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Abstract
We consider a two-stage unit-level model for small areas with continuous survey responses. Typi-

cally survey data have responses with outliers, gaps and ties, and the distributions of the responses
might be skewed. Therefore, predictive inference using a hierarchical Bayesian model with normal-
ity at both levels (responses and random effects) might not be robust against these features. So we
provide a two-level non-parametric Bayesian model with a Dirichlet process at each stage, thereby
permitting a more robust predictive inference. We show how to fit the four versions of this model
(e.g., one version has Dirichlet processes at both levels) using Markov chain Monte Carlo meth-
ods. An application on body mass index and a simulation study are discussed to compare the four
models. While it is difficult to tell which model is preferred, one might want to use the model with
Dirichlet processes at both levels (it robustifies both levels against non-normality).

Key Words: Bayesian computation, Booststrap, Diagnostics, Predictive inference, Robust model,
Survey data.

1. Introduction

There are many methods in current statistical literature for making inferences based
on samples selected from a finite population. The most widely used approach is design-
based inference, which is nonparametric but requires large sample sizes. Model-based
inference for survey sampling population has been proposed as an alternative to the design-
based theory. Survey data, structured hierarchically, are quite common. For example,
students are in classes, classes are in schools, schools are in counties and counties are in
states. Hierarchical models are often applicable to modeling data from complex surveys
such as multistage cluster sampling, because usually such sample designs are used when
the population has a hierarchical structure.

In many surveys, we want to estimate quantities not only for the population as a whole,
but also for subpopulations (e.g., to estimate the average income for every county in the
United States in order to allocate funds for needed areas). Once a hierarchical model is
specified, inference can be drawn from available data for the population quantities at any
level. From a Bayesian perspective, these estimators which can be regarded as posterior
means often have better properties than area-specific direct estimators. This makes hier-
archical Bayesian models useful in the problem of small area estimation (SAE) (e.g., Rao
and Molina 2015). That is, the sample size for a given area or domain may be too small to
provide reliable estimates and it may be needed to borrow information from neighboring
areas, or from areas with similar characteristics.

Hierarchical Bayesian methods, studied in the literature, have been mostly paramet-
ric, based on specified parametric likelihoods with conjugate or non-conjugate parametric
priors. The normal likelihood is the most popular choice; see Scott and Smith (1969),
Malec and Sedransk (1985), Battese, Harter and Fuller (1988) and Nandram, Toto and
Choi (2011). The use of models raises the question about the robustness of the inference
to possible model misspecification. Particularly, survey data tend to have gaps, ties and
outliers.
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There are extensive researches to relax the assumption of normality. One way to do
this is to use heavy-tailed distributions (e.g., t distribution rather than a normal distribution
to account for outliers (e.g., Lange, Little and Talyor 1989), and skew-normal distribution
for heavy-skewed data (e.g., Azzalini 2013). Alternatively, the use of a mixture of normal
distributions takes into account the presence of subgroups or multimodal data (e.g., Verbeke
and Lesaffre 1996).

However, we often know very little about the specific parametric forms of the dis-
tributions, and it is also difficult to validate the parametric assumptions. The parametric
Bayesian models based on distributional assumptions may be problematic because infer-
ences are sensitive to such assumptions. It may be more appealing to use a nonparametric
Bayesian approach.

In this paper, we discuss statistical modeling associated with the analysis of two-level
survey data. Our intention is to propose nonparametric Bayesian alternatives using the
Dirichlet process (DP) to robustify the inference by embedding parametric models in non-
parametric models, thereby reducing critical dependence on parametric assumptions and to
allow for heterogeneity, outliers, skewness, etc. These are expansion models, and a base-
line parametric model is expanded using Dirichlet processes. The existence of the DP was
established by Ferguson (1973). It is a distribution over distributions; each draw from a DP
itself is a distribution (i.e., functional spaces). The DP has gained a lot of attention recently.
It has nice properties such as clustering and borrowing information with reduced shrinkage,
which is attractive to SAE.

In Section 2, we briefly review the Dirichlet process (DP), the Dirichlet process mixture
(DPM) model and the hierarchical Dirichlet process mixture (HDPM) model. In Section
3, we discuss the two-stage Dirichlet process models as expansion models of a baseline
model. We also discuss posterior propriety and prediction for finite population quantities.
In Section 4, we discuss an illustrative example on body mass index (BMI) data and a
small simulation study. Section 5 has concluding remarks and we provide some extensions
to accommodate more stages, covariates and survey weights.

2. A Review of Dirichlet Process and Dirichlet Process Mixture Models

In Section 2.1, we present a review of the Dirichlet process (DP) prior, in Section 2.2,
we present a review the Dirichlet process mixture (DPM) model, and in Section 2.3, we
briefly review the hierarchical Dirichlet process mixture (HDPM) model and discuss why
it might not be adequate for survey sampling.

2.1 Dirichlet Process Model

Let (Θ,B) be a measurable space, with G0 a baseline measure (nonrandom) on the
space, and let α be a positive real number. A Dirichlet process, DP(α,G0), is defined as
the distribution of a random probability measure G over (Θ,B) such that, for any finite
measurable partition of the measurable space Θ, {Ai}ni=1,

{G(A1), . . . , G(An)} ∼ Dirichlet {αG0(A1), . . . , αG0(An)} .

We write G ∼ DP(α,G0), if G is a random probability measure with a distribution
given by the DP, where α is the concentration parameter. For an measurable set, A, we
have E[G(A)] = G0(A), that is the mean of the DP is the baseline distribution G0 and
Var[G(A)] = G0(A)[1 − G0(A)]/(α + 1). The larger α is, the smaller the variance (i.e.,
the DP concentrates more of its mass around the baseline distribution). Here G0 and α
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are both parameters and they play intuitive roles in the definition of the DP. Here G is
constrained to be around Go and this is regulated by α.

Let G ∼ DP(α,G0) and θ1, . . . , θn be a sequence of independent draws from G. The
posterior distribution, G|θ1, . . . , θn, is

DP

(
α+ n,

α

α+ n
G0 +

1

α+ n

n∑
i=1

δθi

)
,

where δθi is the cdf of a point mass at θi. This conjugate property of the DP was motivated
by Ferguson (1973), desirable for easy algebra and computations.

For a one-sample problem, one might take

X1, . . . , Xn | G ind∼ G,G ∼ DP (α,Go),

where Go is the baseline measure and α the concentration parameter. Assuming that there
are k distinct values among X1, . . . , Xn, the baseline model is X1, . . . , Xk | k ∼ Go.
Note that k is a random variable. The baseline measure Go is assumed continuous. Binder
(1982) was the first to introduce this model to survey sampling; more recently, see Nandram
and Yin (2016 a,b). Although Go can be discrete, it appears that this latter case was not
discussed by Antoniak (1994).

Now considering the predictive distribution for θn+1 conditioned on θ1, . . . , θn with G
integrated out, we have

θn+1|θ1, . . . , θn ∼ α

α+ n
G0 +

1

α+ n

n∑
i=1

δθi .

The sequence of predictive distributions for θ1, θ2, . . . is called the Polya urn scheme
(Blackwell and MacQueen 1973). Here, it is interesting that the probability measure G
is discrete with probability one, but θ1, . . . , θn

iid∼ Go, a continuous measure (i.e., the θi are
continuous, yet θi = θj , i ̸= j with positive probability).

