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Abstract 
 

In this paper, we introduce a new Tuned Regression Unbiased Mean Predictor (TRUMP) 
which we show can be adjusted to have smaller variance than the linear regression 
predictor due to Hansen, Hurwitz and Madow (1953) especially when there is 
heteroscedasticity of a form that depends on a parameter, which we call here the Hillary 
Campaign Coefficient. In that case the proposed new TRUMP model can be made more 
efficient than the Best Linear Unbiased Predictor (BLUP) when it is based on an 
appropriate choice of a parameter called the TRUMP Care coefficient. We extend the 
work to chain-type TRUMP Cuts. Some highlights of the work from Singh and Sedory 
(2017b) are presented here. 
 
Key words: Calibration, Jackknifing, TRUMP Cuts, TRUMP care Coefficient, Chain-
Type TRUMP Cuts, First Basic Information (FBI).  

 
1. Introduction 

 
Let iy  and ix , ,,...,2,1 Ni   be the values of the study variable and auxiliary variable, 

respectively, of the ith unit in the population  . Here we consider the problem of 
estimating the population mean  
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by assuming that the population mean  
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of the auxiliary variable is known.   
 
Let  ii xy , , ni ,...,2,1 , be the values of the study variable and auxiliary variable of the 

ith unit in the sample s  drawn using the simple random and with replacement sampling 
(SRSWR) scheme.    
Let  
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be the sample means for the study variable and the auxiliary variable respectively. 
 
Assuming linear regression where the regression line need not pass through the origin, 
the well known mean predictor model is given by: 
 
 ieixiy    (1.5) 

with the assumptions: 
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where mE , mV , mC  denote the model expectation, variance and covariance, and )( ixv  is 

any function of ix  determining the heteroscedasticity in a population.   
 
It will be helpful to point out that the estimators ̂  and ̂  are to be obtained by 
minimizing, with respect to   and  , the weighted error sum of squares (WSSE), given 
by 
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Then the Best Linear Unbiased Predictor (BLUP), in the case of heteroscedasticity, is 

given by 

 Xyreg  ˆˆ  (1.10) 

where 
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and 
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(1.12) 

 

Note that the estimators ̂  and ̂  are Best Linear Unbiased Estimators (BLUE) of   

and   if the model is Homoscedastic.  If there is heteroscedasticity,  then  ̂  and ̂  are 

still unbiased estimators  of   and  , but do not follow the Gauss Markov Theorem for 

minimum variance. This result from the Gauss-Markov theorem leaves room for 

obtaining improved estimators of   and   which could further improve Best Linear 

Unbiased Predictor (BLUP) in the presence of heteroscedasticity.  

 

Singh and Sedory (2017a) have proposed a Tuned Ratio Unbiased Mean Predictor 

(TRUMP) given by 
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where    
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are called TRUMP Cuts (TC).  The TC is obtained by calibrating the jth sampled 

observation jy  by gn , and then subtracting the sampled mean value ny .  The quantity 

0g  is called the TRUMP Care Coefficient and its value depends on past experience 

(or otherwise), which we call the First Basic Information (FBI).  
 
 For example, if 1g , then 
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which leads to the usual jackknifing due to Quenouille (1956) and which was first used 
by Tukey (1958) to estimate the variance.  Likewise, for the auxiliary variable, the TC is 
defined as 
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Singh and Sedory (2017a) considered the minimization of the model variance component 

of the variance of their proposed estimator TRUMPy  given by 
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In the next section, we extend the work of Singh and Sedory (2017a) to the case of the 
Tuned Regression Unbiased Mean Predictor (TRUMP) and present only a few highlights 
of their detailed work in Singh and Sedory (2017b). 

 
2. TRUMP: Tuned Regression Unbiased Mean Predictor 

 
Consider a sample s  of n  observations taken by the simple random and with 

replacement (SRSWR) design where the observed values are ),( ii xy , ni ,...,2,1 .  

Following Singh, Sedory, Rueda, Arcos and Arnab (2016), we now consider a new 

estimator of the population mean Y  defined as: 
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are called TRUMP Cuts (TC), and g  is called the TRUMP Care Coefficient, and its 

value depends on the availability of First Basic Information (FBI). 
 
