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Abstract 
The propensity score methods have been widely used for causal inference. The majority of 
studies have ignored the sample design feature even when complex survey data were used. 
In recent years, a number of authors have shown that ignoring the sampling weight will 
lead to biased results. However, causal inference using the propensity score methods for 
clustered survey data has not been much studied. This paper tries to fill this gap by 
providing correct ways of incorporating the sample design feature in the calculation of the 
propensity score and outcome analysis to estimate the treatment effect. The proposed 
methods will be studied using simulated and empirical survey data. 
 
Key Words: Logistic regression, Sampling weight, Cluster effect, Replicate variance 
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1. Introduction 

The causal inference is to statistically study the cause and effect, for which the randomized 
control trial (RCT) is considered the gold standard. However, in many situations, an RCT 
is not feasible, too expensive, or unethical. On the other hand, there are many sources of 
observational data that are already available or can be collected more easily and 
inexpensively. One of these available data sources is survey data collected by using a 
complex survey design. An observational study is often conducted to use such rich data 
sources for causal inference. However, there is a major hurdle in this situation, unlike in 
an RCT study, because the treatment and control groups are usually not similar or are 
unbalanced in confounding covariates in the observational data. The main strength of the 
RCT is that this issue is automatically addressed through random assignment of the study 
units to the treatment and control groups. 
 
To overcome the imbalance problem in observational data, the outcome analysis has been 
traditionally carried out using a regression model with the outcome variable as the response 
variable, the treatment indicator as a dummy covariate, and all auxiliary (potentially 
confounding) variables as regression covariates. However, since Rosenbaum and Rubin 
(1983) proposed the propensity score (PS) method, this new method has gained a lot of 
popularity. The main advantage of the PS method is that it summarizes the effect of 
confounding covariates by a single number, and this single number is used to make causal 
inference. 
 
The PS is defined as a probability that a study unit is (non-randomly) assigned to treatment 
(𝑇𝑇) given covariate vector 𝑋𝑋 as follows: 
 

 𝜋𝜋𝑖𝑖 = 𝜋𝜋(𝑋𝑋𝑖𝑖) = 𝑃𝑃(𝑇𝑇𝑖𝑖 = 1|𝑋𝑋𝑖𝑖), (1) 
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where 𝑇𝑇𝑖𝑖 = 1 if study unit 𝑖𝑖 is assigned to treatment and 𝑇𝑇𝑖𝑖 = 0 if study unit 𝑖𝑖 is assigned 
to control. It is a balancing score, that is, for the same PS, the treatment and control groups 
become similar in covariates. This feature plays a key role in the PS method for causal 
inference. This idea is formalized by Rosenbaum and Rubin (1983) in the concept of 
strongly ignorable treatment assignment. It means that 𝑇𝑇 is independent of the potential 
outcome conditional on all (confounding) covariates, namely,  
 

 𝑇𝑇 ⊥ [𝑌𝑌(0),𝑌𝑌(1)]|X, (2) 
 
where 𝑌𝑌(𝑇𝑇) is the potential outcome under treatment (𝑇𝑇 = 1) or control (𝑇𝑇 = 0). It also 
requires another assumption that the probability of receiving treatment is not zero or 
certainty, which is expressed as follows: 
 

 0 < 𝜋𝜋 = 𝑃𝑃(𝑇𝑇 = 1|X) < 1 for all X. (3) 
 
Rosenbaum and Rubin (1983) show that if (2) holds, then we have 
 

 𝑇𝑇 ⊥ [𝑌𝑌(0),𝑌𝑌(1)]|𝜋𝜋(X), (4) 
 
This means that treatment assignment is independent of the potential outcomes conditional 
on the PS, instead of X. 
 
Theoretically, treatment effect on study unit 𝑖𝑖  is given as the difference between the 
potential outcomes of the unit under the treatment and control conditions as shown in the 
following expression: 
 

 𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0). (5) 
 
In reality, we cannot use the expression in (5) because we observe either 𝑌𝑌𝑖𝑖(0) or 𝑌𝑌𝑖𝑖(1), 
not both. The basic idea of the PS method is to find a control unit 𝑖𝑖′ that has the same or a 
similar 𝜋𝜋𝑖𝑖′ (i.e., 𝜋𝜋𝑖𝑖′ = 𝜋𝜋𝑖𝑖 or 𝜋𝜋𝑖𝑖′ ≈ 𝜋𝜋𝑖𝑖), and then use 𝑌𝑌𝑖𝑖′(0) as a proxy for the unobserved 
𝑌𝑌𝑖𝑖(0). 
 