The discreteness property of draws from a DP also implies a clustering property. Since
the values of draws are repeated, let θ∗1, . . . , θ

∗
k be the k distinct values among θ1, . . . , θn

and ns be the number of θ∗s , s = 1, . . . , k. The predictive distribution can be equivalently
written as:

θn+1|k, θ1, . . . , θn ∼ α

α+ n
G0 +

1

α+ n

k∑
s=1

nsδθ∗s .

Notice that the value θ∗s will be repeated by θn+1 with probability proportional to ns. The
larger ns is the higher the probability that it will grow.

Antoniak (1974) wrote down the distribution of k given α and he proved that k is a
sufficient statistic for α. This is true when Go is continuous. It is easy to write down
the posterior density with an appropriate prior. Nandram and Yin (2016 a, b) used a grid
method to sample α from the posterior density of ρ = 1/(1 + α); they have used the prior
π(α) = 1/(1 + α)2, a proper, but nearly noninformative prior for α, different from the
proper (informative) prior suggested by Escobar and West (1995). Antonelli, Trippa and
Haneuse (2016) reviewed several methods and suggested a more complex method. The
problem of sampling the posterior density of α is a difficult one, and we believe that the
best method is the one of Nandram and Yin (2016 a, b) that we are still trying to improve.

However, if Go is discrete, k is no longer a sufficient statistic; this result appears to
be not so well known. Therefore, if the result is used, this is a violation of the sufficiency
principle; further work is needed and this has not been presented any where. While this
issue is not the subject of the current paper, we are trying to resolve it.
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Sethuraman (1994) provided an elegant equivalent constructive definition of the DP
called the stick-breaking construction, which is G =

∑∞
s=1 πsδθ∗s , where

π1 = β1, πs = βs

s−1∏
j=1

(1− βj), βs
iid∼ Beta(1, α), θ∗s

iid∼ G0.

The construction of π
˜
= {π1, π2, π3, . . . } can be understood as follows. Starting with a

stick of length 1, we break it at β1 assigning π1 to be the length of the stick we just broke off.
Now continually break the remaining part of the stick to obtain π2, π3 and so forth. Despite
the continuity of the baseline distribution, samples from DP are discrete distribution with
probability one. For computational purposes we use this form of the DP repeatedly.

2.2 Dirichlet Process Mixture Model

In many applications, the discreteness of the DP measure may be inappropriate. As we
noted, the most popular application of the DP is in clustering data using mixture models.
We model a set of observations {y1, . . . , yn} using a set of latent parameters {θ1, . . . , θn}
as,

yi|θi
ind∼ h(yi; θi), i = 1, . . . , n, (1)

θi|G ∼ G,

G ∼ DP(α,G0).

This model is referred to as a Dirichlet process mixture (DPM) model; see Lo (1984) where
the DPM was introduced. Nandram and Choi (2004) and Polettini (2017) have applications
on SAE. Each θi is a latent parameter modeling yi, whileG is the unknown distribution over
parameters modeled using a DP. It can be seen as a Dirichlet process mixture of h(yi; θi),
where yi’s with the same value of θi belong to the same cluster. The DPM model removes
the constraint from discrete measures. The corresponding parametric baseline model with
G0 replacing the random probability measure G is,

yi|θi
ind∼ h(yi; θi), i = 1, . . . , n,

θi ∼ G0.

Thus, the DPM model is an expansion model of the baseline model, and therefore it should
be more robust against non-normality. However, this model does not do much to accom-
modate outliers, gaps and ties in the data.

There are many Markov chain Monte Carlo (MCMC) methods that can be used to fit
the DPM model. Escobar and West (1995) proposed a simple (not necessarily efficient)
algorithm by integrating out the random distribution function in the model. Neal (2000)
constructed efficient algorithms to fit nonconjugate DPM models. Another idea, which has
been used, is to leave the infinite dimensional distribution in the model and find ways of
sampling a sufficient but finite number of variables at each iteration. There are two classes
of such methods: retrospective samplers (Papaspiliopoulos and Roberts 2008) and slice
samplers (Ishwaran and James 2001, Kalli, Griffin and Walker 2011). The slice-efficient
sampler is easier to use, as opposed to the complexity of the set up of the retrospective
sampling steps, while both samplers are approximately the same in terms of efficiency and
performance.

Kalli, Griffin and Walker (2011) suggested slice-efficient samplers, an improved slice
sampling scheme that we use in our work, and it is based on the stick-breaking construction
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(Sethuraman 1994) without truncation error. Again, the stick-breaking algorithm is G =∑∞
s=1 πsδθ∗s where

π1 = β1, πs = βs

s−1∏
j=1

(1− βj), βs
iid∼ Beta(1, α), θ∗s

iid∼ G0.

The key contribution of Kalli, Griffin and Walker (2011) is a general class of slice samplers
that can be defined as

f(yi, ui, di|π, θ∗) = 1(ui < ξdi)πdi/ξdih(yi; θ
∗
di
),

where ui, i = 1, . . . , n, are a set of uniform random variables in (0, 1), d1, . . . , dn are a
set of integer random variables that map the areas to clusters, and ξ1, ξ2, . . . are a positive
sequence. Typically, this latter sequence will be a deterministic decreasing sequence. In
our computation, we use ξs = (1 − κ)κs−1 where the tuning constant κ is between 0 and
1. Let K = maxni=1(Ki), where Ki is the largest integer t such that ξt > ui. The joint
posterior distribution is proportional to

K∏
s=1

Beta(βs; 1, α)g0(θ∗s)
n∏

i=1

1(ui < ξdi)πdi/ξdih(yi; θ
∗
di
).

The variables {(θ∗s , βs), s = 1, 2, . . . ,K; (di, ui), i = 1, . . . , n} need to be sampled at each
iteration. The Gibbs sampler is as follows.
1. π(ui| . . . ) ∝ 1(0 < ui < ξdi);
2. π(θ∗s | . . . ) ∝ g0(θ

∗
s)
∏

{i|di=s} h(yi; θ
∗
s);

3. π(βs| . . . ) ∝ Beta(as, bs), where as = 1+
∑n

i=1 1(di = s) and bs = α+
∑n

i=1 1(di >
s);
4. P (di = r| . . . ) ∝ 1(r : ξr > ui)πr/ξrh(yi; θ

∗
r), r = 1, . . . ,K.

Escobar and West (1995) showed how the other parameters are sampled from the base-
line model conditional on the ones that are already obtained when Go is specified (e.g.,
Normal(θ, δ2)).

2.3 Hierarchical Dirichlet Process Mixture Model

In a celebrated paper, Teh, Jordan, Beal and Blei (2006) introduced and described hi-
erarchical Dirichlet process mixture (HDPM) model. We give a brief review here and we
discuss its relevance to survey sampling.

The HDPM model is
yij | θij

ind∼ F (yij | θij), (2)

θij | Gi
ind∼ Gi, (3)

Gi | α,Go
ind∼ DP (αo, Go), (4)

Go | γ,H ∼ DP (γ,H). (5)

Vague gamma priors are assumed for αo and γ. The specifications, (4) and (5), form the
hierarchical Dirichlet process prior and (2), (3), (4) and (5) form the HDPM model. The
base measureH is assumed known and conjugate to F (· | ·), a standard assumption in hier-
archical Bayesian models to simplify algebraic manipulation and numerical computation.

