-Hesketh and Skrondal (2006) and Asparouhov (2006)
independently proposed to maximize an approximate log-likelihood

logLik1 =
∑
k∈SC

ωk log

∫
exp

( ∑
j∈Sk

wj|k log f(Yjk |Zjk, ak, η1)
)
fC(ak, η2) dak (13)

But the integral expression within (13) is not a likelihood, and consistency of estimation can
be justified generally only when the within-cluster sample-sizes go to∞. In similar vein,
Savitsky and Williams (2019, 2020) developed a Bayesian ‘pseudo-posterior’ methodology
applicable when clusters of bounded size are sampled approximately independently. Their
posteriors are formed with the approximate loglikelihood

logLik2 =
∑
k∈SC

log

∫
exp

( ∑
j∈Sk

wj,k log f(Yjk |Zjk, ak, η1) + ωk log fC(ak, η2)
)
dak

(14)
With some technical restrictions, they provide Bayesian large-sample theory, claiming that
their method exhibits large-sample posterior concentration (a Bayesian analogue of con-
sistency) under general informative sampling. Although their method uses only single-
inclusion weights, their theoretical arguments require assumptions that considerably re-
strict the generality of informative sampling they consider. However, their simulation re-
sults show their methods perform well (in a way not justified by their theory) under some
informative sampling designs extending those of Korn and Graubard (2003).

A simulation study in Slud (2020) compared frequentist pseudo-maximum likelihood
survey estimates of mixed-model parameters η1, η2 in the setting of (12) without covariates,
under various designs sampling clusters informatively, but with noninformative sampling
within clusters. The methods studied were only those using single-inclusion and possibly
random weights, including those of Rabe-Hesketh and Skrondal 2006, frequentist analogs
of those of Savitsky and Williams 2020, as well as a new EM method Slud (2020) pro-
posed based on (13) that explicitly used the design property that sampling is noninforma-
tive within clusters. Slud’s (2020) simulations and heuristic arguments showed that none
of the available estimation methods were generally design- and model-consistent under
noninformative-within-cluster designs except his own EM method.
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3.2 Consistent Estimation in Two-Level Complex Surveys

A different line of research developed the idea that consistent estimation of two-level
mixed-model parameters was possible from informatively cluster-sampled survey data, in
models like (8) or (12) with cluster-level random effects, based on known joint inclusion
probabilities. Korn and Graubard (2003) presented weighted method of moments estimates
accomplishing this. Under general sampling with constant known single and joint inclu-
sion probabilities, Rao et al. (2013) extended the idea of inverse joint-inclusion-weighted
moment estimates, using different moment-based estimating equations in the linear-model
setting, and to much more general two-level models by appeal to well-developed theory
for Lindsay’s (1988) Composite Likelihoods. Yi et al. (2016) provided still further exten-
sions to prove model- and design consistent estimation of parameters in two-level survey
data, using weighted composite likelihoods. However, between Korn and Graubard (2003)
and these later papers based on composite likelihoods, something was lost: namely the
applicability to random weights. Korn and Graubard explicitly allowed random weights,
using them in criticizing Pfeffermann et al. 1998. But the Composite Likelihood litera-
ture, and the sampling papers of Rao et al. (2013) and Yi et al. (2016), did not. Rao et
al. (2013) speak of weights obtained from inverse single- and joint-inclusion probabilities
that are known from the design. However, their ‘unified weighted log composite likeli-
hood approach’ expressed in equations (4.2) and (4.3) of section 4 of their paper could
also directly use random weights. Under nonrestrictive assumptions, unbiased estimating
equation theory would also lead to consistent weighted survey estimates, as long as the
joint within-cluster inclusion weights satisfy E(wjj′|k I[j,j′∈Sk] |Yjk, Yj′k)) = 1. Similar
comments could be made about the weighted survey estimates of Yi et al. (2016), although
both of these papers would have to modify their variance estimation techniques if the single
and joint inclusion weights were random.

The consequence of this line of research for the present paper is fairly straightforward.
Within the setting assumed above of possibly informative within-cluster sampling, consis-
tent estimation of model parameters is generally feasible when random (conditional) joint
inclusion probabilities are known and satisfy E(I[j,j′∈Sk]/πjj′|k |Yjk, Yj′k)) = 1. Such an
assumption covers all of the informative within-cluster designs contemplated in this paper.
The issue addressed in the rest of the paper is that single-inclusion weights alone do not
provide sufficient information about the design, in general, to ensure consistent estimation
of two-level model parameters.