To implement this basic idea to estimate the treatment effect in causal inference, there are 
four basic methods. 
 
• Matching – Find proxy control units by matching by the PS, where there are different 

matching methods such as 1:1 or 1:M (M > 1) matching and other variants. 
• Stratification or subclassification – Stratify the treatment and control units together 

into homogeneous groups based on the PS and treat each stratum as an RCT sample. 
• Inverse probability of treatment weighting (IPTW) – Use the nature of the PS as a 

probability to weight the full sample (both treatment and control groups), so that the 
weighted treatment and control groups are balanced in covariates. 

• PS regression adjustment (PSRA) – Use the PS as a covariate to balance the treatment 
and control groups through regression. 

 
Note that the matching method uses only the matched sample, resulting in possible waste 
of a lot of available data. The other three methods use the full sample. However, 
stratification cannot make each “homogeneous” group perfectly homogeneous (i.e., all 
group members have the same PS). Although this method incurs some bias, the variance is 
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usually smaller than that of other methods – generally the bias decreases and the variance 
increases as the number of strata increases. IPTW and PSRA are unbiased if all 
assumptions are true. 
 
The weight is defined differently for the IPTW method, depending on whether the goal of 
estimation is to estimate the population average treatment effect (PATE) for the entire 
study population or to estimate the population average treatment effect of the treated 
(PATT). We also use ATE and ATT to refer to the type of weighting or the estimation type, 
not the parameter to be estimated. 
 
The weight to estimate PATE is defined as 
 

 𝑤𝑤1𝑖𝑖 =
1
𝜋𝜋𝑖𝑖

 and 𝑤𝑤0𝑖𝑖 =
1

1 − 𝜋𝜋𝑖𝑖
, (6) 

 
where 𝑤𝑤1𝑖𝑖 is the IPTW weight for unit 𝑖𝑖 if unit 𝑖𝑖 is in the treatment group and 𝑤𝑤0𝑖𝑖 is the 
IPTW weight if unit 𝑖𝑖 is in the control group. 
 
The weight for estimating PATT is defined as 
 

 𝑤𝑤1𝑖𝑖 = 1 and 𝑤𝑤0𝑖𝑖 =
𝜋𝜋𝑖𝑖

1 − 𝜋𝜋𝑖𝑖
.  (7) 

 
Two IPTW basic methods to estimate the treatment effect are (1) by mean difference of the 
weighted treatment and control groups: 
 

 �̂�𝜏𝑤𝑤1 =
1
𝑛𝑛
� 𝑤𝑤1𝑖𝑖𝑌𝑌1𝑖𝑖

𝑛𝑛1

𝑖𝑖=1
−

1
𝑛𝑛
� 𝑤𝑤0𝑖𝑖𝑌𝑌0𝑖𝑖

𝑛𝑛0

𝑖𝑖=1
 (8) 

 
or (2) by the weighted mean difference: 
 

 �̂�𝜏𝑤𝑤2 =
∑ 𝑤𝑤1𝑖𝑖𝑌𝑌1𝑖𝑖
𝑛𝑛1
𝑖𝑖=1

∑ 𝑤𝑤1𝑖𝑖
𝑛𝑛1
𝑖𝑖=1

−
∑ 𝑤𝑤0𝑖𝑖𝑌𝑌0𝑖𝑖
𝑛𝑛0
𝑖𝑖=1

∑ 𝑤𝑤0𝑖𝑖
𝑛𝑛0
𝑖𝑖=1

, (9) 

 
where the total sample size of 𝑛𝑛 is divided into two sample sizes:  
 
• Treatment group sample size, 𝑛𝑛1;  
• Control group sample size, 𝑛𝑛0; and 
• 𝑛𝑛 = 𝑛𝑛0 + 𝑛𝑛1. 
 
�̂�𝜏𝑤𝑤2 is based on the ratio estimators (by Hájek, 1971) and is usually more efficient than 
�̂�𝜏𝑤𝑤1, which is a Horvitz-Thompson estimator (Horvitz and Thompson, 1952). 
 
�̂�𝜏𝑤𝑤2 can be estimated using the weighted regression method with the following model and 
the PS weight (i.e., weighted ANOVA): 
 

 𝑌𝑌 = 𝛼𝛼. (10) 
 
Another form of regression estimator is to use the PS as a covariate: 
 

 𝑌𝑌 = 𝛼𝛼𝑇𝑇 + 𝛾𝛾, (11) 
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where 𝑃𝑃 is the estimated PS. Here the PS weight is not used in regression as the weighting 
variable, but the PS is used as a covariate to control the effect of different PS in estimation 
of the treatment effect. 
 