Assume the preliminary jackknifed weights are given by 
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which we wish to tune further to get a better predictor of the population mean from the 
sample, s , and where the jw  are any arbitrarily chosen weights, which may or may not 

be known.   The linear model in (1.5) can be written as: 
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 TCnTCnTCn jejxjy )()()(    (2.5) 
     
Under the model assumptions, we have 
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and 
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            (2.8) 
 
The expressions in (2.7) and (2.8) clearly indicates that the TRUMP Care Coefficient 
“ g ” has some role in the estimation process, and consequently the First Basic 

Information (FBI) could again be helpful.  Following Singh and Sedory (2017), finally 
we get the Tuned Regression Unbiased Mean Predictor (TRUMP) as: 
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The variance of the proposed tuned unbiased regression predictor *
TRUMPy  with the 

TRUMP Cuts model is given by 
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where  
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Now we suggest obtaining the new tuned weights in (2.1) such that the model variance 
component in (2.10) is minimum subject to the two tuned calibration constraints as used 
in the associated Lagrange’s function : 
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 On using the optimal values of 1  and 2 , the TRUMP weights are then given by: 
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For this choice of TRUMP weights, the proposed Tuned Regression Unbiased Mean 

Predictor *
TRUMPy  in (2.1)  becomes: 
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  (2.15) 
 
which is clearly a Tuned Regression Unbiased Mean Predictor (TRUMP) under the 
TRUMP Cuts model; 
 
 TCnTCnTCn jejxjy )()()(    (2.16) 

  
The estimators of   and   in the TRUMP Cut model (2.16) are, respectively, given by  
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which are obtained by minimizing weighted error sum of squares given by: 
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In other words, the proposed Tuned Regression Unbiased Mean Predictor (TRUMP),  in 
case of heteroscedasticity, is given by 
 Xy TCTC  ˆˆ*

TRUMP  (2.20) 

 
 

3. What is behind TRUMP? 
 
Note that the TRUMP Cuts are linear transformations on both the dependent and 
independent variables.  It is a bitter truth that in the presence of homoscedasticity the 
linear regression estimator, regy , cannot be improved upon under the proposed TRUMP 

Cuts.  It is fortunate that in the presence of heteroscedasticity, the estimator of   given 
by 
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is not invariant, although the estimator of the regression coefficient   given by 
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(3.2) 

is invariant, under the proposed TRUMP cut transformation. 
 
In particular the proposed TRUMP Cuts model is fortunate in the sense that the 

estimators TĈ  and TĈ  can be written as:
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where  *̂  and *̂  are the estimators of   and   obtained by minimizing the weighed 

sum of squares )( 1WSSE  defined as: 
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On comparing (3.1) with (3.3) and (3.2) with (3.5) one can see that the estimators 

TĈ differs from ̂  by two factors, the TRUMP Care Coefficient ( g ) and j , and TĈ  

differs from  ̂   only by factor j .   Recall that the value of j  is given by 
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Thus both the value of the TRUMP care coefficient )(g  and the heteroscedasticity (H) 

are playing a role in making  TRUMP more efficient or less efficient. Further note that if 

nn xy ** ˆˆ    (for constant j ), then *ˆˆ  TC , that is TĈ  also becomes invariant 

under TRUMP Cuts. 
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If 2)1()(  g
j nxv  and 1)ln(/)2ln(  ng , then nj

2 , that is the proposed 

TRUMP is as efficient as the linear regression estimator in the absence of such 
heteroscedasticity. In case of heteroscedasticity of the form below, the value of   j   

depends on the value of the TRUMP Care Coefficient g . In particular, consider a 

heteroscedasticity function of the form:  
              2)1()(  H

jj xxv ,               
 

(3.8) 

where H  is called the  Hillary Campaign Coefficient.  It is clear that for a given value of 
H  the value of the TRUMP Care Coefficient g  could be adjusted such that the proposed 

TRUMP shows efficiency over the weighted least square regression estimator, and hence 
the First Basic Information (FBI) could be helpful.  
A clever idea can be to set the value of TRUMP Care Coefficient as: 
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Such choice of the value of g makes TRUMP model almost free from heteroscedasticity 

and almost as efficient as the linear regression estimator. Now for a given value of the 
Hillary Campaign Coefficient H , we adjust the value of TRUMP Care Coefficient g  

such that the proposed TRUMP performs better.  In other words, the TRUMP Care 
Coefficient could help in controlling the effect of Heteroscedasticity (i.e., the Hillary 
Campaign Effects) when estimating the y-intercept and the regression coefficient in the 
weighted linear regression model. 
 
In the next section, we perform a simulation study to investigate the performance of the 
proposed TRUMP. 
 