4. A New Construction of an Informative Sampling Design

Throughout the present section, we maintain the assumptions introduced in Section 2.2 of a
two-level superpopulation model (8), with a sampling design such that the single-inclusion
weights ωk are independent across clusters and may depend on the cluster-level random
effects ak. The purpose of the Section is to present a family of within-cluster probability
sampling designs for P (Sk = sk | ak, {Yj,k}Nkj=1) within which the parameters η1, η2 may
be non-identifiable, either exactly or asymptotically, as defined above.

For each cluster index k = 1, . . . ,M , define within-cluster ranks rj,k (with ties broken
lexicographically by increasing j-index) and order-statistics Y(j),k within {Y1,k, . . . , YNk,k}
uniquely by

{rj,k}Nkj=1 = lexicographical ranks of {(Yj,k, j)}Nkj=1 =

Nk∑
t=1

I[(Yt,k,t)≤(Yj,k,j)] (15)
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and
Y(1),k ≤ Y(2),k ≤ · · · ≤ Y(Nk),k with Yj,k ≡ Y(rj,k),k (16)

Assume that Q = Q(k) =
(
Q

(k)
b,b′
)

is an Nk × Nk doubly stochastic matrix (with
entries ≥ 0 and row- and column-sums equal to 1), with 0’s on the diagonal. The key idea
of the sampling design introduced below is the definition for cluster sample-size nk = 2,
which is then generalized to nk > 2. The construction formalizes the idea that the selected
pair of order-statistic indices (b1, b2), among the values {Yj,k}j , will have b1 uniform in
{1, . . . , Nk} and b2 given b1 distributed with mass function equal to the b1 row of Q(k).

Definition 1 A Q-sampling design of a two-level superpopulation with notations as in
Section 2.2 is one where

(a) sampling of clusters may depend on cluster variates ak, is independent across k,
and random single-inclusion weights ωk satisfy ωk = 1/P (k ∈ SC | ak), and

(b) in any cluster k where nk = 1, Sk ≡ {j1} where j1 is drawn equiprobably from
{1, . . . , Nk},

(c) within cluster k, if nk = 2, the sample Sk = {j1, j2} drawn from cluster k is defined
in the following three steps:

(i) j1 is drawn equiprobably from {1, . . . , Nk}, where Yj1,k = Y(b1),k with b1 = rj1,k
by (16),

(ii) b2 ∈ {1, . . . , Nk} is drawn conditionally given b1 from the discrete probability
distribution given by the b1 row of Q(k), and

(iii) j2 is defined using (15)-(16) by Yj2,k ≡ Y(b2),k, or equivalently b2 = rj2,k.

(d) within cluster k, if nk > 2, the sample Sk = {j1, j2, . . . , nk} drawn from cluster k
is defined in the following three steps:

(i) j1 and then b1 are defined as in step (i) of (c),

(ii) conditionally given j1 and b1, order-statistic indices b2, . . . , bnk are drawn
from {1, . . . , Nk} by any Probability Proportional to Size without Replacement (PPSWOR)
method (such as the Hájek Rejective Method, Tillé 2003), using size vector equal to the b1
row of Q(k); and

(iii) j2, . . . , jnk are defined from b2, . . . , bnk by the identities rji,k ≡ bi, 2 ≤ i ≤ nk.

Lemma 1 For doubly stochasticNk×Nk matricesQ = Q(k) with 0’s on the diagonal, the
within-cluster sampling scheme in Definition 1 results in marginal single-inclusion proba-
bility 1/wj|k of selecting j ∈ Uk equal to nk/Nk.

Proof. For clusters k where nk = 1, there is nothing to prove. In cases where nk ≥ 2, begin
by noting that for each fixed superpopulation cluster {Yj,k : j ∈ Uk}, the definition (15)
establishes a bijective mapping between within-cluster indices j and their corresponding
within-cluster ranks rj,k. When nk = 2, the construction results in a selected pair of
random order-statistic indices (b1, b2) such that b1 is uniform and b2 6= b1 because all
diagonal elements of Q are 0. Moreover,

P (b2 = b′) =

Nk∑
b=1

P (b1 = b) · P (b2 = b′ | b1 = b) = N−1k

Nk∑
b=1

Qb,b′ = 1/Nk
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by the doubly-stochastic property ofQ, and it follows immediately that (conditionally given
the superpopulation, and therefore also unconditionally) P (j ∈ Sk) = P (b1 = rj,k) +
P (b2 = rj,k) = 2/Nk, so that wj|k ≡ Nk/nk for all j. Finally, when nk > 2, by
assumption in Definition 1(d), conditionally given the Uk data,

