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Abstract 
The standard regression model, whether linear, logistic, or Poisson, assumes that the 
expected value of the model error, the difference between the dependent variable and its 
model-based prediction, is zero no matter what the values of the explanatory variables. The 
standard model can fail for a given population. A rarely-failing extended regression model 
assumes only that the model error is uncorrelated with the model’s explanatory variables. 
Consistent estimates under either the standard or extended model given complex survey 
data with inverse-probability weights (broadly defined) can be determined by fitting a 
weighted estimating equation based on the extended model’s assumption of the model error 
being uncorrelated with the explanatory variables.  When the standard model holds, it is 
possible to create alternative analysis weights that retain the consistency of the model-
parameter estimates while increasing their efficiency by scaling the inverse-probability 
weights by an appropriately chosen function of the explanatory variables.    
 
When a regression model is used to impute for missing item values in a complex survey, 
and item missingness is a function of the explanatory variables of the regression model and 
not the item value itself (i.e., item values are missing at random), near unbiasedness of an 
estimated item mean requires that either the standard regression model for the item in the 
population holds or the analysis weights incorporate a correctly-specified and consistently 
estimated probability of item response.  By estimating the parameters of the probability of 
item response with a calibration equation, one can sometimes account for item missingness 
that is (partially) a function of the item value itself.  Weights can be adjusted to retain 
protection against bias when the standard model for the item value fails while increasing 
the efficiency of the estimated item mean when the standard model for holds among 
members of the population that would not have provided item values if surveyed.   

Key Words: Standard model, Extended model, Item-response model, Inverse-probability 
weight, Pfeffermann-Sverchkov adjustment.  
 

1.  Introduction  
 
When fitting a regression model with complex survey data, one frequently treats the finite 
population as a realization of independent trials from a conceptual population and tries to 
use the complex sample to estimate with probability-sampling principles either a maximum 
likelihood estimator computed from the finite population or the limit of the putative 
estimator as the population grows arbitrarily large (see Fuller, 1975, for linear regression 
and Binder, 1983, for generally).  
 
We do not take that so-called “design-based” approach here.  Instead, we adopt a model-
based framework from Kott (2007, 2018).  This framework is sensitive to the complex 
sampling design and to the possibility that many of the usual model assumptions may not 
hold in the population. Under this design-sensitive framework some of the methods 
developed in the conventional design-based framework, such as fitting weighted estimating 
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equations and sandwich variance/mean-squared-error estimation, are retained but their 
interpretations change.  
 
Section 2 lays out the design-sensitive approach to regression modeling with complex 
survey data, which involves drawing a distinction between the robust standard model and 
more general extended model.  Estimating model parameters under the latter requires the 
use of inverse-probability weights (broadly defined to include calibration adjustments), 
while it is possible to adjust those weights under the former to increase the efficiency of 
parameter estimates.   Section 3 describes linearization-based variance estimation for 
model parameters, while Section 4 explores versions of jackknife replication variance 
estimation. Section 5 provides some useful tests for determining whether using inverse-
probability weights are necessary and whether the standard model holds in the population.    
 
Section 6 changes the focus.  This section addresses using a standard regression model to 
impute for missing item values in an estimated total (or mean) by first assuming an item-
response model where item nonresponse is missing at random.  This methodology is then 
extended to situations where item nonresponse is not missing at random, providing an 
unbiased estimate for an item mean in some sense when the standard model fails and a 
more efficient estimate when it does not.  Finally, Section 7 provides a review of the ideas 
developed in the preceding sections.  
 
An appendix available from the author upon request provides empirical examples of the 
some of the methods described in the text using SAS-callable SUDAAN (Research 
Triangle Institute, 2012).   

 
2.  The Design-Sensitive Approach to Regression Modeling 

 
We start by defining the standard (regression) model in the following distribution-free 
manner.  Given any element (member) k of a population U, the standard model assumes 
that  
                              yk = f(zk

Tβ) + εk,                       (2.1) 
where  
                      E(εk |zk) = 0 for all realized zk, kU                                                       (2.2)  
 
In equation (2.1), yk is the dependent random variable being modeled, while zk is a vector 
of P explanatory variables (covariates), one of which is 1 (or, equivalently, some linear 
combination of the components of zk, is 1), and f(.) is a specified monotonic function. In 
particular,   
 
                f(zk

Tβ) = zk
Tβ    for a linear regression model, 

                          = exp(zk
Tβ)/[1 + exp(zk

Tβ)] for a (simple) logistic regression model,                        
= exp(zk

Tβ)   for a Poisson regression model.  
 
Finally,  is a vector of parameter that is unknown but can be estimated using a sample 
drawn from U.   An extension of the theory developed here to multinomial and cumulative 
logistic regression models is possible, but avoided for simplicity.  
 
Poisson regression is often used when the dependent variable is restricted to positive 
values.  This restriction can be, but does not have to be, extended to positive integers. In 
practice, Poisson regression often multiplies exp(zk

Tβ) by a known offset variable ok.  For 
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our purposes, this offset variable can be thought of as being incorporated into a revised 
dependent variable:  yk/ok.   
 
Few additional assumptions about the distribution and variance structure of the εk are 
needed in the above vaguely-specified version of the model until the issue of estimating 
the variance of an estimator for  arises. That is a subject taken up in the next section.   
 
Although apparently very general, there is a key restriction imposed by the standard model 
in equation (2.1); namely, that the expected value of the error term k is zero no matter the 
value of zk. This assumption can fail. As a result, the standard model would not apply to 
the population. For example, suppose yk = zk

2 in the population. If one tries to fit the linear 
model    yk =  + zk + εk to this population, the standard model assumption E(εk |zk)  0 for 
all realized zk = (1 zk)T, kU, would fail.         
 

A generalization of the standard model is the extended model under which E(εk |zk) = 0 in 
equation (2.2) is replaced by  

                                                      E(zkεk) = 0.                                                                           (2.3) 
 
In other words, εk has mean zero unconditionally (i.e., E(εk) = 0) and is uncorrelated with 
each of the components of zk. Unlike the standard model, the more general extended model 
rarely fails, so long as the first three central moments of the components of zk are finite.  
 
Suppose yk = zk

2 holds throughout the population, but we try to fit the population with the 
linear model yk =  + zk + εk when yk = zk

2. The population analogue of ordinary least 
squares reveals  = Cov(zk

2, zk)/ Var(zk) and  = E(zk
2) − E(zk).  If the zk were uniformly 

distributed on U = [0, 1], then  would be -1/6 and  would be 1. Consequently, both        
E(εk |zk = 0) = 0 – (-1/6) and E(εk |zk = 1) = 1 – (5/6) would be positive, while       E(εk |zk = 
1/2) = 1/4 – 1/3 would be negative. The E(εk) and E(zkεk), by contrast, would both be 0.     
 
Observe that the standard version of simple linear model through the origin, yk = zk + εk, 
is not exactly of the form specified by equation (2.1) because it is missing an intercept. It 
similarly assumes E(εk |zk) = 0. The extended version of this model assumes only E(εk) = 
0.   
 