It is well-known that inference is sensitive to the specification of baseline measure (e.g.,
McAuliffe, Blei and Jordan 2006 and Nandram and Yin 2016 a). Therefore, it is good to
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have an unspecified baseline distribution like G0. However, the discreteness of G0 means
that the same value can come from either G0 or from the balls already drawn in the Polya
urn scheme. But it is mandatory to have Go discrete in this model; note that the Gi must
be discrete also. In a lengthy discussion about the discreteness of G0, Teh, Jordan, Beal
and Blei (2006) wrote that if Go were to be continuous, it “is ruinous for our problem of
sharing clusters ... our restriction to discrete Go has important implications for the design
of efficient Markov chain Monte Carlo (MCMC) inference algorithms.” They claimed that
the HDPM model is appropriate for applications in genetics, information retrieval and text
modeling.

Teh, Jordan, Beal and Blei (2006) stated, “We are interested in problems in which the
observations are organized into groups and assumed to be exchangeable both within each
group and across groups.” The HDPM model is used when the yij are exchangeable within
groups and the vectors of the observations are exchangeable across groups; as they clearly
pointed out, this is their key interest. Actually, because data come with heterogeneity,
this model is generally useful, and the data can be organized within groups after they are
collected.

In survey sampling, this model may be fine for simple random sampling. But it is short
for complex survey designs with cluster sampling and stratification (i.e., weighting). The
θij cannot be all exchangeable. In fact, the stick-breaking algorithm (Sethuraman 1994)
gives

Go(θ) =
∞∑
s=1

λsδϕs(θ), λ1 = τ1, λs = τs

s−1∏
r=1

(1− τr),

τs | γ
ind∼ Beta(1, γ), ϕs

ind∼ H.

Therefore, the θij can take only the values ϕs (a limited set of values in practice). Moreover,
for our application on BMI data in which there are outliers, gaps and ties, this model will
be inadequate; a more robust model is needed for the observations as well, not just the other
levels. This is the reason why we develop two new hierarchical Dirichlet process models
in which the observations follow a Dirichlet process.

3. Two-level Dirichlet Process Model

We assume that data are obtained from a two-stage sample survey, for example, a two-
stage cluster sampling, stratified or post-stratified sampling that is often seen in SAE prob-
lems. The sampled values are observed and the nonsampled values are to be predicted using
the two-level models. To gain robustness, these models start with a simple idea that uses a
random distribution drawn from the DP in the model instead of some parametric distribu-
tions. Especially for the area means, it is hard to know the correct parametric distribution.
Assuming a specific parametric form is typically motivated by technical convenience rather
than by genuine prior beliefs. One drawback of the parametric model is the over-shrinkage;
the posterior mean of certain areas may be shrunk too much towards the overall mean. Us-
ing the DP for the area means allows borrowing information moderately within some of
the areas instead of all. Moreover since there are gaps and ties in the survey data, it is
reasonable to introduce a correlation among area means. Thus, it is important to use a non-
parametric procedure. Although presented in a survey sampling framework, the proposed
approach can be adapted to general random and mixed effect models.

Let yij denote the value for the jth unit within the ith area, i = 1, . . . , ℓ, j = 1, . . . , Ni.
We assume that yij , i = 1, . . . , ℓ, j = 1, . . . , ni, are observed, and inference is required
for Ȳi =

∑Ni
j=1 yij/Ni, i = 1, . . . , ℓ, the finite population mean of the ith area, and finite

population quantiles.
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3.1 Two-level Baseline Model

We assume that there are ℓ areas, and within the ith area there areNi (known) individu-
als. A sample of size ni is available from the ith area, and the remaining Ni−ni values are
unknown. Inference is required for the finite population mean and quantile of each area.

For continuous data yij , i = 1, . . . , ℓ, j = 1, . . . , Ni, one can assume that

yij |νi
ind∼ N

(
θ + νi, σ

2
)
, (6)

νi
ind∼ N

(
0, δ2

)
,

where priors are chosen for θ, δ2 and σ2 to form a full Bayesian model. This is the simplest
hierarchical Bayesian model (Scott and Smith 1969) without covariates, called the Scott-
Smith model, where θ is an overall mean and ν

˜
= {νi, i = 1, . . . , ℓ} are area effects.

Letting µ
˜
= {µi, i = 1, . . . , ℓ}, where µi = θ + νi, we can write the Scott-Smith model

equivalently to a two-level normal model,

yij |µi
ind∼ N

(
µi, σ

2
)
, i = 1, . . . , ℓ, j = 1, . . . , Ni, (7)

µi
ind∼ N

(
θ, δ2

)
.

Letting δ2 = ρ
1−ρσ

2, our two-level normal model (baseline parametric model) is then

yij |µi
ind∼ N

(
µi, σ

2
)
, i = 1, . . . , ℓ, j = 1, . . . , Ni, (8)

µi
ind∼ N

(
θ,

ρ

1− ρ
σ2
)
, (9)

π(θ, σ2, ρ) =
1

π(1 + θ2)

1

(1 + σ2)2
, −∞ < θ <∞, σ2 > 0, 0 ≤ ρ ≤ 1.

Here we consider a reparameterization of the Scott-Smith model (7) together with proper
non-informative priors that allow computation of marginal likelihood and Bayes factors.
We replace δ2 by ρ

(1−ρ)σ
2 to gain some analytical and computational simplicity. Note that

ρ = δ2/(δ2+σ2) is a common intra-class correlation; see Nandram, Toto and Choi (2011)
and Molina, Nandram and Rao (2014). We have used the Cauchy prior centered at 0 for
θ; one can use a location-scale Cauchy prior distribution (e.g., Gelman, Jakulin, Pittau and
Su, 2008), but one would need to specify the location and scale parameters using the data
(double using the data is forbidden in Bayesian statistics). The prior on σ2 is a standard
shrinkage prior (almost noniformative).

Let y
˜

= (y
˜
s, y
˜
ns), where y

˜
s = {yij , i = 1, . . . , ℓ, j = 1, . . . , ni} is the vector

of observed values and y
˜
ns = {yij , i = 1, . . . , ℓ, j = ni + 1, . . . , Ni} vector of un-

observed values. Let λi = ni
ni+(1−ρ)/ρ , i = 1, . . . , ℓ, ỹ =

∑ℓ
i=1 λiȳi/

∑ℓ
i=1 λi, and

A1 =
1−ρ
ρ

∑ℓ
i=1 λi(ỹ − ȳi)

2 +
∑ℓ

i=1(ni − 1)s2i .
Using Bayes’ theorem, the joint posterior density of µ

˜
, θ, σ2, ρ is

π(µ
˜
, θ, σ2, ρ|y

˜
s) ∝

(
1

σ2

)(n+ℓ)/2(1− ρ

ρ

)ℓ/2

exp

{
− 1

2σ2

{ ℓ∑
i=1

{
(ni − 1)s2i

+

(
ni +

1− ρ

ρ

)
(µi − [λiȳi + (1− λi)θ])

2

+ λi

(
1− ρ

ρ

)
(ȳi − θ)2

}}}
× 1

(1 + σ2)2
× 1

π(1 + θ2)
. (10)
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We use a simple method called the sample importance resampling (SIR) algorithm to
draw from the posterior distribution π(µ