P (rj,k ∈ {b2, . . . , bnk}) = (nk − 1)N−1k

Nk∑
b=1

Qb,rj,k = (nk − 1)/Nk

and therefore P (j ∈ {j1, . . . , jnk}) = 1/Nk + (nk − 1)/Nk = nk/Nk and wj|k =
Nk/nk. 2

Example 1 A Q-sampling design that might reflect the purposefully biased selection of
clusters of size nk = 2 from population clusters of size Nk = 4 (such as 4-person house-
holds) is the following. The matrix Q could be specified as

Q = Q(p) =


0 p 1− p 0
p 0 0 1− p

1− p 0 0 p
0 1− p p 0


with any p ∈ [0, 1]. When p is close to 0, the sampled pair within a 4-unit population
cluster is highly likely to consist of the 1st and 3rd or 2nd and 4th order-statistics among
the Yj,k values, while p near 1 makes it highly that the sampled pair consists of the 1st and
2nd or 3rd and 4th order statistics. In the latter case (p ≈ 1), the sampled pair will tend to
be closer together, and share the same sign more often, than a SRS-sampled pair. 2

The Definition and Lemma so far are restricted to the case where nk < Nk < ∞,
but both have natural extensions to the case where Nk = ∞. In either case, samples of
size nk are drawn in potentially biased and dependent fashion. For simplicity, we describe
the extension to Nk = ∞ only in the case where nk = 2 and the conditional distribution
of Yj,k given ak in (8) is continuous. The key point of this extension is that instead of
selecting from order-statistic indices b1, b2, we select random pairs of quantiles u1, u2.
These quantiles are marginally uniform, so that their continuous joint density c(u1, u2) is
termed a copula.

Definition 2 In a cluster-sampling setting satisfying (8) and all the other assumptions of
Definition 1(a) except that now Nk = ∞ and nk = 2 in some or all clusters, assume
that the conditional distribution function F (y | ak, η2) for Yj,k given ak is continuous. A
Q-sampling design selecting a pair of marginally f(· | ak, η2) distributed variates Yj,k has
the form:

(i) u1, u2 are marginally uniform variables with joint density given by a specified
copula c(u1, u2);

(ii) the selected pair of cluster k variates are defined as F−1(ut | ak, η2), t = 1, 2.

In this case, the marginal uniformity of selected quantiles ut implies that univariate selec-
tion from the infinite cluster is not biased, although the joint selection of pairs is biased.
The copula property is analogous to the doubly stochastic property of matrices Q(k) used
in Definition 1.
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4.1 Exact and Near Nonidentifiability in a Two-Level Survey Model

The main goal of this Section and this paper is to show that cluster-level biased selection of
nk ≥ 2 parametrically distributed superpopulation variates, restricted only by the marginal
selection mechanism, may render the superpopulation parameters nonidentifiable. We re-
called the general meaning of nonidentifiability, both in an exact and asymptotic sense, in
Section 2.4 above. To obtain clear examples of nonidentifiability in the complex survey
setting, we restrict from now on to two-level clustered superpopulations and sampling de-
signs where the mechanism of sampling of clusters is Simple Random Sampling (SRS)
of m clusters, so that the single-inclusion cluster weights are all ωk ≡ M/m. All of the
within-cluster sampling designs we consider will also have the property that the single-
inclusion within-cluster sampling weights are wj|k ≡ Nk/nk in clusters k with Nk < ∞,
and in clusters with Nk = ∞, the selected attributes Yj1,k, . . . , Yjnk ,k are all marginally
distributed with density f(· | ak, η2) in (8). The immediate point of these restrictions is
to ensure that the exactly observable single-inclusion weights of the sampled observations
convey no statistical information at all. Thus the nonidentifiability definitions are applied
to the probability laws of the observed sampled data {Yj,k : (j, k) ∈ S}.