The PS methods have usually been used assuming that the data are from a simple random 
sample. Therefore, the sampling weights are all equal or conveniently equal to one. If the 
observational data are collected from a complex survey, ignoring the sampling weight 
causes a biased estimate. Researchers generally agree that the sampling weight should be 
used in the outcome analysis. However, there are different opinions about the use of the 
sampling weight in estimation of the PS. Some authors assert that it is not necessary 
(Zanutto, 2006), whereas others say otherwise (DuGoff, Schuler, and Stuart, 2014; 
Ridgeway, Kovalchik, and Griffin, 2015).  
 
This is a relatively young area of research. Most studies have focused on point estimation 
with stratified simple random samples. However, cluster sampling is also often used in 
complex survey designs. Only recently, some authors have studied the PS method of causal 
inference using multistage cluster samples (Austin, Jembere, and Chiu, 2018). They also 
studied variance estimation using the bootstrap method. They applied the simple bootstrap, 
ignoring the complex design features in bootstrap sampling. However, it is well-known 
that the ordinary bootstrap method does not work for complex survey samples (Sitter, 
1992). They also found that the simple bootstrap seriously overestimates the variance. We 
want to address the variance estimation issue using the proper bootstrap method and also 
using another popular resampling method, the jackknife with the same simulation set-up 
used by Austin et al. (2018). 
 
This paper is structured as follows. In the next section, we present a more detailed 
discussion about causal inference using the PS method with complex survey data. Section 
3 presents the set-up of the simulation study we conducted and its results. In the last section, 
we provide some concluding remarks along with some ideas for future study.  
 
 
2. Propensity Score Methods for Observational Studies with Complex Survey Data 

As mentioned in the previous section, it is generally agreed that the sampling weights 
should be used to estimate the treatment effect. The way in which the sampling weights 
should be used in the treatment estimation for causal inference using the PS depends on 
the particular estimation method being used.  
 
• Matching – Typically the estimator given in (9) is used, but the weights are the 

sampling weights rather than the PS weights, and 𝑛𝑛0 = 𝑛𝑛1 for 1:1 matching, and the 
estimate is for ATT.  

• Stratification or subclassification – Use (9) for each stratum with the sampling weights, 
and then aggregate stratum estimates using relative weights based on the number of all 
units in the stratum for ATE or the number of treatment units in the stratum for ATT. 

• Inverse probability of treatment weighting (IPTW) – Formula (8) or (9) is used, with 
the weight defined by the multiple of the PS weight and the sampling weight. Either 
ATT or ATE can be estimated, depending on how the PS weight is calculated. 

• PS regression adjustment (PSRA) – The sampling weight is used in regression 
estimation as the weight variable, from which an ATT estimate is obtained. ATE can 
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be obtained by using the multiple of the sampling weight and the appropriate PS weight 
instead. 

 
As discussed earlier, researchers have differing opinions about whether the sampling 
weight should also be used in the estimation of the PS. From our experience, it appears that 
it does not greatly matter in general but that some bias may exist for unusual situations if 
the sampling weight is not used. Moreover, in our simulation, using the sampling weight 
in the PS estimate generally enhances the precision of the treatment effect estimate. 
Therefore, we believe that it is good practice to incorporate the sampling weight in the PS 
estimation as well. 
 
In order to estimate the variance for the treatment effect estimate, simple incorporation of 
the sampling weight may not be sufficient. A variance estimation method appropriate for 
a particular sample design should be used. It seems difficult to derive a Taylor linearization 
variance estimator that incorporates both the PS estimation and the treatment effect 
estimation steps, particularly for the matching method and the stratification method. An 
easy way to get around this is to use resampling variance estimators such as the jackknife 
or the bootstrap, which do not require linearization. However, there is no guarantee that 
they will produce an unbiased variance estimate. One of the goals of the present study is to 
examine their usefulness through simulation. 
 
Austin, Jembere, and Chiu (2018) studied a straightforward bootstrap method for the 1:1 
matching. They bootstrapped the matched sample by selecting matched pairs by simple 
random sampling with replacement. Even disregarding the sample design, it seems obvious 
that bootstrap sampling should be done first from the original sample and then passed 
through the PS estimation and treatment estimation steps for each bootstrap sample. 
Applying the bootstrap to the matched sample, skipping the first step of PS estimation, is 
a shortcut, which, Austin et al. found, substantially overestimates the variance.  
 