˜
, θ, σ2, ρ|y

˜
s) in (10). That is, we take a sample

of draws from a proposal density πa(µ
˜
, θ, σ2, ρ|y

˜
s), then use these draws to produce a

sample from π(µ
˜
, θ, σ2, ρ|y

˜
s). One would need π(µ

˜
, θ, σ2, ρ|y

˜
s)/πa(µ

˜
, θ, σ2, ρ|y

˜
s) to be

uniformly bounded in its parameters; clearly this is true here. A rough approximation to
the joint posterior density (10) and one form which it is easy to draw samples will suffice.
We use the same likelihoods (8) and (9) in the two-level normal model together with an
improper prior π(θ, σ2, ρ) ∝ 1

σ2 ,−∞ < θ < ∞, 0 ≤ σ2 < ∞, 0 ≤ ρ ≤ 1 as the proposal
model, that is,

πa(µ
˜
, θ, σ2, ρ|y

˜
s) ∝ πa(µ

˜
|θ, σ2, ρ, y

˜
s)πa(θ|σ2, ρ, y

˜
s)πa(σ

2|ρ, y
˜
s)πa(ρ|y

˜
s) (11)

∝
ℓ∏

i=1

N

[
µi;λiȳi + (1− λi)θ, (1− λi)

ρ

1− ρ
σ2
]

× N

(
θ; ỹ,

σ2ρ∑ℓ
i=1 λi(1− ρ)

)
× IG

[
σ2; (n− 1)/2, A1/2

]
× Γ[(n− 1)/2]

(A1/2)(n−1)/2

ℓ∏
i=1

(1− λi)
1/2

[
ρ∑ℓ

i=1 λi(1− ρ)

]1/2
.

We draw a sample from the approximate joint posterior density (11) by first drawing a
sample from πa(ρ|y

˜
s) using the grid method; the remaining parameters being obtained

using the multiplication rule of probability.

3.2 Two-level Expansion Models

We describe two models, one with a Dirichlet process at both levels and the other with
a Dirichlet process for the sampling process only.

Let us consider a nonparametric hierarchical Bayesian extension of the parametric base-
line model,

yij |Gi
ind∼ Gi, i = 1, . . . , ℓ, j = 1, . . . , Ni, (12)

Gi|µi
ind∼ DP{αi, G0(µi)},

µi|H
iid∼ H,

H ∼ DP{γ,H0(·)},

where G0(µi) and H0(·) can be any parametric distributions. In particular, we consider
G0 = N(µi, σ

2) and H0(·) = N(θ, δ2), where δ2 = ρ
1−ρσ

2 in (12) to be consistent
with the two-level normal model. A full Bayesian model can be obtained by adding prior
distributions. For example, we can use proper non-informative priors,

π(αi) =
1

(αi + 1)2
, αi > 0, i = 1, . . . , ℓ, (13)

π(γ) =
1

(γ + 1)2
, γ > 0, (14)

π(θ, σ2, ρ) =
1

π(1 + θ2)

1

(1 + σ2)2
,

−∞ < θ <∞, 0 ≤ σ2 <∞, 0 ≤ ρ ≤ 1, (15)

with independence. We call (12), (13), (14) and (15) together with the two-level Dirichlet
process a (DPDP) model. Note that the concentration parameters αi and γ are not included
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in the two-level normal model. One might not want to assume that the αi are identically
distributed because they can be very different.

The inference of the DPDP model can be easily performed. We denote (µ
˜
, γ, θ, σ2, ρ)

as ψ
˜

and α
˜
= {α1, . . . , αℓ}. The posterior density of αi are independent with other param-

eters ψ
˜

in the model, conditioning on only the distinct values. Let ki denote the number
of distinct values for each area in the observed data, k

˜
= {ki, i = 1, . . . , ℓ} be the vector

of ki, y∗i1, . . . , y
∗
iki

be the ki distinct sample values for each i and y
˜

∗ = {y∗i1, . . . , y∗iki , i =
1, . . . , ℓ} be the vector of yij . Thus the joint posterior density is

π(α
˜
, ψ
˜
| k
˜
, y
˜

∗) =

[
ℓ∏

i=1

π(αi | ki)

]
π(ψ

˜
| y
˜

∗), (16)

where π(αi|ki) ∝ π(ki | αi)π(αi). For each i, we can draw posterior samples of αi in the
manner similar to the one-level DP model. For the other parameters ψ

˜
, we have

y∗i1, . . . , y
∗
iki

| ki, µi, σ2
ind∼ Normal(µi, σ2), i = 1, . . . , ℓ,

µi|H
iid∼ H,

H ∼ DP{γ,N(θ, δ2)},

with the prior in π(γ, θ, σ2, ρ). We know that H can be expressed as H =
∑∞

s=1 psδµ∗
s

where

p1 = v1, ps = vs

s−1∏
j=1

(1− vj), vs
iid∼ Beta(1, γ), µ∗s

iid∼ N(θ, δ2).

Note that this is a DPM model. So the slice sampler (Kalli, Griffin and Walker 2011) can be
used easily to obtain posterior samples of µ

˜
and γ. We need to add a few steps in the Gibbs

sampler to draw the hyper-parameters, θ, σ2, ρ. For this specific prior, an accept-reject
algorithm is used for the π(σ2, θ, ρ| . . . ) within the Gibbs sampler update.

The algorithm has two steps.
Step 1: For each i (i = 1, . . . , ℓ), draw αi from π(αi|ki) ∝ αki Γ(αi)

Γ(αi+ni)
1

(αi+1)2
;

Step 2: Draw ψ
˜

. Let K = maxni=1(Ki), where Ki is the largest integer t such that ξt > ui.
The Gibbs sampler is as follows.
1. π(ui| . . . ) ∝ 1(0 < ui < ξdi);
2. π(µ∗s| . . . ) ∝ N(µ∗s; θ, δ

2)
∏

{i|di=s}
∏ki

j=1N(y∗ij ;µ
∗
s, σ

2);

3. π(vs| . . . ) ∝ Beta(as, bs), as = 1 +
∑ℓ

i=1 1(di = s) and bs = γ +
∑ℓ

i=1 1(di > s);
4. π(γ| . . . ) ∝ γk0 Γ(γ)

Γ(γ+ℓ)
1

(γ+1)2
, k0 is the number of distinct d1, . . . , dℓ;

5. P (di = t| . . . ) ∝ 1(t : ξt > ui)pt/ξt
∏ki

j=1N(y∗ij , µ
∗
t , σ

2), t = 1, . . . ,K;
6. π(σ2, θ, ρ| . . . ) ∝

∏ℓ
i=1

∏ki
j=1N(y∗ij ;µ

∗
di
, σ2)×

∏K
s=1N(µ∗s; θ, δ

2)× 1
π(1+θ2)

1
(1+σ2)2

.
When we have strong beliefs that our sampling population or the area means are from

normal distributions, we may choose to use the normal likelihood instead of a random
distribution drawn from the DP. Thus, we can have three additional models which are easy
to fit. Using normal distributions in both levels gives us the normal model. Using the
normal distribution in the first level and the DP as prior,

yij |µi
ind∼ N

(
µi, σ

2
)
, i = 1, . . . , ℓ, j = 1, . . . , Ni, (17)

µi|H
iid∼ H,

H ∼ DP{γ,N(θ, δ2)},
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together with (14) and (15) gives us the DPM model which is easy to fit.
Using DPs in the first level and the normal distribution as prior gives us,

yij |Gi
ind∼ Gi, i = 1, . . . , ℓ, j = 1, . . . , Ni, (18)

Gi|µi
ind∼ DP{αi, N

(
µi, σ

2
)
},

µi
iid∼ N(θ, δ2).