Now specialize further to the one-way ANOVA case,

fC(ak, η1) ∼ N (0, η1) , f(y|a, η2) ∼ N (a, η2) (17)

For fixed ρ ∈ (−1, 1), let c(u1, u2, ρ) denote the bivariate normal copula density (with 0
means and variances 1) with correlation ρ,

c(u1, u2, ρ) ≡ {φ(Φ−1(u1))φ(Φ−1(u2))}−1

2π
√

(1− ρ2)
·

· exp
(
− (Φ−1(u1))

2 + (Φ−1(u2))
2 − 2ρΦ−1(u1)Φ

−1(u2)

2(1− ρ2)

)
=

1√
1− ρ2

exp
(2ρΦ−1(u1)Φ

−1(u2)− ρ2{(Φ−1(u1))2 + (Φ−1(u2))
2}

2 (1− ρ2)

)
(18)

With this definition, the quantile u ∈ (0, 1) of the population-cluster outcome variables
{Yj,k}∞j=1 = {ak + εj,k}∞j=1 is equal to ak +

√
η2 Φ−1(u), since the εj,k variates are all

N (0, η2) distributed and independent of ak. Now the random quantiles (u1, u2) gener-
ated (independently of ak and {Yj,k}∞j=1) according to Definition 2 have the property that
(Φ−1(u1), Φ−1(u2)) are jointly bivariate-normal distributed with means 0, variances 1,
and correlation ρ, or equivalently, can be represented as

(Φ−1(u1), Φ−1(u2)) =
(
ρZ0 +

√
1− ρ2 · Z1, ρ Z0 +

√
1− ρ2 · Z2

)
where Z0, Z1, Z2 are N (0, 1) random variables independent of each other and
of (ak, {Yj,k}∞j=1). Thus the sampled quantiles u1, u2 among {Yj,k}∞j=1 are

(Yj1,k, Yj2,k) ≡ (ak +
√
η2Φ

−1(u1), ak +
√
η2 Φ−1(u2))

=
(
ak +

√
η2
{
Z0 ρ+ Z1

√
1− ρ2

}
, ak +

√
η2
{
Z0 ρ+ Z2

√
1− ρ2

})
and it follows immediately that ak+ρ

√
η2Z0 ∼ N (0, η1+ρ2η2), and the joint distribution

of (Yj1,k, Yj2,k) is bivariate-normal with means 0, variances η1 + ρ2η2 + (1 − ρ2)η2 =
η1 + η2, and correlation ρ∗ ≡ (η1 + ρ2η2)/(η1 + η2). With these steps, we have proved
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Proposition 1 Under superpopulation assumptions (8) and (17), with nk = 2 units sam-
pled within infinite population cluster k according to Definition 2 using the bivariate-
normal copula density c(u1, u2) = c(u1, u2, ρ) defined in (18), the joint distribution of the
sampled cluster elements (Yj1,k, Yj2,k) is bivariate-normal with means 0, variances η1 +
η2, and covariance η1 + ρ2η2. This implies that the distribution of sampled (Yj1,k, Yj2,k)
is exactly the same when the underlying parameters η1, η2 are σ21, σ

2
2 under a sampling de-

sign with iid sampling within cluster (ρ = 0) as when (η1, η2) = (σ21 + ρ2σ22, (1− ρ2)σ22)
under the sampling scheme of Definition 2 using copula (18) with fixed ρ ∈ (−1, 1).

Proposition 1 is an exact nonidentifiability result, in the context of biased sampling from
an infinite population rather than a finite cluster such as would arise in sample surveys. We
provide next an example motivated by the infinite-cluster construction of Definition 2 under
(17)-(18) but applicable to the case of large finite clusters using the design of Definition 1.

Fix a population cluster k of finite sizeNk, and let (u1, u2) as above be a pair of random
variables with joint density given by the copula density (18). Define the Nk × Nk matrix
Q̄(k) by its entries

Q̄
(k)
t1,t2

≡ Nk · P
(
u1 ∈ (

t1 − 1

Nk
,
t1
Nk

] , u2 ∈ (
t2 − 1

Nk
,
t2
Nk

]
∣∣∣ dNku1e 6= dNku2e

)
(19)

where t1, t2 ∈ {1, . . . , Nk}, and dxe denotes the smallest integer ≥ x. It is clear from the
definition (19) that Q̄(k) is doubly stochastic and symmetric, with 0’s on its diagonal.