2.1  The Group Mean and Ratio Models  
Suppose the population U can be divided into G mutually exclusive and exhaustive groups. 
Let k = (k1, k2 …., kG)T, where kg = 1 when element k is in the gth group and 0 otherwise.  
Let us now investigate the linear regression model:  

                                yk = (qkk
T) β+ εk,                                                                                       (2.4) 

 
where qk is a scalar, and E(εk|k) = 0. When qk  1 (or, equivalently, any other constant), 
equation (2.4) is called the group-mean model, because the mean of every element in group 
g is the same: g. When the qk vary within groups, equation (2.4) is called the group-ratio 
model.  This is a useful model in business surveys where qk is often a measure of size 
known for all elements in the population.  
 
When G = 1, the group-mean model devolves into the population mean model and the 
group-ratio model devolves into the population ratio model. When G > 1 and qk  1 in 
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equation (2.4), the value g is the mean of gth group, also called the domain mean of group 
g.  In this monograph, we mostly treat population and domain means and their analogous 
ratios as parameters of a linear regression even though there are separate procedures in 
SUDAAN that can be used for their estimation.     
 
Unlike the group-mean model, the group-ratio model does not fit our formal definition of 
a regression model in equation (2.1) because zk = kqk  does not contain 1 among its 
components or the equivalent unless qk is a constant (e.g. when qk  1, zk1 + zk2 + … + zkG = 
1).  Equation (2.2) is effectively replaced by E(εk |k) = 0 for all realized k, kU.  
 
So long as the yk are bounded, the group-mean and group-ratio models never fail.   
     
2.2 The Weighted Estimating Equation 
We will for the most part restrict our attention here to probability samples.  This means 
that every k  U has a positive probability k of being selected into the sample. Formally, 
k  B > 0 for some B. 
 
Although populations from which probability samples are drawn are almost always finite, 
the samples themselves are usually large. That is why it is reasonable to use asymptotics 
(arbitrarily-large sample properties) when analyzing probability-sample data. Moreover, 
when modeling a finite population, we are often less interested in the population itself than 
in a mechanism that can be hypothesized to have generated that population and could 
continue to generate elements ad infinitum.  
 
Consequently, we assume there is an infinite sequence of nested populations growing 
arbitrarily large and that a sample can be drawn from each using the same probability-
sampling mechanism.  The samples in the sequence of samples, while not necessarily 
nested within each other, also grow arbitrarily large. As a result, it is possible to take the 
probability limit of a statistic based on a sample as the expected number of sampled 
elements grows arbitrarily large (as we advance from one population in the sequence of 
populations to the next ad infinitum).  
 
Suppose ty is an estimator for Ty. A sufficient condition for the probability limit of t, which 
we denote p lim(ty), to be Ty as the population and expected sample sizes grow arbitrarily 
large is for the limit of the relative mean-squared error of t to converge to 0.  When that 
happens, ty is a consistent estimator for Ty.     
 
Letting M denote the number of elements in population U, it is not difficult to see that  

              1 1lim ( ) limT
k k k k k

k U k U
p M y f p M− −

 

       − =  =    
      

 z x β z 0                     (2.5) 

under the extended model (where E(zkεk) = 0) with mild assumptions about the values of 
the components of zk (e.g., they are bounded in number, and each have finite moments) and 
the variance structure of the k (which we will discuss in some detail in the following 
section). 
 
Given a probability sample S with analysis weights {wk}, each (nearly) equal to the 1/k, 
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                     1lim ( )k k
k S

k
T

kp M w y f−



   − =  
  

 x βz 0                                                     (2.6) 

under mild additional conditions on the sampling design and population such that 
 

1

1

lim 0,

where ,

q

M
q k k k

k S k

p

M w q q−

 =

 =

 
 = − 

 
 
 

                                                                          (2.7)    

for qk = 1, yk, any component of zk, or any product of two of these. Sufficient additional 
assumptions include that each of the qk have finite moments and that the sample size grows 
arbitrarily large along with the population.  More assumptions about the sample design will 
be made in the next section.  
 
Two sample-based values are said to be nearly equal when their ratio tends to 1 (in 
probability) as the expected sample size grows arbitrarily large.  Similarly, an estimator is 
nearly unbiased when its relative bias tends to zero as the sample size grows.   
 
The analysis weights wk  may not exactly be equal to the 1/k .  Sometimes, analysis weights 
are calibrated to increase the statistical efficiency of the resulting estimators (as in Deville 
and Särndal, 1992) or to account for unit nonresponse or frame under- or over-coverage 
(see, for example, Kott 2006).  Except in Section 3.1 on variance estimation via 
linearization, we treat the wk as nearly equal to the inverse of the probability element k is 
jointly in frame, selected for the sample, and a sample respondent.  We ignore the 
possibility of duplications in the frame.  We treat S as the respondent sample and set wk  = 
0 when k  S.  Until Section 6, we assume there is no item nonresponse. 
 
The wk are inserted into equation (2.6) in case E(εk | wk)  0, a situation in which the analysis 
weights are said to be nonignorable in expectation (with respect to the model − a phrase 
that usually goes without saying). Full ignorability of the analysis weights or, equivalently, 
of the selection probabilities in the sense of Little and Rubin (2002), obtains when the 
conditional εk are independent of the wk. If the original random sample is selected with 
probability proportion to some component of zk, while the variance of εk  is a function of 
that same component, then εk is clearly not independent of wk, and the weights are not 
ignorable, but they could still be ignorable in expectation (i.e, E(εk | wk) = 0 for every 
realized wk, k  U).    
 
Whether the standard or extended model is assumed to hold in the population, solving for 
b in the weighted estimating equation (Godambe and Thompson 1974) 
 
                                              ( )T

k k k
k

k
S

w y f


 −
  z bz = 0                                                  (2.8)   

provides a consistent estimator for  under mild conditions because    
 

                  
1

1 1'( ) ,T
k k k k k k k

k S k S
M w f M w

−
− −

 

 
− =   

  
 b β z z z                               (2.9)                               

for some k between zk
Tb and zk

Tβ.  This is a consequence of the mean-value theorem. An 
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additional mild condition we assume is that 

                                     A = 1 '( ) T
k k k k

k S
M w f−



 z z                      (2.10)    

and  its  probability  limit,  A*,  have  finite components  and are  positive definite.  When  
M-1S wkzkk converges to 0 in probability as the expected sample size grows arbitrarily 
large (see equation (2.5)), b is a consistent estimator for .       
 
It is not hard to show that U zk[yk − f(zk

Tb)] = 0 is the maximum-likelihood (ML) estimating 
equation for the population under the independent and identically distributed (iid) linear 
regression model and under logistic regression with independently sampled population 
elements. Nevertheless, the solution to equation (2.8) is not ML when the weights vary or 
the εk within primary sampling units are correlated. Instead, the b solving equation (2.8) is 
referred to as a pseudo-ML estimator for  (Skinner 1989).  
 