Another issue in the Austin et al. approach is ignoring the sample design features. It is well-
known that the ordinary bootstrap for simple random samples does not work for complex 
survey samples, for which some remedies have been proposed in case of stratified simple 
random samples (McCarthy and Snowden, 1985; Rao and Wu, 1988). Sitter (1992) 
proposed a method that can handle a cluster design, which we studied. 
 
As Austin et al. advocated, the shortcut method might be useful when the sample design 
information is not available in the sample data and, therefore, a design-dependent bootstrap 
method cannot be used. 
 
However, if an observational study is planned and the bootstrap method is chosen, correct 
application of the bootstrap should be included in the plan. Therefore, we want to test the 
full bootstrap variance estimator along with the shortcut version. 
 
We also studied another well-known resampling method, the jackknife. We studied both 
the full and shortcut versions of the jackknife variance estimator.  
 
 

3. Simulation Study of the Proposed Methods 

We used the same simulation set-up used by Austin, Jembere, and Chiu (2018). However, 
we expanded our study by including three more methods for treatment effect estimation: 
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stratification, IPTW, and PSRA. Furthermore, we studied variance estimation using full 
and shortcut versions of the bootstrap and the jackknife. 
 
Like Austin et al., we used three approaches to estimate the PS. 
 
• PS1: Unweighted logistic regression; 
• PS2: Weighted logistic regression with the sampling weight as the regression 

weighting variable; and 
• PS3: Unweighted logistic regression with the sampling weight as covariate. 
 
As mentioned above, we studied four methods for treatment effect estimation, including 
the 1:1 matching Austin et al. used: 
 
• Matching: 1:1 matching, denoted as MAT1:1; 
• Stratification: with 10 equal-sized strata, denoted as STRAT10; 
• IPTW; and 
• PSRA. 
 
To conduct the simulation study, we generated a population dataset using the same 
parameters and conditions employed by Austin et al. (2018). The population size was 
1,000,000, which was divided into 200 equal-sized clusters, each having 5,000 study units. 
The 200 clusters were stratified into 10 strata, each having 20 clusters. For each unit, six 
covariates and one outcome variable were generated. Covariate 𝑙𝑙, denoted by 𝑥𝑥𝑙𝑙,𝑖𝑖𝑖𝑖𝑖𝑖 for unit 
𝑖𝑖  in cluster 𝑖𝑖,  stratum 𝑗𝑗,  was generated using 𝑁𝑁�𝑢𝑢𝑙𝑙,𝑖𝑖stratum + 𝑢𝑢𝑙𝑙,𝑖𝑖cluster, 1�,  where 
𝑢𝑢𝑙𝑙,𝑖𝑖stratum~𝑁𝑁(0, 𝜏𝜏𝑙𝑙stratum) and 𝑢𝑢𝑙𝑙,𝑖𝑖cluster~𝑁𝑁(0, 𝜏𝜏𝑙𝑙cluster). Six populations were generated by setting 
�𝜏𝜏𝑙𝑙stratum, 𝜏𝜏𝑙𝑙cluster� equal to (0.35, 0.25), (0.35, 0.15), (0.35, 0.05), (0.25, 0.35), (0.15, 0.35), 
and (0.05, 0.35), respectively. This set-up is designed to have covariates with different 
systematic variation due to stratification and clustering. In the first population (POP1), 
generated using �𝜏𝜏𝑙𝑙stratum, 𝜏𝜏𝑙𝑙cluster� = (0.35, 0.25), each covariate has 10.3 percent of its 
variation coming from the systematic difference between strata and 5.3 percent coming 
from the systematic difference between clusters. For the second and third populations 
(POP2 and POP3) generated with �𝜏𝜏𝑙𝑙stratum, 𝜏𝜏𝑙𝑙cluster�  = (0.35, 0.15) and (0.35, 0.05), 
respectively, these figures are 10.7 percent and 2.0 percent (for POP2) and 10.9 percent 
and 0.2 percent (for POP3). The percentages for Populations 4, 5, and 6 (POP4, POP5, and 
POP6) are reversed; that is, 5.3 percent of the variation is attributed to the systematic 
difference between strata and 10.3 percent to that between clusters, and so on.  
 