Our next goal is to show that, when the random pair Ys
k ≡ (Yj1,k, Yj2,k) is selected

within the population cluster k according to the sampling plan of Definition 1, the log-
arithm of the joint density of Ys

k is close to the log of the limiting joint density as Nk

gets large. (Note that, although the random index pair (j1, j2) depends on k, we suppress
that dependence in the notation.) By definition, the joint density of Ys

k is the mixture
with weights N−1k Q̄

(k)
t1,t2

of the joint densities of the order statistics (Y(t1),k, Y(t2),k), over
all 1 ≤ t1, t2 ≤ Nk. Another way of expressing this is that the joint density of Ys

k is
the same as the joint density of (ak + η

1/2
2 z(dNku1e), ak + η

1/2
2 z(dNku2e)), where z(i) are

the order-statistics for a set of iid N (0, 1) variables {zi}Nki=1, conditionally given that
dNku1e 6= dNku2e. As Nk → ∞, it is easy to see that the density of the distributional
limit Y∗ ≡ (ak + η

1/2
2 Φ−1(u1), ak + η

1/2
2 Φ−1(u2)) of Ys

k is the bivariate-normal found
in Prop. 1, with means 0, variances η1+η2, and correlation (η1+ρη2)/(η1+η2). An impor-
tant tool for quantifying the closeness in probability of the random vectors Ys

k and Y∗ is
the Bahadur-Kiefer Representation of sample quantiles (Encycl. of Math. 2020), that says
in particular (e.g., as a corollary of the more sophisticated result given in formula (1.27) of
Deheuvels and Mason 1990) that

max
i≤Nk

|Φ(z(i))− i/Nk| = OP
(
N
−1/2
k logNk

)
as Nk →∞

Without supplying further details of proof, which will be given elesewhere, we state next a
Proposition expressing the mathematical property of survey-sampling loglikelihood ratios
that implies, by way of the general criterion (11), the asymptotic nonidentifiability of the
parameters η1, η2, ρ under the model (17).
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Proposition 2 Assume (8) and (17), with random sampling of nk = 2 elements done within
large finite population clusters k = 1, . . . ,M according to Definition 1 with the matrices
Q(k) ≡ Q̄(k) given by (19). Assume thatm clusters k are sampled SRS. Then the first-order
inclusion weights are all ωk = M/m, wj|k = Nk/2. Assume further that the cluster-sizes
Nk are such that

lim inf
m,N→∞

min
k

Nk/m > 0 as m, N → ∞

Then the logarithm of the likelihood ratio for the data {(Yj1,k, Yj2,k)}k∈SC based on the
models with parameters (η1, η2, ρ) respectively equal to (σ21, σ

2
2, ρ) and to

(σ21 + ρ2σ22, σ
2
2(1− ρ2), 0), is of order OP (1) for both models, as m,N →∞.

Propositions 1 and 2 complete our formal justifications that informative within-cluster
sampling in general prevents the possibility of model and design consistent estimation of
mixed-model superpopulation parameters from survey data and single-inclusion weights.
However, the constructions given here also include many other informative within-cluster
designs for which estimation of variance components η1, η2 may be possible but extremely
imprecise due to considerations of Fisher information and the large number of nuisance
parameters associated with unrestricted informative sampling. The point here is that the
matrices Q(k) used in the informative Q-sample designs of Definition 1 may depend on pa-
rameters (like p in Example 1) that are different from one population cluster to another, but
that do not affect the constant single-inclusion weights within clusters. These parameters
related to joint inclusion probabilities, or their empirical distribution over many clusters,
would be nuisance parameters affecting the joint cluster-level joint distributions of sam-
pled units. Even if consistent semiparametric estimation of superpopulation parameters
(η1, η2) were possible in such complicated Q-sampling designs, the precision of the esti-
mates would be made much weaker by the nuisance parameters.

5. Discussion

The primary focus of this paper has been to present an impossibility result for general
consistent estimation of two-level model parameters based on complex survey data with
single-inclusion weights. The biased-sampling construction of the paper should not be
construed as recommendation for such a sampling design, which is studied for theoretical
purposes only since it requires knowledge of the order statstics of all outcome variable val-
ues Yj,k in the sampled population clusters. The reason for interest in such examples is
that actual within-cluster sampling-and-response patterns may resemble such biased sam-
pling patterns and defeat the possibility of parametric mixed-model inference in two-level
clustered survey data.

The consequence of nonidentifiability results like those presented here is that, when a
finite population exhibits cluster structure at a level not accounted for in a complex survey
design, no purely design-based method of analysis based exclusively on first-order inclu-
sion weights can protect against features of the design that might differentially encourage
or exclude simultaneous sampling of units from the same cluster. When clusters are de-
signed into the survey, but analyses are to be made at unit level, the design and allowed
nonresponse patterns affecting members of the same cluster should be controlled as strictly
as possible.

Disclaimer

This paper is released to inform interested parties of ongoing research and to encourage
discussion of it. The views expressed are the author’s and not the Census Bureau’s.
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