2.3  Pseudo-ML and Pfeffermann-Sverckkov Weight Adjustment 
The pseudo-ML estimating equation in Binder is 

                               '( ) ( ) ,
T

Tk
k k k k

kk S

fw y f
v



 
 − = 
  

 


z zb z b 0                                     (2.11) 

where vk = E(k
2|zk) is known (up to a scaling constant), and E(k

 j
 |zk, zj) = 0 for k ≠ j.  For 

ordinary least squares (OLS) linear regression: f '(zk
T) = 1; for ordinary logistic regression:          

f '(zk
T) = f (zk

T)(1 − f (zk
T)); and for ordinary Poisson regression for  f '(zk

T) = f (zk
T).  

Thus for all three: vk  f '(zk
T).  This is not the case for (GLS) linear regression, however, 

where the vk vary across the elements of the population or the k are correlated in some 
manner.    
 
If E(k

2|zk)  v(zk) < , and E(k
 i

 |zk, zi) = 0 for k ≠ i, then the pseudo-ML estimator for a 
in equation (2.11) in consistent under the standard model. When the standard model holds 
and the analysis weights are ignorable in expectation, however, a more efficient estimator 
for the model parameter  is the solution to ( )'( ) ( ) .T T

k k k k kS f v y f − =
  b z z b 0z   

 
Pfeffermann and Sverchkov (1999) point out that when the standard model holds, the 
weights are not ignorable in expectation, E(k

2|zk) = vk < , and E(k
 i

 |zk, zi) = 0 for k ≠ i, 
a more efficient estimator than the solution to equation (2.8) would factor each weight wk 
in (2.11) by 1/(zk) where (zk) is an approximation for wkvk/ '( )T

kf z b when vk is known 
(up to a constant); otherwise it can be replaced by ek

2 = [yk − f(zk
Tb)]2.   

 
A possible way to generate (zk) is as the predicted value of an unweighted Poisson 
regression of wkek

2/f (zk
Tb) on the components of zk = (z1k, …, zPk)T and, perhaps, functions 

of   those   components   (e.g.,  log(z1k)).     Poisson regression  is   recommended  because 
wkek

2/f (zk
Tb)  is always positive.  Recall that in Poisson regression it is log [wkvk/f (zk

Tb)] 
that is being modeled as a linear function of components or functions of components.       
 

 
45



 

When the standard model holds in the population and E(k
 i

 |zk, zi) = 0 for k ≠ i can be  
assumed (or is close to holding) but the vk are not known, one can try the following:  

1) Fit the estimating equation in (2.8) and compute the ek = yk − f(zk
Tb).   

2) When it is reasonable to assume vk  f '(zk
T), as is always the case in a logistic 

regression, fit wk on functions of components of zk via an unweighted Poisson regression 
Call the fitted value (zk). 

Otherwise, 

2’) fit wkek
2/f (zk

Tb) on functions of components of zk via an unweighted Poisson regression, 
and call the fitted value (zk).  

3) Refit the estimating equation in (2.8) with each wk replaced by the Pfeffermann-
Sverchkov-adjusted analysis weight: wk

PS= wk/(zk). 
 
When the fit in step 2 is good, these steps should return more efficient estimators for the 
components of  than fitting equation (2.8) and stopping. We will call this three-step 
process or any variant of it (e.g., one using linear rather than Poisson regression in step 2) 
P-S weight adjustment.   

 
3.  Variance Estimation Via Linearization 

 
We restrict attention for now to stratified or single-stratum probability samples of primary 
sampling units (PSUs) of fixed size without unit nonresponse or coverage error. Additional 
stages of probability samples can be conducted independently within each PSU to draw the 
sample elements. We do not rule out samples of elements where the PSUs are completely 
enumerated or where each PSU is composed of a single element.  
 
In our asymptotic framework, the number of sampled PSUs grows infinitely large along 
with the population. The number of strata may also grow arbitrarily large or it can be fixed. 
In the former situation, the number of PSUs in a stratum is fixed, while in the later that 
number grows infinitely large.  Scenarios where the number of strata grows large but not 
as fast as the number of sampled PSUs are also possible, but they are not explicitly treated 
here. 
 
Whether or not the number of strata should be treated a fixed in an asymptotic framework 
depends on the design. A design with, say, 60 strata containing two sampled PSUs in each 
is more reasonably treated in an asymptotic framework where number of strata grows large, 
while a design with four strata each having over 15 sampled PSUs is more reasonably 
treated in an asymptotic framework with a fixed number of strata.  
 
Let h denote one of H strata, uk = (uk1, … , ukH)T the H-vector of stratum-inclusion 
identifiers for element k (i.e., ukh = 1 when k is in stratum h, and 0 otherwise), N (n) the 
number of PSUs in the population (sample), Nh (nh) the number of PSUs in the population 
(sample) and stratum h, M (m) the number of elements in the population (sample), Mhj (mhj) 
the number of elements in the population (sample) and PSU j of stratum h, and Shj the set 
of mhj elements of PSU j of stratum h. We assume that in every population in the sequence 
of populations:   

 
                                 Mhj  BM <    for all hj.                                                                (3.1)  
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3.1  When First-Stage Stratification is Ignorable  
Variance estimation given a stratified multistage sample can be tricky unless a simplifying 
assumption is made. Usually, the assumption is that the PSUs are randomly selected with 
replacement within strata.  
 

We will instead make following two ignorability assumptions about the stratum identifiers:   

A.   E(εk|zk,uk) = 0  (E(zkεk|uk) = 0  for the  extended model);  that is to say,  the  first-stage 
      stratification is ignorable in expectation.  
B.   E(εkεj |zk,uk,zj,uj) =0  ((E(zkεk zjεj |uk, uj) = 0  for the extended model)  when k and j  are 
      from different PSUs and is bounded otherwise. 
 
Although it is likely that strata are chosen such that the mean of the yk differed across strata, 
it is nonetheless not unreasonable to assume that the E(εk|zk) (or E(zkεk)) are unaffected by 
the first-stage stratum identifiers especially since zk in equation (2.1) may contain a 
bounded number (as the number of PSUs grows arbitrarily large) of stratum identifiers or 
functions of stratum identifiers (e.g., ukhzkp)  
 

To estimate the variance of the consistent estimator b for  , one starts with this variation 
of equation (2.9)  

                                 
1

'( ) ,k k k
T

k k k k
k S k S

w f w
−

 

 
− =   

  
 z z zb β                                  (3.2)                               

for some k between zk
Tb and zk

Tβ and the (previously-made) assumption that  
A = M-1S wkf '(k)zkzk

T and its probability limit, A*, have finite components and are and 
positive definite.  We are assuming that wk  = 1/k  in variance estimation under the extended 
model until Section 3.3.  For the standard model, the analysis weights can be scaled by a 
function of zk. 
 
From equation (3.2), we can see the bias of b is nearly zero.  Consequently, a good 
estimator for its mean squared error is also a good estimator for its variance.      
 