We call (18), (13) and (15) the DP normal (DPnormal) model. The algorithm for the DP-
normal model is
Step 1 : For each i ( i = 1, . . . , ℓ), draw αi from π(αi|ki) ∝ αki Γ(αi)

Γ(αi+ni)
1

(αi+1)2
;

Step 2: Draw ψ
˜

from the following parametric model which is easy to fit,

y∗ij |µi
ind∼ N

(
µi, σ

2
)
, i = 1, . . . , ℓ, j = 1, . . . , ki, (19)

µi
iid∼ N

(
θ,

ρ

1− ρ
σ2
)
,

π(θ, σ2, ρ) =
1

π(1 + θ2)

1

(1 + σ2)2
,−∞ < θ <∞, 0 ≤ σ2 <∞, 0 ≤ ρ ≤ 1.

Finally, we look at the sampling process for the DPnormal and the DPDP models.
When we integrate out the random probability measure (Blackwell and MacQueen (1973),
we get

f(y
˜
i | µi, σ2, αi) =

1

σ
ϕ(
yi1 − µi

σ
)

×
ni∏
k=2

{
k − 1

αi + k − 1

∑k−1
j=1 δyij (yik)

k − 1
+

αi

αi + k − 1

1

σ
ϕ(
yik − µi

σ
)

}
. (20)

Therefore, in each area we are mixing the distributions in (20) using normal mixing dis-
tributions and Dirichlet process mixing distributions in the DPnormal and DPDP models
respectively. This is how we attempt to accommodate ties, gaps and outliers in the data.

3.3 Posterior Propriety and Prediction

In this section, we demonstrate the propriety of the four joint posterior densities; thereby
adding a degree of credence to our Bayesian models. Although we use proper priors
throughout to accommodate the use of Bayes factors, our proofs remain correct with an
improper prior on θ. We also discuss how to do the prediction.

Theorem 1: The joint posterior density π(µ
˜
, θ, σ2, ρ|y

˜
s) (10) under the two-level nor-

mal model is proper if ℓ ≥ 2.
Proof: Since σ2

(1+σ2)2
× 1

π(1+θ2)
< 1, we have π(µ

˜
, θ, σ2, ρ|y

˜
s) < πa(µ

˜
, θ, σ2, ρ|y

˜
s)

which is shown proper in Nandram, Toto and Choi (2011).

Theorem 2: If the posterior density under the normal baseline model is proper, the
posterior densities under the DPM, DPnormal and DPDP models are proper.

Proof: For the DPM model, use Lemma 2 of Lo (1984). For the DPnormal and DPDP
models, use theorems in Nandram and Yin (2016 a, b) for the simple DP model and Lemma
2 of Lo (1984).

We have a simple random sample of size ni from a finite population of size Ni, i =
1, . . . , ℓ. Let yi1, . . . , yini denote the sampled values. We want to predict yini+1, . . . , yiNi ,
the nonsampled values, and obtain the predictive distribution and prediction intervals for
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the finite population quantities for each county. The prediction of the nonsampled values is
straight forward under the baseline model and the DPM model.

For the DPnormal and the DPDP models, the sampling process is

yij |Gi
ind∼ Gi, i = 1, . . . , ℓ, j = 1, . . . , Ni,

Gi|µi
ind∼ DP{αi, G0(µi)}.

So conditional on all parameters and for each area, these can be obtained using the Polya
urn scheme (Blackwell and MacQueen 1973); see also Nandram and Yin (2016 a,b). So
that we can obtain yini+1, . . . , yiNi , i = 1, . . . , ℓ.

The finite population mean is calculated as 1
Ni

∑Ni
j=1 yij . For the finite population

percentiles, we simply order yij , j = 1, . . . , Ni from the smallest to the largest, and pick
the value in the .85N th

i position and the value in the .95N th
i position for the 85th and 95th

percentiles.

4. Empirical Studies

In this section, we compare the four models. In Section 4.1, we describe an application
on body mass index (BMI) data, and in Section 4.2, we describe a small simulation study.

4.1 Application to Body Mass Index Data

As an illustrative example, we use a limited set of data from the third National Health
and Nutrition Examination Survey (NHANES III), where we study only the 35 largest
counties with a population at least 500,000. One of the variables in this survey is body
mass index (BMI), the demographic variables are age, race and sex, and there are survey
weights. We study BMI data for adults who are older than 20 years since the observed
nonresponse rates (see Nandram and Choi 2010) for children and adolescents are high.
Our goal is to predict the mean, 85th and 95th percentiles of BMI for the finite population
of adults for each county without using the covariates or survey weights; we discuss how
to do so in the concluding section.

As we mentioned in previous sections, survey data tend to have ties, outliers and gaps.
The BMI data set is an example because in practice, BMI is rounded to one decimal place
which creates many ties; BMI data are artificial when presented with more than one dec-
imal place. We plotted dot plots for all thirty-five areas (not shown). The observations
are more concentrated and having ties within the range around 25. It is also clear that the
data are clustered with gaps. Especially outside the normal weight range, the data become
sparse and present bigger gaps. The box plots (not shown) suggest that the distributions
are right skewed with outliers in the right tails. Since the predictive inference for the over-
weight and obese population is very important, the heavy tail of the distribution can not be
ignored. Thus we can not automatically use the standard normal assumptions. More robust
hierarchical models are desired.

Note that for the county level, all sample sizes are over 100, but these are relatively
small compared with the population sizes of the counties. We have compared the DPDP
model to the normal model, the DPM model, the DPnormal model and Bayesian bootstrap.

For the DPM and DPDP model, we ran 10, 000 MCMC iterations, used 5, 000 as a
“burn in” and used every 5th to obtain 1, 000 converged posterior samples. Table 1 gives
the p-values of the Geweke test and the effective sample sizes for the parameters σ2, θ, δ2

and γ for the DPM and DPDP model. The p-values are all large so we do not reject the
null hypothesis that the Markov chain is stationary. The effective sample sizes are not too

 
2604



far away from 1, 000. In addition, numerical summaries, trace plots, and auto-correlation
plots (not shown) indicate that the MCMC chains converge.

Tables 2, 3 and 4 give the summary statistics, posterior mean (PM) and posterior stan-
dard deviation (PSD), of the finite population mean, 85th and 95th percentiles for each
county of BMI data under the two-level DP models (normal, DPM, DPnormal and DPDP
models) and Bayesian bootstrap respectively. To show the effect of pooling, we also use
a Bayesian bootstrap to do prediction in each county individually (no borrowing across
counties).