Treatment status, 𝑍𝑍𝑖𝑖  for unit 𝑖𝑖, was generated from Bernoulli (𝑝𝑝𝑖𝑖 ), where 𝑝𝑝𝑖𝑖  is a linear 
function of six covariates, 𝑥𝑥1, … , 𝑥𝑥6, as follows:  
 

 logit(𝑝𝑝𝑖𝑖) =  𝑎𝑎0 + 𝑎𝑎1𝑥𝑥1𝑖𝑖 + 𝑎𝑎2𝑥𝑥2𝑖𝑖 + 𝑎𝑎3𝑥𝑥3𝑖𝑖 + 𝑎𝑎4𝑥𝑥4𝑖𝑖 + 𝑎𝑎5𝑥𝑥5𝑖𝑖 + 𝑎𝑎6𝑥𝑥6𝑖𝑖 , (12) 
 
with 𝑎𝑎0 = log (0.0329/0.9671) , 𝑎𝑎1 = log (1.1) , 𝑎𝑎2 = log (1.25) , 𝑎𝑎3 = log (1.5) , 𝑎𝑎4 =
log (1.75), 𝑎𝑎5 = log (2), and 𝑎𝑎6 = log (2.5). 
 
We generated a single continuous outcome variable using the following model: 
 

 𝑌𝑌𝑖𝑖 = 𝑏𝑏0 + 𝛿𝛿𝑧𝑧𝑖𝑖 + 𝑏𝑏1𝑥𝑥1𝑖𝑖 + 𝑏𝑏2𝑥𝑥2𝑖𝑖 + ⋯+ 𝑏𝑏6𝑥𝑥6𝑖𝑖 
+0.2𝑧𝑧𝑖𝑖(𝑏𝑏1𝑥𝑥1𝑖𝑖 + 𝑏𝑏2𝑥𝑥2𝑖𝑖 + 𝑏𝑏3𝑥𝑥3𝑖𝑖) + 𝜀𝜀 (13) 
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where 𝜀𝜀~𝑁𝑁(0,1) , and 𝑏𝑏0 = 0 , 𝑏𝑏1 = 2.5 , 𝑏𝑏2 = −2 , 𝑏𝑏3 = 1.75 , 𝑏𝑏4 = −1.25 , 𝑏𝑏5 = 1.5 , 
𝑏𝑏6 = 1.1, and 𝛿𝛿 = 1. Note that 𝑥𝑥1, 𝑥𝑥2, …, 𝑥𝑥6 are confounding covariates. 
 
From each study population, we selected a study sample following the sample design 
described below. 
 
• A simple random sample of five clusters was selected from each stratum (50 

altogether). 
• For stratum 𝑘𝑘, a simple random sample of 𝑛𝑛𝑖𝑖 units was selected from each sampled 

cluster, where 𝑛𝑛𝑖𝑖 = 150, 140, 130, 120, 110, 90, 80, 70, 60, 50, resulting in a 
stratum sample size of 5𝑛𝑛𝑖𝑖, for 𝑘𝑘 = 1, 2, 3, … , 10 and a total sample size of 5,000. 

• Due to an unequal sampling rate (probability) across the strata, the sampling weights 
are unequal, ranging from 133.33 to 400. 

 
As in Austin, Jembere, Chiu (2018), the target parameter to be estimated was the PATT. 
 
We simulated 1,000 samples from each study population. Each sample was then used to 
estimate the PS by three methods (PS1, PS2, and PS3) and to estimate the PATT by four 
methods (MAT1:1, STRAT10, IPTW, and PSRA) with each of the estimated PS. There 
were 12 (treatment effect) point estimators, defined by 12 combinations of the three PS 
estimation methods and the four treatment effect estimation methods.  
 
The Monte Carlo (MC) mean of a point estimator is the average of 1,000 sample estimates, 
which is taken as the true population mean for the point estimator, and the bias of the point 
estimator is the MC mean minus the population treatment effect. The percentage relative 
bias of the point estimator is then given by 100 times the bias divided by the population 
treatment effect. Table 1 presents the relative bias for 12 estimators under six study 
populations. 
 
Table 1: Percentage relative bias of 12 treatment effect estimators under six populations 

 
The relative bias for STRAT10, which is always greater than 5 percent, stands out, whereas 
all other estimators have a relative bias much closer to zero. As discussed earlier, the 
stratification method is biased to the extent that the stratum homogeneity is violated. Our 

PS method/ 
Estimation 
method 

POP1 POP2 POP3 
PS1 PS2 PS3 PS1 PS2 PS3 PS1 PS2 PS3 

MAT1:1 1.43 0.30 2.47 0.55 0.75 0.03 1.54 0.33 1.74 
STRAT10 8.03 6.90 7.93 5.67 6.39 5.87 6.48 6.20 6.50 
IPTW 1.65 0.60 1.62 -2.07 -0.62 -1.80 -0.39 -0.77 -0.33 
PSRA 1.13 -0.17 1.03 -1.00 -0.28 -0.85 -0.01 -0.40 0.02 
PS method/ 
Estimation 
method 