4. Which family is supporter of TRUMP? 
 
To discover some families of distribution that support the use of TRUMP, we did a 
simulation study in which we generated bivariate data sets from the model: 
    )()( iiii xvexmy     (4.1) 

where the choice of )( ixm  can form different types of models. Similar to Bredit, 

Opsomer and Sancheg-Borrego (2016), we consider three choices of mean functions 
which lead to the Linear, Bump and Jump models given by: 
     LINEAR: )(21)( xii xxm       (4.2) 
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where 
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ix xN

1

1  is the population mean of a variable generated from a Gamma 

distribution and  
xixI  is an indicator function taking a value of 1 or 0 depending on 

whether xix   or not. Further we generated ),(~ baGxi  and )1,0(~ Nei .  We consider 

the three estimators in comparison, which we redefine as follows: 
 
  ny0̂    (Sample mean) (4.5) 

 
   X ˆˆ1̂    (Weighted regression predictor) (4.6) 

and    
   XTCTC  ˆˆˆ

2     (TRUMP) (4.7) 

 

Note that we have kept same naive control ny0̂  while comparing the weighted least 

square predictor and the proposed TRUMP in various heteroscedastic cases. 
 
For different sample sizes, n , we computed the percent relative efficiency of the jth 

predictor ĵ  over the sample mean predictor 0̂  as: 
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where NITR  stands for the number of iterations.   
 
The value of percent relative efficiency (RE) of the proposed TRUMP over the linear 
regression estimator is computed as 
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In the simulation study, we generated 1050N  random values from  the Gamma 
distribution with 6.3a , and 5.1b . Such a choice of parameters results in bivariate 
data with correlation coefficients values of xy  and yxm i )(  depending on the nature of 

heteroscedasticity. Heteroscedasticity is determined by the value of the Hillary Campaign 
Coefficient ( H ).  It is likely that the higher the value of H  in the function 
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the lower the value of the correlation coefficient between the study variable, auxiliary 
variable and/or the mean function.  The choice 1H  makes the model homoscedastic. 
 
From the population of 1050N  units, we selected 000,10NITR  samples each of sizes 

20n  (say) and then adjusted the value of TRUMP Care Coefficient ( g ) for a given 

value of H  from the three models, although we discuss only the linear model.   In the 
linear model, we set the value of Hillary Campaign Coefficient ( H )  to be  0.5, 1.0, 1.5, 
2.0, and 2.5, then using simulation study we found these  values of the TRUMP Care 
Coefficient ( g ) such that the proposed TRUMP should be more efficient than the 

weighted linear regression estimator.  For the case of linear model, the results are 
presented in Table 4.1. 
    
Table 4.1. RE(1), RE(2) and TRUMP Care Coefficient g values for the linear model.  

  Mean Std Min Max Min Max 
n  RE(1) RE(2) RE(2) RE(2) RE(2) g  g  
 5.0H ,  77679.0xy  

20 241.04 244.85 2.84 241.45 249.94 -0.4186 -0.0686 

25 239.42 243.65 2.85 240.11 248.07 -0.4347 -0.0347 
30 247.54 252.01 3.18 248.26 257.97 -0.4462 -0.0462 
35 247.23 251.44 3.15 247.76 258.22 -0.5550 -0.0550 

40 246.57 250.48 3.17 246.70 257.52 -0.6121 -0.0621 
 0.1H ,  68108.0xy  

20 185.32 185.32 0.00 185.32 185.32 1.3814 1.7314 
25 183.56 183.56 0.00 183.56 183.56 1.2653 1.7153 
30 189.11 189.11 0.00 189.11 189.11 1.1538 1.7038 
35 187.98 187.98 0.00 187.98 187.98 1.1450 1.6950 
40 187.81 187.81 0.00 187.81 187.81 0.9379 1.6879 
 5.1H , 56867.0xy  

20 158.04 160.87 5.63 158.08 183.50 0.0314 1.7314 
25 156.11 158.35 4.60 156.14 178.74 0.0653 1.7153 
30 160.25 162.76 5.43 160.27 187.37 0.0538 1.7038 
35 158.86 161.53 6.10 158.87 189.81 0.0450 1.6950 
40 159.16 162.00 6.68 159.18 193.19 0.0379 1.6879 
 0.2H , 45498.0xy  

20 151.62 157.30 9.76 151.73 193.58 0.0814 1.7314 
25 149.39 155.02 10.10 149.47 191.73 0.0653 1.7153 
30 153.02 158.76 10.12 153.08 192.00 0.0538 1.7038 
35 151.60 157.22 9.98 151.66 194.18 0.0450 1.6950 
40 152.49 157.75 9.87 152.53 198.30 0.0379 1.6879 
 5.2H , 35497.0xy  