So long as all nh  2, the design-based variance/mean-squared-error estimator for b (from 
Binder, 1983) is 

1 1 1 1

1 1

1 1
1

1
( )( ) ( )( )

1

( )

(3.3)

h h h

hj ha hj ha

h h

hj hj ha ha

T
n n nH

h
k k k k

h h hh j k S a S k S a S

n n
T Th

k k k k
h hj k S k S a S a

k k

k
S

k

n
w e w e w e w e

n n n

n
w e w e w e w e

n n

     

= =  =   = 

     

=   =  = 

− −
−

= −
−

=
  
  
  
  

       

     

z z zD Dz

z z zD z

var b

1 1

1 1 1where    = '( )  estimates   (see equation (2.10)), and

( ).

hnH

h

T T
k k k kS

T
k k k

w f M

e y f

=

− − −


 
 
 
 

 
 

= −

 



D

D bz z

z b

z A
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This is often called the (Taylor-series) linearization estimator because, among other things, 
D is a linearized form of (MA)-1. 
 

2
Our assumptions  assure the  near unbiasedness of the variance estimator in  equation (3.3) 
(as grows arbitrarily large) given a sampling design and population such that lim( ) 
is bounded, where i

q
q

n p n


1 1

s defined in equation (2.7). They also assure the near unbiasedness
of

( ) . (3.4)
h

hj hj

T
nH

A k k k k k k
h j k S k S

w e w e
= =  

  
  =
  
  

  var b D Dz z

s 
From a model-based viewpoint, the keys to both variance estimators are that the  
 
                                       Ehj


 =

hj
k k k

k S
w



 z                                                                            (3.5)  

on the right-hand side of equation (2.9) have mean 0 and are uncorrelated across PSUs and 
that A* is the probability limit of M-1D-1. The use of robust sandwich-type variance 
estimates like equations (3.3) and (3.4) (the D being the bread of the sandwich) allows the 
variance matrices of the Ehj


 to be unspecified. Mild additional asymptotic assumptions 

allow Ehj = 
hj k k kk S w e z  with ek  = yk −zk

Tb = k − zk
T(b−)  to be used in place of its near 

equal Ehj
 

 and M-1D to replace its near equal A. 
 
Additional variations of the variance/mean-squared-error estimator in equation (3.3) can 
be made if the analyst is willing to assume that the k are uncorrelated across secondary 
sampling units or across elements. The more components there are in zk, the more 
reasonable the assumption that the k are uncorrelated across elements (or another higher-
stage of sampling like housing units in a household-based sample of individuals) and the 
more reasonable the assumption that the first-stage stratification is ignorable.   
 
3.2  When First-Stage Stratification is Not Ignorable 
Suppose the first-stage stratification is not ignorable and again (for simplicity) wk =1/k.  
Under probability-sampling theory the Ehj


  are uncorrelated and have a common mean 

within strata had the first-stage PSUs been selected with replacement (which would have 
allowed the same PSU to be selected more than once, each selection treated as independent 
with independent subsampling of elements). Equation 3.3 (but not (3.4)) provides a nearly 
unbiased variance estimator for b under such a design.  Under many probability-sampling 
designs employing without-replacement sampling of a fixed number of PSUs, equation 
(3.3) provides, if anything, a slight overestimation of the variances of the components of b 
(which are the diagonals of var(b)). We will assume our PSU sample has been drawn in 
such a manner and that the resulting bias in equation (3.3) is small enough to be ignored in 
practice.       
 
Graubard and Korn (2002) point out that when the number of (first-stage) strata remains 
the same as the population grows arbitrarily large, then equation (3.3) provides a nearly 
unbiased variance estimator under the with-replacement sampling of PSUs only when the 
fraction of the element population in each stratum is fixed. Otherwise, the fraction of the 
population within each stratum is a component of the variance of b that equation (3.3) fails 
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to capture. Here, we avoid that problem by assuming that the fraction of PSUs and elements 
within each stratum is fixed as the population grows arbitrarily large.  
 
Observe that the variance estimator in equation (3.3) can be rewritten as 
 

                 
1 1 1

1( ) ( ) .
( 1)

n nh hH
T

A hj ha
hh j a

a j
n= = =



 
 

= −  
− 

 
 

 var b var b D E E D  

If the Ehj  Ehj

  within each stratum h have a common mean, then the expected values of 

the diagonals of var(b) (the estimated variances of the components of b) will tend to be no 
higher than and expected values of the diagonals of varA(b).  They will tend to be lower 
when some of the stratum means are non-zero.  That is to say, the diagonals of varA(b), if 
anything, tend to overestimate the variances of the components of b.   
 
From the above expression we can see that practice of collapsing “similar” strata into 
variance strata for variance-estimation purposes (using equation (3.3) with the h indexing 
the variance strata rather than the design strata) can only bias variance estimation upward.  
How much upward bias depends on how dissimilar the expectations of the Ehj across the 
design strata being collapsed into a variance stratum.  One popular complex sampling 
design selects a single PSU per design stratum and collapses pars of “adjacent” (in some 
sense) design strata into variance strata because equation (3.3) requires each nh to be at 
least 2.   
 
When every PSU is a design stratum is selected into the sample, these certainty PSUs 
become the variance strata for use in equation (3.3) and the units chosen from them in the 
next stage of sampling (e.g., housing units selected from area clusters) are variance PSUs.  
 
3.3  Calibrated Weight Adjustment 
Let dk  be the inverse of the probability that sampled element k has randomly selected for 
a stratified multistage sample before any weight adjustments for unit nonresponse, frame 
incompleteness, or efficiency improvement;  dk  = 0 when k  U is not a sampled element.  
The value qk = wk/dk  for sampled k is the product of possibly multiple calibration factors 
(qk = 0 otherwise). There can be multiple adjustments for nonresponse in a complex survey 
because nonresponse can occur various levels (e.g., at the household and at the individual). 
To simplify the exposition, we will assume that there is a single calibration factor of the 
form qk = Skq(xk

Tg), where q(t) is a monotonic function, such as q(t) =1 + exp(t), xk is a 
vector of variables with a finite number of components, Sk is 1 when k is in the respondent 
sample, 0 otherwise,  and g (if it exists) satisfies the following calibration equation:  

 
                                           ( ) ,T

k k k k k k
k U k U

w d S q
 

= =  cc x g c T                             (3.6)      

where ck is a vector of calibration variables with the same number of components as xk . In 
practice, the two are often identical.  The population total of ck − or a nearly unbiased 
estimate of that total − is known and denoted Tc.   
 
When equation (3.6) is used create calibrated weights that account for unit nonresponse, 
the components of Tc can be estimates based on the sample before unit nonresponse, that 
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is Tc = U dkck.  The probability of (unit) response is assumed to have the form 1/q(xk
T), 

and the g that satisfies equation (1) is a consistent estimator of  . For example, if response 
is assumed to be a logistic function of xk, then qk   1+ exp(xk

T).   
 
We further assume that the probability an element responds when sampled, is Poisson, that 
is, independent across the elements of the population. Accordingly, the respondent sample 
can be treated as a stratified multistage sample.    
 