POP4 POP5 POP6 
PS1 PS2 PS3 PS1 PS2 PS3 PS1 PS2 PS3 

MAT1:1 1.34 0.02 -0.11 1.37 1.63 1.15 3.91 2.18 2.17 
STRAT10 6.26 6.35 6.20 7.38 7.96 7.27 8.50 7.65 8.49 
IPTW -0.80 0.13 -0.80 -0.03 0.93 -0.01 1.52 0.49 1.59 
PSRA -0.60 -0.34 -0.69 0.03 0.68 0.02 1.05 0.18 1.08 
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limited simulation (not presented) shows that if the number of strata is increased to 20, the 
bias can be reduced by half.  
 
The MC variance is the variance of 1,000 sample estimates for a point estimator, which is 
taken as the true variance of the point estimator. The MC variances for the 12 point 
estimators included in Table 1 are presented in Table 2 for six populations. 
 

Table 2: MC variances of 12 treatment effect estimators for six populations 

 
STRAT10, which has the largest bias in point estimation, has the smallest variance. This 
is expected because stratification reduces the variance (at the expense of bias). PSRA has 
the smallest variance among (nearly) unbiased point estimators, and IPTW is very close to 
PSRA. MAT1:1 has a variance more than twice as large as other estimators. This is because 
it uses only a fraction of the control units, whereas the others use the full sample. Therefore, 
the variance for MAT1:1 can be reduced by increasing the number of matched control units 
per treatment unit.  
 
When we compare PS estimation methods, it appears that ignoring the sampling weight 
does not necessarily increase the bias of the point estimators. It is interesting to see that 
point estimators with PS1 and PS3 behave similarly, whereas the estimators with PS2 
consistently perform better in variance and mean squared error (MSE) than those with PS1 
and PS3. Therefore, it appears advantageous to incorporate the sampling weight in PS 
estimation as the weight variable rather than as a covariate or ignoring it. 
 
Table 3 compares the point estimators in terms of MSE for POP1. From the table, we can 
draw these conclusions: 
 
• In terms of variance, STRAT10 is the best, although it is biased. 
• In terms of MSE, STRAT10, IPTW, and PSRA are similar. 
• MAT1:3 has much a smaller variance and MSE than MAT1:1 and becomes 

competitive. 
 
The same conclusion can be drawn from the results for other populations. 
 

PS method/ 
Estimation 
method 

POP1 POP2 POP3 
PS1 PS2 PS3 PS1 PS2 PS3 PS1 PS2 PS3 

MAT1:1 0.120 0.099 0.123 0.094 0.075 0.090 0.065 0.053 0.066 
STRAT10 0.039 0.018 0.037 0.029 0.014 0.028 0.022 0.012 0.022 
IPTW 0.050 0.024 0.049 0.049 0.025 0.048 0.028 0.016 0.028 
PSRA 0.047 0.023 0.046 0.040 0.021 0.040 0.026 0.014 0.026 
PS method/ 
Estimation 
method 

POP4 POP5 POP6 
PS1 PS2 PS3 PS1 PS2 PS3 PS1 PS2 PS3 

MAT1:1 0.077 0.059 0.073 0.075 0.061 0.067 0.065 0.060 0.072 
STRAT10 0.028 0.015 0.027 0.027 0.016 0.027 0.026 0.016 0.026 
IPTW 0.035 0.019 0.035 0.034 0.021 0.034 0.030 0.019 0.031 
PSRA 0.031 0.017 0.031 0.029 0.016 0.028 0.027 0.016 0.028 
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Table 3: Comparison of variances and MSEs of the point estimators under POP1 

Estimator Variance MSE 
PS1 PS2 PS3 PS1 PS2 PS3 

MAT1:1 0.120 0.099 0.123 0.121 0.099 0.124 
STRAT10 0.039 0.018 0.037 0.048 0.025 0.046 
IPTW 0.050 0.024 0.049 0.050 0.024 0.049 
PSRA 0.047 0.023 0.046 0.047 0.023 0.046 
MAT1:3 0.058 0.036 0.056 0.060 0.037 0.058 

