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Abstract 

Coverage intervals for a parameter estimated from a complex probability sample are 
usually constructed by assuming that the parameter estimate has an asymptotically 
normal distribution, and the measure of the estimator’s variance is roughly chi-squared. 
The size of the sample and the nature of the parameter being estimated render this 
conventional “Wald” methodology dubious when constructing coverage intervals, 
especially for proportions. A revised method of coverage-interval construction has been 
developed in the literature that “speeds up the asymptotics” by incorporating an estimated 
skewness measure. We will discuss how skewness-adjusted coverage intervals can be 
computed in some common situations and why it may be inappropriate to call them 
“confidence intervals.” 
 
Key Words: Wald coverage interval, Skewness, Skewness-adjusted coverage interval 
  

1. Introduction  

Statisticians are interested in estimating intervals likely to contain a parameter.  Wald 
intervals are most commonly used for this purpose.  Hypothesis test for the location of 
the parameter can be conducted using these intervals.   

Suppose t̂  is a nearly (i.e., asymptotically) unbiased estimator for a parameter t 

estimated with data drawn via a probability survey.  The one-sided Wald coverage 
intervals for t are  

                     1 1ˆ ˆ( ) and ( ) ,t t v t t v− − +   −                                (1) 

where v is a good estimator for V the variance of t̂  under either probability-       
sampling theory or a reasonable model, and  
(.) is the cumulative distribution function of a standard normal distribution.   

It is well known that when the sample size is large enough, both inequalities hold for 
roughly α-percent of samples drawn using the same sampling design as the probability 
survey.    

A symmetric two-sided α-percent Wald interval easily derivable from equation (1) is   

                 1 1ˆ ˆ([1 ] / 2) ([1 ]/ 2) .t v t t v− −− +   + +  

 We will focus on one-sided intervals because creating a symmetric two-sided interval 
from two one-sided intervals is easily done.    
 
Much of the research on interval estimation has concentrated on proportions either 
estimated from an independent and identically distributed (iid) sample (e.g., Clopper and 
Pearson 1934, Hall 1998, Newcombe 1998, Brown et al. 2001, Cai 2004) or a complex 
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probability sample (e.g., Korn and Graubard 1998, Kott and Liu 2009, Franco et al. 
2014).  Liu and Kott (2009, p. 575) displays how well many of the alternative methods of 
computing coverage intervals perform for a proportion estimated with a simple random 
sample (a link to that article is in the references).   
 
Here, we will look at more general estimators computed from complex probability 
samples; in particular, we focus on estimators for ratios and for differences between 
domain mains. Critical to this endeavor will be estimating the third central moment of t̂ .   
We will use probability-sampling (design-based) theory in this effort. Analogous 
arguments assuming models are straightforward.  
 
Often the sample size in an application will not be nearly large enough for a one-sided 
Wald interval to contain (“cover”) t with the frequency suggested by the asymptotic 
theory.  We will use the term “coverage interval” here rather than “confidence interval” 
because one rarely has confidence that whatever the true value of  t  it falls within the 
designated interval at least  percent of the time across repeated realizations of the 
random variable t̂  (as it would were t̂  normally distributed and (.) replaced with the 
appropriate Student’s t-distribution).  
 
Kott and Liu (2010) proposed using skewness-adjusted one-sided coverage intervals in 
place of the Wald intervals to “speed up the asymptotics:” 
 

               2 2 2 2ˆ ˆand  ,t t z v t t z v +  + +   +  − +                         (2) 
 

where   = 
2

2 31 (1 ) ,
6 2

m z
z b

v
− +                                                                          (3) 

 
 z = -1(α),  
 m3 is a nearly unbiased estimator for the third central moment of ˆ,t  

3
3 ˆ[( ) ],M E t t= − and  

 b is a nearly unbiased estimate or for ,ˆ[ ( )]B E v t t V= − the regression of v on  ˆ .t t−                    
                                               In   

2

2
z

b              accounts for v varying with  t̂ t−   

2 31 (1 )
6

m
z

v
−   accounts for t̂ being skewed.   

 
 If b  m3/v, which is true in many contexts, then 
     

      
2

31 .
6 3

mz

v

 
+ 

 
                                                  (4) 

 
When equation (4) holds, the coverage intervals in equation (2) can be expressed as  
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1 1 1ˆ ˆ ˆ1 and (5)  
6 3 6 3

1 1 1ˆ ˆ ˆ1 ,
6 3 6 3

z z
t t z v

z

z z
t t z v

z

           
       

           
       

 + +  + + + 

 + +  − + + 

 

 
3/2

3
3/2

3

ˆˆwhere /  is the estimated skewness for , and

/ is the skewness measure being estimated.

m v t

M V

=

 =
  

 
The estimated skewness tends to decrease in absolute value as the sample size increases.  
For an estimated proportion, p, under either simple random sampling with replacement 
(or an iid model):  

 
3 (1 )(1 2 ) /[( 1)( 2)],

(1 2 ) / ( 1), and
m p p p n n

b p n

= − − − −
= − −

  

             1/2ˆ [(1 2 ) / ( (1 ))] .p np p − −   
 

When v is not too close to zero, the following modification on equation (5) drops terms of 
a smaller asymptotic order (rendering 2̂   0): 

      

2 2

2 2

1 1ˆ ˆˆ ˆand or
6 3 6 3

1 1ˆ ˆand
6 3 6 3

z z
t t z v t t z v

z z
t t b z v t t b z v

         
      

         

   
   
   

 + +  +  + +  −

 + + +  + + −

               (6) 

These are the one-sided Wald intervals shifted by  
(1/6 + z2/3) ˆ v =  (1/6 + z2/3)b. 
b = OP(1/n);  v =  OP(1/ n ). 
 