When equation (3.6) is used to calibrate weights that account for coverage error, 1/q(xk

Tg) 
estimates the expected number of time element k is in the sampling frame (1/q(xk

T)). This 
value can exceed 1 when there is duplication in the frame. More often the frame is 
incomplete, and 1/q(xk

T) lies between 0 and 1.  Here, we assume duplication doesn’t occur 
in the frame, and the number of times k is in the sampling frame (0 or 1) is independent 
across population elements, so that the sample can still be treated as stratified multistage 
for variance estimation purposes.   
 
Both the models for response and frame undercoverage are selection models, either 
representing the self-selection of an element into the respondent sample or the “selection” 
of an element in the population into the sampling frame. In the remainder of this section, 
we limit the discussion to response selection models for convenience.    
 
When the calibration factor is not used for selection modeling but to increase the efficiency 
of estimated means and totals q(t), it is often set at 1 + t (linear calibration), exp(t) (raking), 
or 1/(1 + t) (pseudo-empirical likelihood) and  = 0.  Linear calibration and raking are also 
often used for unit nonresponse adjustment but then  is no longer 0.  For unit nonresponse 
adjustment, setting q(t) = [L+ exp(t)]/[1 + exp(t)/U] assumes response is a truncated logistic 
function with response probabilities between 1/U and 1/L.           
 
Let us assume for now that the Poisson selection model for response implied by q(xk

T) is 
correct. In addition, when Tc is a random variable, assume it is uncorrelated with whether 
element k is a respondent when sampled. Under mild conditions, paralleling those used to 
justify equation (2.9) and the consistency of b,  
 

           
1

1 1'( ) ( )T T
k k k k k k k k k

k U k U
M d S q M d S q

−
− −

 

   
− =  −   

      
 cg γ c x T x γ c  

 
for some k between xk

Tg and xk
T, and so g is a consistent estimator for .   

 
Often many of the components of xk will also be component of zk. If they all were or if we 
replace the standard-model assumption in equation (2.2) by   
  
                              E(εk |zk, xk) = 0 for all realized zk and xk, kU,                                        (3.7)                         
  
then it is easy to see from  
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b β z z z
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that equation (3.3) can be used to estimate the variance of b given Tc. The conditioning on 
Tc is needed when Tc itself is an estimator.   
 

The assumption in equation (3.7) collapses to that of the standard model in equation (2.2) 
when the component of xk are also in zk.   Under this assumption, we can replace wk by dk 
in defining b, and the estimator will remain consistent.  
 
When the assumption in equation (3.7) fails, b defined with wk remains a consistent 
estimator for    under the extended model, but variance estimation is confounded by the g 
on the right-hand side of equation (3.8). It may be approximately equal to , but the 
approximation is not close enough to be ignored.  
 
Let us assume that the probability element k responds when sampled is 1/ q(xk

T) and 
independent of whether any other element responds when sampled. It is not hard to see that  
  
                                         1 1* ( )T

k k k k k
k U

M d S q− −



−  b β A x g z  

 Let k be the pth component of M-1A*-1zkk, so that the error of the pth component of b is  
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1
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Dropping the  1 ( *) '( ) ( )T T T
k k k k k kUM d S c q−  − − δ x γ x g γ  term above requires 

asymptotic theory.  Both xk
T(g − ) and   1 ( *) '( )T T

k k k k kUM d S c q−  − δ x γ  are Op(1/n) 

under mild conditions, so their product is Op(1/n), which small enough to be ignored.   
 
Because the probability of response is Poisson, we can treat the sample as a stratified 
multistage design, with  1 * ( *) ( )T T T

k k k k k kM c S c q− = +  −δ δ x γ  as the element values in 

an asymptotically equivalent expression for the error of the pth coefficient of b.  The 
linearized version of the variance estimator for the coefficient replaces * in k  with the 
expression within the curly brackets of equation (3.10) and  with g.   
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With replication, we do an asymptotically equivalent thing, but without having the compute 
some of the complicated terms in equations (3.9) and (3.10) when the standard model fails. 
Instead, replicate versions of g are computed in replicate calibration equations (3.6).  In the 
next section, we explore one such replication technique: the jackknife.  
 
When calibrating to a constant Tc in equation (3.6) (or, more appropriately, both sides of 
equation (3.6) divided by M, where M-1Tc remains constant as the population size grows), 

k  becomes  1 ( *) ( )T T
k k k kM S c q−  − δ x γ  because *T

k kU d c δ  is replaced by a constant 

Tc*, which does not contribute to the variance.    Moreover, some of the components of 
Tc can come from the full sample and some components be constants or provided from 
outside samples.  
 

4. Jackknife Variance Estimation 
 
Replication techniques provide alternative methods for estimating the variance of b  that 
are especially useful when fitting the extended regression model with calibrated weights.  
Here, we focus on two forms of jackknife variance estimation, starting with the popular 
delete-1 jackknife.   
 
Redefine Shj slightly as the set of all respondents in variance PSU j or stratum h, and let Sh+ 
be all respondents in variance stratum h. We define the hjth jackknife replicate of b as the 
solution (b(hj)) to  
 

                         ( ) ( )( )hj T hj
k k k

k
k

S
w y f



 −
  z bz = 0,                                                         (4.1)   

where wk
(hj) = 0    when k  Shj 

           wk
(hj) = [nh/(nh−1)] wk when k  Sh+ but k Shj 

           wk
(hj) = wk                   otherwise. 

This is identical to the estimator for  (in equation (2.7) computed from a sample 
paralleling S except that only nh−1 variance PSUs from stratum h are included; that is, all 
the variance PSUs in h except hj.  Consequently, analogous to equations (2.9) and (2.10) 
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( ) 1 ( )

, (4.2)
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The limit of ( )hj
A  as the number of sampled PSUs gets arbitrarily large is A*, just like A.  

Consequently,  
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and some more algebra reveals that the delete-1 jackknife variance estimator for b, 

                      D1J
1

( ) ( )

1

1 ( )( ,)( )
hn

hj hj Th

h

H

h j

n
n ==

−
−= − b b b bvar b                                        (4.3) 

is nearly equal to the (Taylor-series) linearization variance estimator in equation (3.3).  
 
There are two main differences between var(b) in equation (3.3) and varD1J(b) in equation 
(4.3).  The former replaces the k with ek . This often causes var(b) to slightly underestimate 
the variances of the components of b when the number of sampled PSUs in not “arbitrarily 
large,” that is, in actual application.  The delete-1 jackknife does not make that replacement.  
Instead it treats ( )hj

A as if it were the same as A. This often causes varD1J(b) to slightly 
overestimate the variances of the components of b when the number of sampled PSUs in 
not arbitrarily large.   
 