 
To study variance estimation, we used the jackknife method with formation of replicates 
by dropping one cluster at a time, resulting in 50 replicates since 50 clusters were selected. 
The full jackknife was then applied by performing PS estimation and treatment effect 
estimation for each replicate. The jackknife variance estimate is an appropriately scaled 
sum of squared deviations between replicate estimates and the full-sample estimate. The 
jackknife variance estimator for a linear statistic is unbiased and is consistent for a 
nonlinear statistic if the statistic is a nonlinear function of sample means and totals, but the 
function is differential (Krewski and Rao, 1981) – the functional form can be linearized 
(e.g., ratio estimators, regression coefficients, correlation coefficients). Otherwise, the 
jackknife variance estimator is not consistent – one example of such statistics is the median. 
In our case, the matching and stratification methods are not linearizable, and we expected 
that the jackknife would not work well. Some evidence of this outcome is shown in Table 
4, where the percentage relative bias of the full jackknife is presented for POP1. The table 
also shows the coverage rate of the 95 percent confidence interval (CI) over 1,000 
simulated samples. 
 
 
Table 4: Relative bias and coverage rate for 95 percent CI of the full jackknife variance 

estimator 

Point 
estimator 

Relative bias (%) Coverage (%) 
PS1 PS2 PS3 PS1 PS2 PS3 

MAT1:1 2,561.5 3,106.6 2,513.2 100.0 100.0 100.0 
STRAT10 130.6 179.6 152.5 99.1 98.9 99.2 
IPTW 51.5 5.9 52.7 97.7 94.4 97.9 
PSRA 50.5 6.8 52.0 98.7 95.4 98.4 

 
As expected, the full jackknife does not work at all for MAT1:1 and STRAT10. However, 
it works much better for IPTW and PSRA under PS1 and PS3 but still considerably 
overestimates, whereas it works very well under PS2. 
 
What would happen if we used the shortcut jackknife? It bypasses the PS estimation step 
in each replicate, but the full-sample PS is reused in each replicate sample to estimate the 
replicate treatment effect. Aggregation of the replicate estimates is the same as the full 
jackknife. The result for the shortcut jackknife is shown in Table 5 for POP1. 
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Table 5: Relative bias and coverage rate for 95 percent CI of the shortcut jackknife 
variance estimator 

Point 
estimator 

Relative bias (%) Coverage (%) 
PS1 PS2 PS3 PS1 PS2 PS3 

MAT1:1 -10.0 9.0 -13.6 91.2 91.5 94.2 
STRAT10 69.5 30.0 124.2 97.6 90.1 98.4 
IPTW 54.8 -53.8 55.7 97.6 77.6 97.7 
PSRA 52.0 -54.9 53.5 98.1 77.0 97.5 

 
The shortcut worked quite well for MAT1:1. For STRAT10, the bias was substantially 
reduced from that of the full jackknife. However, it is still not negligible, especially under 
PS1 and PS2, whereas it is somewhat acceptable under PS2. On the other hand, it 
performed poorly for IPTW and PSRA. It underestimates the variance under PS2 and gives 
poor coverage of the 95 percent CI, for which the full jackknife worked very well. 
Interestingly, there is not much difference between the full and shortcut jackknife methods 
for IPTW and PSRA under PS1 and PS3.  
 
It is known that the bootstrap variance estimator is better than the jackknife at handling 
severe nonlinearity of the functional form of the estimate (Kovar, Rao, and Wu, 1988). 
This is demonstrated in our simulation as well. The full bootstrap selected bootstrap 
samples from the original sample using the method appropriate for the stratified cluster 
design (Sitter, 1992), and then the PS and treatment estimation steps were carried out for 
each bootstrap sample. We selected 200 bootstrap samples, which produced 200 bootstrap 
treatment effect estimates. To obtain the bootstrap variance estimate, these estimates were 
aggregated using a simple formula. To construct the confidence interval, we can use either 
the usual normal theory CI, which will work well if the bootstrap estimates are 
symmetrical, or the quantile CI calculated from the empirical distribution of the bootstrap 
estimates, which performs better when the distribution is asymmetric. Table 6 presents the 
results for variance estimation and quantile 95 percent CI for the full bootstrap for POP1. 
 
Table 6: Relative bias and coverage rate for quantile 95 percent CI of the full bootstrap 

variance estimator 

Point 
estimator 

Relative bias (%) Coverage (%) 
PS1 PS2 PS3 PS1 PS2 PS3 

MAT1:1 14.9 23.0 11.8 100.0 100.0 99.9 
STRAT10 -2.2 33.5 2.0 91.6 94.3 91.3 
IPTW -18.8 -13.6 -18.0 91.5 92.1 92.2 
PSRA -21.5 -16.7 -20.3 91.7 93.8 92.2 