These tables show that roughly similar results are obtained from the two-level DP mod-
els. As expected, in terms of efficiency, all four models beat the Bayesian bootstrap. For the
finite population mean, Table 2 shows that roughly half of the counties with smaller PSD
are under the DPDP model than the normal model; otherwise they are comparable. The
PMs under the DPDP model are closer to the PMs under the Bayesian bootstrap, which
does not allow for pooling. By comparison, the PMs under the normal model are shrunk
towards the overall mean; it is well known that when the area mean is far way from the
overall mean, the normal model has the risk of over-shrinkage. It is good that the shrink-
ages are less under the DPnormal and DPDP models, and there are larger PSDs reflecting
the ties, outliers and skewness in the BMI data. In fact, the PSDs are much larger under
the DPnormal and DPDP models when the 85th and 95th finite population percentiles are
being inferred (Tables 3 and 4).

4.2 Simulation Study

We conduct a small simulation study. We simulated data from the baseline model, the
DPM model with γ = 0.5, the DPnormal model with α = 0.3, and the DPDP model with
α = 0.3 and γ = 0.5. We also took σ2 = .01; θ = 0 and ρ = .80. As for the sample
sizes, we took Ni = 5× ni, i = 1, . . . , ℓ = 50 small areas. The first 10 ni are set at 35, the
second 10 ni at 50, the third 10 ni at 100, the fourth 10 ni at 200 and the fifth 10 ni at 500.
We generated a single data set from each model, and fit all four models; we can do more
runs but the computation is time consuming.

We use absolute bias (AB) and posterior root mean squared error (PRMSE) to compare
the models. We know the true value of the finite population quantities, denoted by T .
Then, AB =| PM − T | and PRMSE =

√
(PM − T )2 + PSD2. We compute these

quantities for each of the fifty counties for the finite population mean and the 85th and 95th

finite population percentiles, and respectively we average them.
We present AB and PRMSE in Table 5. For the finite population mean, when data are

generated from the baseline and the DPM models, they perform better than the DPnormal
and DPDP models. This situation is reversed when data are generated from the DPnormal
and DPDP models. Similar results hold when posterior inference is made about the 85th

and 95th finite population percentiles, but the DPnormal and DPDP models are much better
than the baseline and DPM model when data are generated from them.

The simulation examples show some evidence that the nonparametric models perform
better when predictive inference is done for data generated from the DPnormal and DPDP
models. This appears to meet our objective of looking at data that have outliers, gaps and
ties. More extensive simulation is planned for the future.

5. Concluding Remarks and Future Work

Bayesian nonparametric models are motivated by the desire to avoid overly restrictive
assumptions. We have proposed two new nonparametric models for two-stage survey data
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using DPs, and we have shown predictive inference for extreme percentiles, where a robust
model might be preferred. Using an example on NHANES III and a simulated study, we
have demonstrated that the two models with DP sampling processes, DPnormal and DPDP
models, might be preferred over the baseline model with normality at both levels and the
DPM model with normality in the sampling process. Our key goal was to overcome the
gaps, ties and outliers, and possible skewness, that are inherent in the BMI data. The results
in Table 5 are particularly informative.

However, it is difficult to provide convincing evidence as to which model is the best.
The DPnormal and DPDP models are more complex than the baseline model and the DPM
model. Measures to assess which of these infinite dimensional model is preferred are not
available, and current literature shows that standard measures such Bayes factor, condi-
tional predictive ordinate, Bayesian predictive p-values and deviance information criterion
tend to choose the finite dimensional models, although these models may not be better.
See, for example, Carota and Parmigiani (1996) and Petrone and Raftery (1997). Really
one is uncertain about what these measures actually do in problems with infinite number
of parameters like the Dirichlet process. Yet, one can proceed by predicting a number of
data points (not just one) that have been deleted, but in small area inference there are just a
handful of observations in some areas.

We consider three extensions. We extend the two-level DP models to three-level DP
models; thereby showing a natural procedure for multi-stage (more than three stages) sam-
pling. We also show also show how to include covariates and survey weights.

The first extension to a three-level Dirichlet process model (DPDPDP) is given by

yijk|Gij
ind∼ Gij , i = 1, . . . , ℓ, j = 1, . . . , Ni, k = 1, . . . ,Mij ,

Gij |µij
ind∼ DP{αij , G0(µij)},

µij |Hi
ind∼ Hi,

Hi|θi
ind∼ DP{γi,H0(θi)},

θi|F
iid∼ F,

F ∼ DP{γ0, F0(·)}.

Here G0(·), H0(·) and F0(·) are parametric distributions. In particular, we consider G0 =
N(µij , σ

2), H0 = N(θi, δ
2
1) and F0 = N(θ0, δ

2
2), where δ21 = ρ1

1−ρ1
σ2 and δ22 = ρ2

1−ρ2
σ2.

A full Bayesian model can be obtained by adding prior distributions. Similar to two-level
models, we can use proper non-informative priors,

π(αij) =
1

(αij + 1)2
, αij > 0, i = 1, . . . , ℓ, j = 1, . . . , Ni,

π(γi) =
1

(γi + 1)2
, γi > 0,

π(γ0) =
1

(γ0 + 1)2
, γ0 > 0,

π(θ0, σ
2, ρ1, ρ2) =

1

π(1 + θ20)

1

(1 + σ2)2
,

−∞ < θ0 <∞, 0 ≤ σ2 <∞, 0 ≤ ρ1 ≤ 1, 0 ≤ ρ2 ≤ 1,

with independence.
The second extension is to include covariates in the model. Battese, Harter and Fuller
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(1988) extended the Scott-Smith model (6) to include covariates, assuming

yij |νi
ind∼ N

(
x′
ijβ + νi, σ

2
)
, i = 1, . . . , ℓ, j = 1, . . . , Ni,

νi
iid∼ N

(
0, δ2

)
,

where β is a p-vector of fixed effects and the νi are the random effects. The DPM model
with covariates can be easily written as

yij | β, νi, σ2
ind∼ N(x′

ijβ + νi, σ
2), i = 1, . . . , ℓ, j = 1, . . . , Ni,

νi|G
iid∼ G

G ∼ DP

[
α,N

(
0,

ρ

1− ρ
σ2
)]

π(β, σ2, ρ) ∝ 1/σ2, β ∈ Rp, σ2 > 0, 0 < ρ < 1,

where ρ is the intracluster correlation. The two-level nonparametric alternative with co-
variates can be

yij − x′
ij
(0)

β(0)|Gi
ind∼ Gi, i = 1, . . . , ℓ, j = 1, . . . , Ni,

Gi|β0i
ind∼ DP

{
αi, N(β0i;σ

2)
}
,

β0i|H
iid∼ H,

H ∼ DP
{
γ,N(θ,

ρ

1− ρ
σ2)

}
,

where x′
ij
(0) and β(0) denote x′

ij and β with the intercepts excluded respectively.
Finally, in many complex surveys, there are also survey weights, but these survey

weights are available only for the sample units. An initial step is to standardize the sur-
vey weights. These standardized survey weights can be added to any model in one of two
possible ways. First, we can add them as a covariate. In this way, after fitting the model,
we set the regression parameter associated with the survey weights to zero, and given the
other parameters, predict all values (samples and nonsamples). Second, a normalized com-
posite likelihood can be constructed. After this model is fit, set the weights equal unity,
and conditional on the parameters, again all the values are predicted. These two ways fall
under the general scheme of surrogate sampling (Nandram 2007), but the first approach is
much easier.
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Table 1: Summary of Markov chain Monte Carlo (MCMC) diagnostics: the p-values of the
Geweke test and the effective sample sizes for the parameters σ2, θ, δ2 and γ for the DPM
and DPDP model