The delete-1 jackknife produces as many sets of jackknife replicate weights as there are 
variance PSUs. Many find handling so many sets of weights (including the original 
weights) burdensome.  When nh =2 in every variance stratum, an alternative delete-1 
jackknife creates replicate weights for only one variance PSU per variance stratum and 
computes 

 

                   ( 1)
D1J-alt

( 1)

1
(( ) )( )h h

h

T
H

=
−= −va br b bb b .                                                         (4.4)                          

 
4.1 The Delete-a-Group Jackknife 

Several computed packages can compute other jackknife variance estimates with a reduced 
number of sets of jackknife replicate weights (one for each replicate).  The generic form of 
which is 

                     ( ) (
GJ

1

)( ) ( )( ,)r r
R

r

T
rM

=
= − − b b b bvar b                                                        (4.5) 

where each b(r) is computed with its own set of replicate weights.   Observe that equations 
(4.3) and (4.4) have this generic form.  
 
To run a delete-a-group (DAG) jackknife, one first sorts the variance PSUs by variance 
stratum and assign each variance PSU systematically to one of R replicate groups, which 
are not the same thing as replicates, although there will ultimately be R sets of DAG 
jackknife replicate weights. In addition, Mr =  (R-1)/R for all r in equation (4.4).  The 
number of replicate groups needs to be large enough for the resulting variance estimator to 
be relatively stable, say R = 30.     

 
53



 

Let h denote a variance stratum as before, r a replicate group, and Shr  the set of sampled 
respondents in both variance stratum h and replicate group r.  Let  nh  be the number of 
sampled PSUs in variance stratum h. 
 
When  nh  R, the R DAG jackknife replicate weights are computed for each sampled 
respondent k in variance stratum h, as follows: 
  
        0r

kw =( )               when k  Shr 

                  ( )k h h hrw n n n= −/   when k  Shr, 

which explains the name.                                                                               
 

When  nh < R , the R DAG jackknife replicate weights for a respondent in stratum h are 
  
  r

kkw w=( )                    when Shr is empty 

          1 1k hw n Z= − −  ( )    when k  Shr 

          ( )1kw Z= +           when Shr is not empty, and k  Shr,                                                                                
 

where  1
1 1h h

RZ
R n n

=
− −( )

.  

   
The proof that DAG jackknife work can be found in Kott (2001).  All replicate variance 
estimators having a form like equation (4.5) may exhibit a slight tendency to have an 
upward bias (which shrinks to zero as the number of sampled PSUs grows arbitrarily large) 
due to b(r) in (b(r) − b) being computed with ( ) 1 ( ) '( )r r

k kkS k
TM w f−

 =  z zA  rather than 

with A as is b.  
   
When using calibrated weights, if some of the components of Tc in equation (3.6) come 
from an outside, independently drawn samples, each with the same number of DAG 
jackknife replicate groups as S, and the rest are either constants or come from S before unit 
nonresponse, then a DAG jackknife variance estimator can capture both the variance 
contributed from the outside sample and from S (and from adjusted for unit nonresponse).   

  
5.  Some Tests  

 
5.1  Tests for Choosing Weights 
Suppose an analyst wants to determine whether b and b', each computed with its own sets 
of weights, are estimating the same thing. For example, to test whether weights are 
ignorable in expectation, the analyst could compare b computed using inverse-selection-
probability analysis weights with b' computed using equal weights. If the estimated 
coefficient vectors are not significantly different, then weights might be ignored. Similarly, 
b computed with analysis weights could be compared with b' computed using P-S adjusted 
weights. This would provide an indirect test of the standard model, since using the P-S 
adjusted weights produces a consistent estimator for  under the standard model but not 
necessarily when the standard model fails.  
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Under the null hypothesis that b and b' are estimating the same thing, 

( ) ( ) ( )12 ' ' 'T
r

−
 = −  −  − b b var b b b b is asymptotically chi-squared with r degrees of 
freedom, r is the dimension of zk, and var(.) is a variance estimator analogous to the one 
in equation (3.3). or (5.3). A popular probability-sampling-based test statistic for whether 
b and b' are estimating the same thing is  

                        
( ) ( ) ( )1

, 1
' ' '1 ,

T

r d r
d kF

d r

−

− +
−  −  −− +   =  

 

b b var b b b b
                     (5.1) 

 
where d is the nominal degrees of freedom, that is, n − H. The F test in equation (5.1) is 
called the adjusted Wald F test in SUDAAN 11 (RTI International, 2012; p. 217), which 
also offers a host of variations, of which the adjusted Wald F (Fellegi, 1980) and the 
Satterthwaite-adjusted F, based on Rao and Scott’s (1981) Satterthwaite-adjusted chi-
squared test, are the best (see Korn and Graubard, 1990).  Note that this is an adjustment 
of the numerator degrees of freedom.  It treats n − H as the denominator degrees of freedom.                                     
 

This test, proposed in Kott (1991) which owes much to the more assumption-dependent 
Hausmann (1978) test, is relatively easy to conduct using popular design-based software 
in the following manner. Two copies are made for each respondent in the data set. Both are 
assigned to the same PSU which accounts for their being strongly correlated in variance 
estimation. The first copy is assigned the weight used to compute b and the second the 
weight used to compute b'. The row vector of covariates zk

T
 of the regression is replaced 

by (zk
T

  zk
T) for the first copy and by (zk

T
  0T) for the second.  The regression coefficient is 

then 

                                     
(1)

(2)

'
,   

   
= =     −  

b b
b

b b'b
              

Testing whether (2)b = b' − b is significantly different from 0 is straight forward.  
 

5.2  Another Test for the Standard Model 
One way to test whether the standard model holds in a population is by testing whether 
using P-S adjusted weights yields significantly different regression-coefficient estimates 
from using inverse-selection-probability weights. Below we describe another test.  It may 
prove useful for determining whether the standard logistic model holds in the population, 
which can be difficult to determine with a clustered sample (Graubard et al. 1998).   
 
Compute b in equation (2.8) using inverse-selection-probability weights, calibrated 
weights, or P-S modified weights. Compute fk = f(zk

Tb) which nearly equals f(zk
T).  Apply 

design-sensitive software to the linear model: E(yk) =  + fk + fk
2

. If g, the estimator for 
, is significantly different from 0, then the standard model fails for the model in (2.2) 
because E(k|zk) is clearly not 0 (fk being a function of zk, and the variance estimator being 
robust to the heteroskedasticity of the yk −  − fk − fk

2). That g is not significantly different 
from 0 is necessary for the standard model to hold but not sufficient to establish that it 
holds. Observe that when the standard model holds a, the estimator for , should also not 
be significantly different from 0. This suggests testing whether a and g are simultaneously 
not significantly different from 0.    
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6.   Imputing missing item values with a regression model  
 
In this section, we change focus from model fitting to prediction, in particular, to the 
prediction needed when imputing for a missing survey value.   Most complex sample 
surveys suffer from item nonresponse.  This occurs when a sampled (unit) respondent k  
S provides item values for some survey items but not for others.  Suppose all survey 
respondents provide values for the vector of variables zk

A but only some provide a value for 
yk.   To estimate the population total,   Ty = U yk, with an analysis-weighted sample, one 
can compute 
 
                                  ( )(1 ),T

y k k k k k k
k S k S

t w y R w f R
 

= + −  z b                                  (6.1) 

 

where Rk  = 1 when k is an item respondent,  0 otherwise, and zk is a subset of zk
A.   