 
The relative bias is not so bad, although it is negatively biased for IPTW and PSRA. The 
quantile CI coverage is generally lower than the nominal value; however, for MAT1:1, it 
incorrectly gives the 100 percent coverage. This is quite surprising because the relative bias 
was quite contained. This overcoverage issue disappears when the normal theory CI is 
used, as seen in Table 7. 
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Table 7: Comparison of coverage rates of the quantile and normal 95 percent CIs with 
the full bootstrap variance estimator 

Point 
estimator 

Quantile CI Normal CI 
PS1 PS2 PS3 PS1 PS2 PS3 

MAT1:1 100.0 100.0 99.9 95.7 96.6 96.4 
STRAT10 91.6 94.3 91.3 91.7 95.3 92.0 
IPTW 91.5 92.1 92.2 92.1 92.3 91.9 
PSRA 91.7 93.8 92.2 91.8 93.0 91.8 

 
We also tried the shortcut bootstrap variance estimator, which bypasses bootstrapping the 
original sample and PS estimation step. Therefore, once the full-sample PS estimates are 
obtained, they are reused in bootstrapping the treatment effect estimation step. Unlike the 
jackknife, the shortcut bootstrap did not work at all for all estimators, as shown in Table 8. 
The simulation was run only for PS2 with POP1. 
 

Table 8: Relative bias and coverage rate for 95 percent CI of the shortcut bootstrap 
variance estimator 

Point 
estimator 

Relative bias (%) Coverage (%) 
PS1 PS2 PS3 PS1 PS2 PS3 

MAT1:1 NA 167.0 NA NA 99.7 NA 
STRAT10 NA 781.5 NA NA 100.0 NA 
IPTW NA 684.7 NA NA 100.0 NA 
PSRA NA 657.3 NA NA 100.0 NA 

 
 

4. Summary and Concluding Remarks 

Below we summarize our study results for the four treatment effect point estimators. 
 
• MAT1:1, IPTW, and PSRA are (nearly) unbiased. 
• STRAT10 is biased but has the smallest variance. 
• The bias of STRAT10 can be reduced by increasing the number of strata. 
• In terms of MSE, STRAT10, IPTW, and PSRA are similar, but IPTW and PSRA are 

preferable because there is no bias. 
• MAT1:1 uses a much smaller sample and suffers a larger variance, but the variance 

can be reduced by increasing the number of matching control units. 
• It appears that the sampling weight does not make much difference in estimation of the 

PS in our simulation data. However, the sampling weight-incorporated PS2 gives better 
treatment effect estimates with a smaller variance. 

 
The study results for variance estimation are summarized below. 
 
• The full jackknife works well for IPTW and PSRA under PS2 in terms of bias and 

coverage rate. 
• The shortcut jackknife works reasonably well for MAT1:1 and STRAT10 (under PS2) 

but not for IPTW and PSRA, which is opposite to the full jackknife. 
• The full bootstrap variance estimator works reasonably well for all point estimators in 

terms of bias although it underestimates for IPTW and PSRA.  
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• The coverage rate for the quantile CI based on the empirical distribution of bootstrap 
estimates is somewhat lower than the nominal value; however, it is not too bad except 
for MAT1:1, for which the coverage rate is too high (100%). 

• If the normal CI is used with the bootstrap variance estimate, the coverage is pretty 
good for all point estimators.  

• The shortcut bootstrap does not work at all for any point estimator. 
 
Based on the results of our study, we provide the following preliminary directions. 
 
• We recommend using the sampling weight in estimation of both the PS and the 

treatment effect. 
• If feasible, use more matched control units in the matching method. 
• It is advisable to have a larger number of strata (>10) to the extent that this is 

affordable. 
• IPTW and PSRA use the full extent of all available data and perform better in general 

in terms of bias and better or equal in terms of MSE, so they should be considered for 
general use. 

• Use the full jackknife for IPTW and PSRA, whereas the shortcut jackknife may be 
used for the matching and stratification methods, especially with PS2. 

• If feasible, the full bootstrap appropriate for the sample design may be used for any 
point estimators. 

• A caution is needed when constructing the quantile CI with the full bootstrap for the 
matching method; it may be advisable to form both quantile and normal CIs and 
compare them, as the normal method appears to work well for all point estimation 
methods provided that the distribution of bootstrap estimates are not asymmetrical. 

• The shortcut bootstrap should not be used unless there is strong evidence that it 
works for a particular situation. 

 
We consider the following items for future study: 
 
• Taylor linearization method for variance estimation; 
• Unequal cluster size design with and without probability proportional to size 

sampling; 
• Binary outcome variables; 
• Estimation of PATE; and 
• Application to real data. 
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