20 162.27 172.68 15.33 162.51 222.62 0.0814 1.7314 
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25 159.59 169.11 15.26 159.74 222.32 0.0653 1.7153 
30 163.47 173.30 16.34 163.61 227.10 0.1038 1.7038 
35 162.18 172.17 17.15 162.30 228.67 0.0950 1.6950 
40 163.91 174.12 17.74 164.01 230.27 0.0879 1.6879 

 
If the value of the Hillary Campaign Coefficient is 5.0H , then for a sample of 20 units, 
the value of RE(1) is 241.04, whereas the average value of RE(2) is 244.85 with a 
standard deviation of 2.84, the minimum value of RE(2) is 241.45 and maximum value of 
RE(2) is 249.94 as the value of the TRUMP Care Coefficient g  changes -0.4186 to  -

0.0686 with a step of 0.05.  Thus the First Basic Information (FBI) about the value of 
Hillary Campaign Coefficient H  could help to adjust the TRUMP Care Coefficient g  

such that the proposed TRUMP can perform better.  It may be worth pointing out that in 
case of the linear model, the minimum value of RE(2) remains higher than the RE(1) 
value for all choices of the sample sizes taken and all values of H  and g  considered. In 

other words, if the study and auxiliary variables are following a linear trend but have 
heteroscedasticity then the proposed TRUMP is recommended to search for a TRUMP 
Care Coefficient that would lead to efficient results. Figure 4.1 shows the behavior of 
RE(1) and RE(2) for different values of H  in the range 0.5 to 2.5 with a step of 0.5 
where varying the sample size and the value of the TRUMP care coefficient.  The small 
vertical lines in the left panel of Figure 4.1 are due to changes in sample size for a given 
value of H .  The tall vertical lines in the right panel of the Figure 4.1 are consequences 
of change both the sample size and the value of the TRUMP care coefficient. The cause 
of reduction in RE(1) value as the value of H  increases from 0.5 to 2.0,  may or may not 
be true only to the value of the correlation coefficient xy  between the study variable and 

the auxiliary variable. In case of linear model, yxmxy i )(  where )( ixm is the mean 

function for the linear model.  
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Fig.4.1. Effect of Hillary Campaign Coefficient with linear model 
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A summary of the RE values obtained for different values of H  and n  are reported in 
Table 4.2. 

Table 4.2. RE values for the linear model. 
n  Mean Std Min Max 
 5.0H  

20 101.58 1.18 100.17 103.69 
25 101.77 1.19 100.29 103.61 
30 101.81 1.29 100.29 104.21 
35 101.70 1.27 100.21 104.45 
40 101.59 1.29 100.05 104.44 
 0.1H  

20 100.00 0.00 100.00 100.00 
25 100.00 0.00 100.00 100.00 
30 100.00 0.00 100.00 100.00 
35 100.00 0.00 100.00 100.00 
40 100.00 0.00 100.00 100.00 
 5.1H  

20 101.79 3.56 100.02 116.11 
25 101.43 2.94 100.02 114.49 
30 101.56 3.39 100.01 116.93 
35 101.68 3.84 100.01 119.48 
40 101.78 4.20 100.01 121.38 
 0.2H  

20 103.75 6.44 100.07 127.68 
25 103.77 6.76 100.05 128.35 
30 103.75 6.61 100.04 125.61 
35 103.70 6.59 100.03 128.08 
40 103.45 6.47 100.03 130.04 
 5.2H  

20 106.41 9.45 100.15 137.19 
25 105.98 9.56 100.11 139.32 
30 106.02 9.99 100.09 138.93 
35 106.16 10.57 100.07 140.99 
40 106.23 10.82 100.06 140.48 

 
From Figure 4.2 and Figure 4.3, for value of g  between 0 and 1 shows that applying the 

proposed TRUMP in the presence of heteroscedasticity could be helpful.  From Table 

4.2, one can see that in the case of linear trend, if the value of 1H , which means  

ii xxv )( , then the proposed TRUMP and the weighted linear regression are equally 

efficient for certain range of g .  As soon as the value of H  becomes higher, then RE 

values show an increasing trend. 
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Fig. 4.2. Effect of TRUMP Care Coefficient with linear model 
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Fig. 4.3. Effect of TRUMP Care Coefficient and sample size with linear model 

 
Similar results are observed for in case of a Bump Model and a Jump Model. 
 

Remark 4.1. Adjustment of (
2

1H
) has been made such that there should not be too 

much heteroscedasticity in a population, but one could always change to other function, 
such as: 
 

H
ii xxv )( ,   H

ii xxv )][log()(   and H
xii xxv )(  etc. 

 
which we will be exploring in future studies. 
 