P-values for the Geweke test

Model σ2 θ δ2 γ

DPM .483 .414 .459 .620
DPDP .522 .676 .752 .110

Effective sample sizes

Model σ2 θ δ2 γ

DPM 1000 1000 698 1085
DPDP 1000 938 627 732

NOTE: Random draws are used for the baseline and the DPnormal models.
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Table 2: Comparison of posterior mean (PM) and posterior standard deviation (PSD) of
the finite population mean for each county of body mass index (BMI) data by four models
(normal, DPM, DPnormal and DPDP models) and Bayesian bootstrap

Bootstrap Normal DPM DPDP DPnormal
PM PSD PM PSD PM PSD PM PSD PM PSD

1 26.93 0.36 26.93 0.32 26.93 0.36 26.92 0.32 26.92 0.33
2 27.48 0.54 27.24 0.37 27.25 0.36 27.38 0.42 27.24 0.42
3 26.28 0.44 26.51 0.35 26.47 0.38 26.35 0.36 26.55 0.36
4 26.00 0.37 26.34 0.36 26.30 0.36 26.14 0.33 26.35 0.32
5 25.67 0.41 26.18 0.41 26.17 0.40 25.87 0.37 26.16 0.36
6 28.40 0.43 27.85 0.40 27.78 0.40 28.13 0.36 27.84 0.35
7 27.08 0.34 27.03 0.31 27.03 0.35 27.04 0.32 27.02 0.32
8 26.88 0.47 26.88 0.33 26.90 0.39 26.88 0.38 26.93 0.35
9 27.83 0.39 27.46 0.36 27.46 0.36 27.68 0.34 27.49 0.34

10 27.65 0.45 27.39 0.36 27.39 0.34 27.53 0.35 27.33 0.33
11 27.26 0.26 27.18 0.23 27.20 0.24 27.24 0.23 27.19 0.24
12 25.72 0.34 26.15 0.37 26.14 0.34 25.87 0.32 26.11 0.32
13 26.67 0.39 26.75 0.32 26.74 0.39 26.71 0.34 26.80 0.33
14 27.28 0.17 27.23 0.17 27.25 0.18 27.28 0.17 27.25 0.17
15 27.33 0.50 27.15 0.39 27.17 0.39 27.23 0.39 27.10 0.35
16 27.31 0.40 27.17 0.33 27.17 0.34 27.22 0.33 27.15 0.32
17 26.08 0.38 26.39 0.34 26.36 0.37 26.20 0.35 26.41 0.33
18 26.71 0.37 26.79 0.32 26.77 0.41 26.75 0.36 26.81 0.33
19 26.19 0.41 26.46 0.34 26.44 0.37 26.30 0.34 26.51 0.32
20 26.81 0.44 26.86 0.34 26.88 0.38 26.86 0.38 26.89 0.35
21 26.90 0.43 26.90 0.34 26.92 0.39 26.91 0.35 26.91 0.34
22 27.28 0.36 27.12 0.33 27.15 0.33 27.23 0.32 27.15 0.32
23 25.87 0.41 26.27 0.37 26.23 0.37 26.03 0.35 26.31 0.35
24 27.12 0.42 27.04 0.34 27.07 0.37 27.09 0.36 27.05 0.35
25 26.75 0.44 26.80 0.34 26.82 0.37 26.79 0.38 26.83 0.37
26 26.58 0.47 26.74 0.37 26.71 0.42 26.65 0.42 26.77 0.35
27 26.77 0.36 26.82 0.29 26.83 0.35 26.78 0.32 26.83 0.30
28 27.52 0.49 27.28 0.34 27.30 0.35 27.42 0.36 27.25 0.37
29 26.59 0.43 26.75 0.38 26.76 0.43 26.68 0.40 26.79 0.39
30 25.91 0.40 26.32 0.37 26.27 0.38 26.10 0.34 26.35 0.34
31 27.82 0.33 27.52 0.34 27.48 0.34 27.71 0.30 27.52 0.30
32 27.64 0.41 27.37 0.32 27.37 0.33 27.52 0.33 27.38 0.34
33 26.35 0.32 26.53 0.32 26.53 0.37 26.44 0.32 26.58 0.31
34 27.39 0.30 27.22 0.28 27.26 0.29 27.35 0.27 27.27 0.27
35 26.80 0.38 26.84 0.30 26.85 0.36 26.83 0.33 26.87 0.31
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Table 3: Comparison of posterior mean (PM) and posterior standard deviation (PSD) of the
finite population 85th percentile for each county of body mass index (BMI) data by four
models (normal, DPM, DPnormal and DPDP models) and Bayesian bootstrap

Bootstrap Normal DPM DPDP DPnormal
PM PSD PM PSD PM PSD PM PSD PM PSD

1 32.14 0.50 32.48 0.35 32.50 0.39 32.27 0.46 32.46 0.47
2 34.76 1.24 32.93 0.45 32.95 0.43 33.77 0.83 34.08 0.82
3 30.76 0.78 32.05 0.39 32.00 0.44 31.34 0.62 31.94 0.63
4 31.57 1.07 31.97 0.43 31.93 0.42 31.84 0.72 32.48 0.61
5 30.51 0.90 31.75 0.47 31.75 0.45 31.11 0.70 31.87 0.72
6 33.82 1.22 33.42 0.44 33.35 0.44 33.51 0.64 33.55 0.67
7 31.59 0.85 32.58 0.36 32.58 0.39 32.07 0.69 32.45 0.72
8 32.25 0.67 32.46 0.36 32.48 0.42 32.32 0.48 32.70 0.53
9 32.81 1.18 33.03 0.41 33.01 0.42 32.99 0.74 33.15 0.75