Analogously, for estimating the population mean, Ty/M, one can replace all the wk  in 
equation (6.1) by  wk/S wj. 
 
Suppose the standard regression model relating yk to f(zk

T)  in equations (2.1) and (2.2) 
holds, and the probability of item response for each unit respondent k is wholly a function 
of the components of zk.  Then choosing for b in equation (6.1) a solution to the equation,                         
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where (zk) is any scalar function of zk provides a nearly unbiased estimator for Ty in some 
sense.   
 

When the standard model does not hold or the probably of item response is not wholly a 
function of the components of zk, we can alternatively attempt to find a b satisfying  
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We are restricted for computational purposes to item-responding members of S. 
Consequently, we can try to find a b satisfying  
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                 Ik = 1 when k  S (0 otherwise), and  
                     

     |   denotes conditioning on all the variables used in determining the probability 
      of inclusion in respondent sample S.            

 
This assumes we have fit an item-response model for Rk. We will describe a method for 
assuming and fitting such a model in the next subsection. 
 
In this section, we always assume that E(Ik|. ) is correctly specified and consistently 
estimated (recall that the analysis weights can include adjustments to compensate for unit 
nonresponse and frame undercoverage).   If, in addition, the item-response model 

( | , )A
k k kE R y z is correctly specified and consistently estimated, and zk contains an 

intercept, then  
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and equation (6.1) provides a nearly unbiased estimated for Ty is some sense whether or 
not the standard regression model holds.  
 
A common example of imputation with a regression model is imputation with the group 
ratio model in equation (2.4).  When qk varies across the k,  zk = qkk does not contain an 
intercept as we noted earlier. Nevertheless,  
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The last line assumes ( | , )A

k k kE R y z  is constant within each group.    
 
Observe that ty in equation (6.1) is nearly unbiased in some sense when either,  
1, the standard group ratio model holds in the population, the analysis weights are 
ignorable, and the probability of item nonresponse is wholly a function of zk  (combined 
with E(wk|.) = 1), or,  

2, the probabilities of item response are constant within each group (and E(wk|.) = 1).    
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This property has been called “double robustness,” but double protection against item 
nonresponse bias is a more accurate description.   
 
The leaves of a decision tree (classification or regression) for yk is a group-mean outcome 
model.  Note that the tree can only be fit among item respondents.  Decision-tree 
methodology can be used to fit a group-mean response model.  In this case, the entire unit-
respondent sample can be used to fit the model. 

 
6.1 Assuming and Fitting an Item-Response Model      
More generally, suppose it is reasonable to assume that the item-response model has the 
form: ks 

                                         ( | ) ( ),T
k i k i k iE R h=x x γ                                                         (6.3) 

 
where h(.) is a known function (e.g.,  h() = 1/[1 + exp()]), ixk is a vector of survey 
variables known for all item respondents, which means it may contain yk

  along with 
components of zk

A  and functions of components of zk
A, and i is a vector of unknown 

parameters.  The prefix i on ixk and i differentiates them from the vectors in unit response 
function 1/ q(xk

T) described in Section 3.3. 
 
Let zk

0 be a vector containing components of  zk
A (and functions of components of zk

A) 
having the same number of components as ixk. If the item response model in equation (6.3) 
is correctly specified, then a consistent estimator for i will be the solution ig of the 
calibration equation (if it exists):  
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or its near equivalent:  

                                   0 0.
( )k k k k

k U k Ui i

k
T

k
w w

R
h 

= z z
x g

                                                        (6.4) 

 
The size of zk

0 in practice is flexible.  One can always increase the number of components 
in zk

0 to equal the number of components in ixk, thus making the number of implicit 
equations in (6.4) (the components of zk

0) equal the number of unknowns in i.  If ixk has 
fewer components than zk, then we can generate zk

0 with      

                        
1

0 ,T T
j i j

k S k S
j j j jk kR R

−

 

 
=   

 
 z x z z z z  

which essentially regresses the components of ixk onto zk using ordinary least squares 
applied to the item respondents.   

In many applications ixk  in the assumed item-response model (equation (6.3)) is to equal 
zk

0, and zk
0 is made up of components of zk and functions of components of zk.   As a result, 

the solution b to equation (6.2) leads to doubly robust imputation when zk contains an 
intercept (or the equivalent) when either the standard regression model holds and the true 
(but not specified) item-response model is a function of zk or the assumed item response 
model fit using equation (6.4) is indeed the true item-response model.   
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If the standard regression model in equations (2.1) and (2.2) holds, the model errors (the k 
in equation (2.1)) are uncorrelated, and the true item response model is a function of zk, 
then, in the spirit of P-S adjustments, we should be able to increase the efficiency of b by 
dividing the wkrk in equation (6.4) by k = (zk)  the predicted value of a Poisson regression 
of wkrk[yk − f(zk

Tb)]2/f (zk
Tb) on appropriately chosen components of zk and functions of 

those components.  For double robustness to obtain, we may have to add k to the 
components of zk in equation (2.1), when it is not already a linear function of those 
components. 
 
6.2 Nonignorable Item Nonresponse 
When yk is a component of ixk in the item-response model, that is, item nonresponse in 
nonignorable, things are a bit more complicated.   Fitting equations (6.4) and then (6.2) to 
determine, in turn, rk and then b will produce a nearly unbiased estimator for Ty when the 
item-response model in equation (6.3) is correctly specified.   
 
If both the item-response model and the standard regression model in equations (2.1) and 
(2.2) are correctly specified, then b is a nearly unbiased estimator for . This can be 
softened a bit thanks to standard regression model assumption in equation (2.2).  The 
estimation of [1 − E(Rk|ixk)]/ E(Rk|ixk)] = [1 − h(ixk

T
i)]/ h(ixk

T
i) within rk  = Rk [1 − E(Rk|ixk)]/ 

E(Rk|ixk)] needs only to be correctly specified up to a function of zk.  Consequently, if we 
fit E(Rk| ixk)] with 1/[1 + exp(ykgy + zk

Tgz)],  but the true response function is                            
1/[1 + exp(yky)(zk)] for some unknown (zk), and gy is a consistent estimator for  y , then  
b remains nearly unbiased under the standard regression model.  In practice, after fitting 
1/[1 + exp(ykgy + zk

Tgz)],  gy may only be close to a consistent estimator for y, and so b 
would only be close to being nearly unbiased.  
 
We can again, potentially increase the efficiency of b by dividing the wkrk in equation (6.2) 
by k = (zk) the predicted value of a Poisson regression of  wkrk[yk− f(zk

Tb)]2/f (zk
Tb) on 

appropriately chosen components of zk and functions of those components.  For double 
robustness to obtain, we can, as before, add k to the components of zk in equation (2.1), 
when it is not already a linear function of those components. 
 