In the next section, we consider the study of Tuned Regression Unbiased Mean Predictor 
(TRUMP) with Chain Type TRUMP Cuts. 

 
3004



 
5. TRUMP with Chain-Type TRUMP Cuts 

 
Here in brief, we introduce the Chain-Type TRUMP Cuts as follows.  The first-TRUMP 

Cuts based on the 1j th unit are defined as: 
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(5.1) 

where 01 g  is now called the first-TRUMP Care coefficient.  
 
Recall that if 11 g  then the first-TRUMP Cuts take the form  
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(5.2) 

which is called the method of jackknifing due to Quenouille (1956). 
 
Now we define second-TRUMP Cuts based on the 1j th and  )( 12 jj  th  units  as: 
 

1)1(

)()1(
)|(

2

2
2

1
12






g
TCnj

g

TCn
n

jyyn
jjy  

 
 
 
 
 
 

(5.3) 

where 02 g  is now called the second-TRUMP Care coefficient.    
 
Now if 121  gg , then 
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(5.4) 

which is again the method of jackknifing two distinct units 1j  and 2j  from a sample due 
to Quenouille (1956).   
 
Under Chain-Type TRUMP Cuts, it is shown in Singh and Sedory (2017b) that the 

proposed Second Tuned Regression Unbiased Mean Predictor *
TRUMP
Secondy   takes the form: 
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  (5.5) 
where )|( 12 jj  can be had from Singh and Sedory (2017b). 
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In the next section, we would be interested in working on the issue of whether creating 
chain-type TRUMP Cuts is more painful than useful. 
 

5.1 Are Chain-Type TRUMP Cuts Painful? 
 

The second-TRUMP Cuts estimator 
*Second

TRUMPy , in addition to depending on the values of 

two TRUMP Care coefficients 1g  and 2g , also depends upon 

))(),(()|(
2112 jj xvxvfjj   which is a joint function of the Hillary Campaign 

Coefficients. There could be two different Hillary Campaign Coefficient 1H  and 2H  

such as  
 2)1( 1

11
)(  H

jj xxv  and 2)1( 2

22
)(  H

jj xxv (5.6) 

Thus the second-TRUMP Cuts model (Singh and Sedory, 2017b)  has the flexibility of 
making use of FBI about two Hillary Campaign Coefficients, and of working efficiently. 

For simplicity, keeping HHH  21 , there is still the flexibility of adjusting two 

TRUMP Care coefficients 1g  and 2g ,  yet the computational work may be painful and 

time consuming for the computer when doing simulations. Searching for a pair of 

TRUMP Care coefficients 1g  and 2g  that make for a more efficient estimator can be a 

daunting enterprise.  
 

5.2 Does performance Boom with Chain-Type TRUMP Cuts? 
 
For demonstration purposes, we kept the same data set as in the case of Jump Model with 

5.0H , 20n , 60983.0xy , and 75008.0)( yxm . To make things clear to the 

reader, we computed the percent relative efficiency of the BLUP: 

 
 X ˆˆˆ*

1    (Weighted regression predictor) (5.7) 

 
and second-TRUMP Cuts predictor, 
 
 **

2̂
Second
TRUMPy    (5.8) 

 
with respect to the sample mean predictor 
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0̂    (5.9) 

as:  
 

  
 
  )(%100
ˆ

ˆ
)ˆ(RE

1

2*
|

1

2*
|0* jRE

Y

Y
NITR

k
kj

NITR

k
k

j 
















 , say 

 
(5.10) 
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where 000,10NITR denotes the number of iterations.  Note that the value of )1(RE  is 

free from the values of the TRUMP Care coefficients 1g and 2g ,  and in this study its 

computed value remains 129.42%. The value of )2(RE  changes in the same range from 

129.58% to 135.96% for the fixed choice of 1g  as the value 2g  changes. A pictorial 

presentation of the results for four choices of 5.61 g , -5.5, -4.5 and -3.5, and for  a 

searched range of 2g  from -4.0 to -1.30, and retaining only those cases where 

)1()2( RERE  , is shown in Figure 5.1.  
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Fig. 5.1 RE(1) values and RE(2) values. 

 

A close inspection of Figure 5.1 reveals that it is not an illusion that the percent relative 

efficiency may “boom” where one has the flexibility of using multiple TRUMP Care 

coefficients.  Thus use of additional TRUMP Care Coefficients seems helpful in practice. 

It may be worth pointing out here that a carefully chosen single TRUMP Care coefficient 

can also perform very well.  
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