10 34.01 0.74 33.07 0.39 33.08 0.36 33.53 0.47 33.73 0.48
11 32.75 0.54 32.78 0.26 32.79 0.27 32.76 0.45 32.90 0.49
12 30.26 0.80 31.67 0.42 31.67 0.38 30.92 0.53 31.45 0.53
13 31.91 0.88 32.34 0.36 32.32 0.43 32.15 0.56 32.64 0.57
14 32.37 0.38 32.80 0.19 32.82 0.20 32.46 0.37 32.50 0.37
15 33.39 0.50 32.84 0.40 32.85 0.41 33.10 0.47 33.39 0.42
16 32.21 0.75 32.72 0.37 32.71 0.40 32.41 0.56 32.73 0.62
17 30.88 0.83 31.95 0.40 31.91 0.42 31.41 0.65 32.07 0.72
18 31.18 0.80 32.29 0.39 32.28 0.49 31.68 0.70 32.21 0.85
19 32.03 0.97 32.09 0.38 32.08 0.42 32.05 0.64 32.77 0.56
20 32.71 0.96 32.50 0.39 32.52 0.42 32.63 0.66 33.08 0.61
21 33.08 0.98 32.57 0.40 32.58 0.44 32.87 0.62 33.28 0.56
22 32.06 0.72 32.65 0.36 32.68 0.37 32.34 0.54 32.57 0.57
23 31.18 0.77 31.85 0.42 31.81 0.42 31.47 0.56 32.19 0.70
24 32.66 0.66 32.64 0.37 32.68 0.40 32.67 0.52 32.96 0.52
25 31.63 0.98 32.37 0.39 32.39 0.42 32.05 0.74 32.47 0.73
26 32.02 0.96 32.34 0.40 32.30 0.45 32.22 0.61 32.77 0.57
27 31.56 0.44 32.34 0.31 32.36 0.39 31.85 0.44 32.16 0.50
28 33.51 1.51 32.87 0.39 32.89 0.40 33.00 0.70 33.33 0.80
29 31.53 0.97 32.30 0.45 32.31 0.49 31.99 0.79 32.57 0.80
30 30.62 0.94 31.89 0.43 31.83 0.45 31.37 0.67 32.13 0.71
31 32.36 0.57 33.02 0.38 32.99 0.38 32.62 0.49 32.72 0.49
32 33.24 0.89 32.96 0.37 32.96 0.37 33.05 0.57 33.31 0.62
33 30.54 0.51 32.03 0.37 32.01 0.42 31.20 0.53 31.61 0.57
34 32.48 0.49 32.78 0.31 32.82 0.31 32.59 0.44 32.71 0.45
35 31.78 1.04 32.40 0.35 32.41 0.42 32.09 0.65 32.54 0.75
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Table 4: Comparison of posterior mean (PM) and posterior standard deviation (PSD) of the
finite population 95th percentile for each county of body mass index (BMI) data by four
models (normal, DPM, DPnormal and DPDP models) and Bayesian bootstrap

Bootstrap Normal DPM DPDP DPnormal
PM PSD PM PSD PM PSD PM PSD PM PSD

1 35.52 1.27 35.79 0.42 35.81 0.45 35.63 0.83 36.21 0.88
2 40.88 2.32 36.45 0.46 36.47 0.45 38.38 1.48 38.83 1.54
3 34.90 2.58 35.36 0.47 35.32 0.51 34.83 1.18 36.16 1.43
4 35.59 1.12 35.31 0.45 35.27 0.45 35.47 0.73 36.26 0.85
5 35.82 1.61 35.19 0.51 35.19 0.50 35.57 1.03 36.53 0.92
6 39.32 1.58 37.00 0.44 36.94 0.44 38.25 0.73 38.45 0.74
7 35.93 1.12 35.95 0.40 35.94 0.44 35.93 0.81 36.50 0.69
8 37.32 1.49 35.90 0.43 35.92 0.48 36.57 0.92 37.26 0.86
9 38.76 1.54 36.55 0.45 36.53 0.46 37.72 0.83 38.02 0.84

10 39.82 1.64 36.48 0.41 36.48 0.41 37.83 1.13 38.32 1.14
11 37.49 0.94 36.19 0.28 36.21 0.29 37.15 0.72 37.36 0.71
12 35.84 1.50 35.17 0.47 35.18 0.44 35.64 0.86 36.46 0.89
13 36.13 1.20 35.68 0.40 35.66 0.45 35.88 0.81 36.65 0.93
14 36.90 0.80 36.16 0.22 36.19 0.23 36.85 0.70 36.96 0.69
15 36.04 1.47 36.00 0.48 36.03 0.49 35.98 0.71 36.64 0.89
16 36.44 1.40 36.08 0.41 36.08 0.44 36.20 0.84 36.79 0.93
17 34.70 0.99 35.27 0.44 35.23 0.45 34.95 0.77 35.77 0.83
18 35.57 0.81 35.68 0.38 35.65 0.46 35.58 0.58 36.16 0.78
19 34.88 0.88 35.31 0.40 35.30 0.44 35.04 0.62 35.85 0.78
20 37.08 1.89 35.82 0.42 35.84 0.46 36.34 1.04 37.11 1.14
21 35.75 1.03 35.75 0.44 35.77 0.47 35.69 0.66 36.30 0.84
22 35.56 1.08 35.94 0.43 35.98 0.42 35.65 0.81 36.12 0.89
23 36.46 1.46 35.29 0.45 35.24 0.46 35.83 0.98 36.84 0.92
24 37.80 2.17 36.02 0.44 36.06 0.45 36.65 1.17 37.40 1.33
25 37.29 2.60 35.76 0.43 35.77 0.46 36.37 1.39 37.23 1.47
26 36.18 1.92 35.67 0.52 35.62 0.55 35.80 1.11 36.90 1.10
27 36.09 1.30 35.75 0.38 35.77 0.44 35.92 0.82 36.51 0.78
28 40.33 1.37 36.50 0.44 36.53 0.46 38.46 1.03 38.84 0.96
29 35.71 1.10 35.66 0.52 35.67 0.52 35.76 0.88 36.43 0.78
30 34.57 1.11 35.20 0.48 35.15 0.49 34.88 0.80 35.87 0.83
31 35.43 1.06 36.28 0.39 36.26 0.39 35.77 0.62 36.01 0.68
32 39.12 1.40 36.43 0.41 36.43 0.40 37.75 1.03 38.24 1.00
33 34.10 0.83 35.31 0.42 35.30 0.46 34.63 0.63 35.32 0.88
34 35.98 1.02 36.09 0.36 36.12 0.36 35.98 0.79 36.36 0.85
35 37.83 1.13 35.92 0.38 35.92 0.44 37.03 0.89 37.57 0.92
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Table 5: Comparison of absolute bias (AB) and posterior root mean squared error
(PRMSE) of the finite population mean, 85th percentile and 95th percentile for each simu-
lated data by four models (normal, DPM, DPnormal and DPDP) averaged over areas

(a) Finite population mean
Normal Model DPM Model DPnormal Model DPDP Model

AB PRMSE AB PRMSE AB PRMSE AB PRMSE
Normal Data 6.172 94.21 87.32 127.2 6.536 100.8 63.57 109.8

DPM Data 6.169 93.82 43.27 85.44 6.32 100.70 43.26 85.28
DPnormal Data 1.409 42.88 28.95 64.55 1.484 27.64 1.022 26.35

DPDP Data 1.81 37.98 19.67 57.38 1.74 25.84 1.614 24.17

(b) Finite population 85th percentile
Normal Model DPM Model DPnormal Model DPDP Model

AB PRMSE AB PRMSE AB PRMSE AB PRMSE
Normal Data 70.21 130.7 111.2 155.1 77.39 137.4 80.96 140.3

DPM Data 69.93 133.9 75.49 123.4 78.38 141.3 75.1 122.8
DPnormal Data 379.0 385.9 384.1 394.6 18.05 40.0 16.42 37.09

DPDP Data 307.2 313.4 305.1 315.4 0.8099 7.095 0.4063 4.824

(c) Finite population 95th percentile
Normal Model DPM Model DPnormal Model DPDP Model

AB PRMSE AB PRMSE AB PRMSE AB PRMSE
Normal Data 120.6 182.1 150.3 203.5 133.8 188.4 113.1 196.0

DPM Data 104.0 168.9 114.9 166.0 118.9 176.1 115.2 165.6
DPnormal Data 550.2 556.3 555.3 563.7 35.5 101.0 36.81 103.8

DPDP Data 481.6 486.3 475.8 483.5 25.71 84.85 22.99 74.5

NOTE: The numbers in the table must be multiplied by 10−4.
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