6.3  Variance Estimation 
The delete-a-group jackknife can be used to measure the variance of an estimated infinite 
population mean (the population mean as the population size grows arbitrarily large) 
computed with equation (6.1), where each analysis weight is replaced by wk/S wj.   With 
G sets of replicate analysis weights {wk(g), g = 1, …, G} and item-response weights {rk(g), 
g = 1, …, G} there are likewise G versions of b(g) , and  G versions of the imputed value 
for a missing yk: f(zk

Tb); namely f(zk
T b(g)),  g = 1, …, G.  Each b(g) is computed with a 

replicate version of equation (6.2).  An efficiency increasing weighting factor, 1/k, if it 
exists, need not be replicated. 
 
When a goal is to estimate the distribution of the yk in the population, the implicit 
imputation of a missing yk  with f(zk

Tb) in equation (6.1) is not helpful.  When f(.) is logistic, 
we can impute a missing yk with 1 with probability f(zk

Tb) and with 0 otherwise. To 
determine the probabilities of imputation with 1 in a way that, at most, marginally distorts 
the estimated mean, sort the m item nonrespondents in random order and assign the first in 
that order probability 1/(2m),  so that missing yk  is imputed with 1 when f(zk

Tb) > 1/(2m), 
0 otherwise.  Similarly, assign the second in order probability 3/(2m), the third probability 
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5/(2m), …, and the last probability (2m – 1)/(2m).  In a delete-a-group jackknife replicate, 
it is the size of f(zk

Tb(r)) that is compared to 1/(2m), …, or (2m – 1)/(2m).    
 
When f(.) is linear or Poisson, add the residual yj − f(zkj

Tb) from one of the item respondents 
to f(zk

Tb) when yk is missing.  To choose which item respondent’s residual to use as a donor 
for k, first sort the item respondents in random order and selected a systematic probability 
proportional to wjrj (or  wjrj/j if more appropriate) sample of m donors, where m is the 
number of item nonrespondents; then assign the residuals of the m selected donors 
randomly to the m item nonrespondents.   In every jackknife replicate, the sample donor 
residual is used for a particular item nonrespondent when needed to avoid overestimating 
the contribution to variance from adding residuals to the imputation.    
 

7.   Discussion  
 
Complex surveys are usually designed to estimate population totals, means, and simple 
ratios of collected survey items.   Sometimes, however, analysts desire to fit regression 
models among the items.  The population mean of a survey item is the simplest example 
of a standard regression model, one that always holds in the population, but whose 
consistent estimation can be affected by members of the sample having unequal 
probabilities of selection.  As we have seen, whether the standard model holds and whether 
unequal selection probabilities affect consistent estimation are two distinct issues.    
 
Given an assumed statistical model,  E(yk) = f(zk

T), relating a survey item yk for population 
member k  to an explanatory vector of survey items zk , the standard regression model holds 
when E{[yk  − f(zk

T)]|zk} = 0 for all realized values of zk in the population   That model 
can, and often does, fail.  One reason for its failure is that a complex survey is limited in 
the variables that can serve as components of zk.  A more reasonable model may require 
more explanatory variables than available on the survey. 
 
Even when the assumed standard model does not fail, the expectation of the model errors, 
k = yk  − f(zk

T), may depend of the elements’ probabilities of sample selection.  Assuming 
some mild conditions hold, by injecting the inverses of the element selection probabilities, 
the analysis weights {wk}, into an estimating equation, S wkzk [yk  − f(zk

Tb)] = 0 (where S 
denotes the responding sample) and solving for b,  one can consistently estimate   under 
the standard model Solving this weighted estimating equation for b also consistently 
estimates   under the more general extended model which only assumes E{zk [yk  − 
f(zk

T)]} = 0.    
 
An analysis weight wk  can have several components:  the inverse of the probability that 
element k was randomly selected from the sampling frame,  the inverse of the estimated 
probability that selected element k responded to the survey, the estimated inverse of the 
probability that population element k  was in the sampling frame from which the sample 
was selected, and a small scaling adjustment to increase the efficiency of estimated item 
totals.  It is important to realize that the second and third components involve estimating a 
function that can be misspecified.   The first and fourth do not.       
 
If the standard regression model holds, then b remains a consistent estimator when each 
analysis weight in the estimating equation is multiplied by a scalar function of the 
explanatory variables in zk.  That scalar function can be chosen to increase the efficiency 
of the components of b as we saw in Section 2.3.   In addition,  so long as both the true 
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probability of unit response (or frame undercoverage) and the estimate of that probability 
are both functions of the explanatory variables in zk, then using the adjusted analysis 
weights in the weighted estimating equation produces a consistent estimator for b when 
the standard regression model holds even when the function used to estimate the unit-
response probability is misspecified.    
 
Indeed, when the standard regression model holds, if the inverse of the probability of 
selection into the respondent sample is a function of the regression model’s explanatory 
variables, then one need not weight the estimating equation at all in computing a nearly 
unbiased b.  Fitting a standard regression model requires weighting only when the 
probability of selection into the respondent sample when conditioned on the regression 
model’s explanatory variables is a function of the dependent variable.         
Often, the more explanatory variables in in zk, the less the need for analysis weights in the 
estimating equation.  Similarly, the more components in zk, the more likely the standard 
model is to hold.   Section 5 describes tests for assessing whether the standard model holds 
or whether analysis weights are needed for estimating a regression model.       
 
When estimating a population total or mean with a complex survey, imputing for a missing 
item value with the predicted value of a regression model with other survey items as the 
explanatory variables can lead to nearly unbiased estimation in some sense when the 
standard model holds in the population.  In fact, when the standard model holds and item 
missingness is a function of the explanatory variables and not the item being imputed, it is 
unnecessary to use weights when fitting the regression model.  Using the products of the 
analysis weight and an item-response weight when fitting the regression model can provide 
protection against the failure of the regression model when the item-response model used 
for computing the item-response weights is correctly specified and consistently estimated.         
 
We saw that a calibration equation (6.4) can be used to fit an item-response model.  A 
calibration equation (3.6) can likewise be used to fit a unit-response model (or a coverage 
model) when adjusting analysis weights.  When response is partially a function of the 
dependent variable given the regression model’s explanatory variables, these response 
models need to be correctly specified when the standard regression model fails.   
 
When response is partially a function of the dependent variable, the standard model holds, 
and the ratio of the true and the fitted but misspecified response models is a function of the 
regression model’s explanatory variables, then using the fitted response model to create the 
analysis or item-response weight will produce nearly unbiased estimates.   Although this 
last condition is not likely to be satisfied in practice, it suggests that using a misspecified 
response model may remove some potential for bias resulting from nonignorable 
nonresponse at the unit or item level.     
 
The delete-a-group jackknife provides a useful method for estimating variances of 
coefficient estimates in a regression model or items means when there is item nonresponse.  
Linearization is difficult in either case when analysis weights are calibrated.  An exception 
occurs when estimating coefficients under the standard regression model, and the 
calibration adjustments are function of the explanatory variables in zk and, perhaps, a vector 
xk such that E(εk |zk, xk) = 0 for all realized zk and xk.                    
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