2. A Stratified Simple Random Sample 

Suppose we are interested in constructing one-sided coverage intervals for a finite-
population total or mean based on a stratified simple random sample.  The former can be 
expressed as ,

h

H

y kk U
T y


=    where yk is the variable of interest for element k.    

The corresponding population mean is ,H

y h hY T N W Y= =   where 
H

h
N N=  , 

h hW N N= , and 1 .
h

h h kk U
Y N y−


=    

An unbiased estimator for the finite-population total Ty  using probability-sampling 
theory is  ˆ ,y yT Nt= where  H

y h ht y W y= =  and 1
h

h h kS
y n y−=  .         
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When every nh   3, one can construct one-sided coverage intervals for Y  based on 
probability-sampling theory by setting  

2
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3
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b
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

=



=



=

 
 
 
 

  
  
  
  

 
 
 
 

−
= −

−

−
= − −

− −

−
−

− −










                     (7)                             

One-sided coverage intervals for Ty are simply N times the analogous intervals for .Y   It 
is easy to see that when all the 2nh/Nh are small enough to be ignored equation (3) 
effectively collapses into equation (4). 

Assuming some mild conditions, the ratio of two totals, Tx/Tz, can be estimated in a 
consistent manner using without-replacement-stratified-simple-random-sampling data by 

/
ˆ ˆ ˆ/x zx z
t t t= ; that is to say, the difference between  /x̂ z

t  and Tx/Tz  tends to zero in 
probability as either H or the nh grow arbitrarily large.     
 
The variance and third central moment of  /x̂ z

t  can be estimated as above with each yk 

replaced by the linearized term: /
ˆ ˆ[ ( ) ] / ,zk k x z k

e x t z t= −  which is asymptotically 

indistinguishable from /
ˆ[ ( ) ] / .zk k x z k

u x t z t= −    Observe that  

                                                  /x̂ z
t − /x zt = .HW u

h h   

A ratio estimator of special interest is the estimator of a domain mean.  If     dk = 1 for an 
element in the domain and 0 otherwise, then the estimated mean of y-values in the 
domain has the form  /

ˆ ˆ ˆ/ ,x zx z
t t t= where zk = dk, and xk = dkyk. 
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3.  A Stratified Multistage Sample 

Consider now constructing a coverage interval for a parameter t based on stratified 
multistage sample when a nearly unbiased estimator for that parameter can be put in the 
form:  

                                     
1 1

1ˆ ˆ ,
hnH

hi
h ih

t t
n= =

=                                                           (8) 

where there are 
h

n  primary sampling units (PSU’s) in stratum h, and each 
ĥi

t  for a PSU 
i in stratum h is a nearly unbiased estimator for the same value.  

The parameter t may be a model parameter or a finite-population parameter.  In the latter 
case, we make the common (but often inaccurate) assumption that that the PSU’s were 
selected randomly but with replacement, while any subsampling was done using 
probability-sampling principles.  In the former, we assume variables of interest are 
independent across PSUs and that strata are nuisances.   

We focus now on the difference between two domain means estimated using data from 
the same sample, S.  Each element in S had a value yk and a sampling weight wk attached 
to it, so that the estimated different in domains means can be expressed as:  
  

    

(1) (2)

(1) (2)(1) (2)

k k k k k k
k S k S

k k k k
k S k S

w y d w y d

y y
w d w d

 

 

− = −
 

 
, 

where ( )a
k

d  = 1 when k is in domain a and 0 otherwise.  Here:  

       
(1) (2)

1 2

ˆ
ˆ ˆhi

k k
hi hi k kk S

d d
t u w y

N N

 
 
 
 

 = − ,                                                          

where 
hiS  is the set of sampled elements in PSU i of stratum h, and ( )ˆ a

a q qq S
N w d


=  is 

the estimated population size of domain a, that is, Na.   Observe that the 
       

                                      

(1) (2)

1 2

ˆ
hi

k k
hi hi k kk S

d d
t u w y

N N

 
 = − 

 
 .  

are independent under probability-sampling theory for PSUs in the same stratum (recall 
we are assuming with-replacement sampling in the first stage of sample selection).   
  
When all hn   3, the following equalities can be used in equations (2) and (3): 
  

    

2 2 3 3

3
1 11 1

3

( ) ( ), ,
( 1) ( 1)( 2)

and  ,

h hn nH H
h hi h h hi h

i ih hh h h h h

N e e N e e
v m

n n n n n

m
b

v

= == =

− −
= =

− − −

=

   

                          (9) 
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where each ehi has the following linearized expression:    
(1) (2)

(1) (2)
1 2

[ ] [ ] .ˆ ˆhi

k k
hi h k k kk S

d d
e n w y y y y

N N

 
 
 
 

= − − −  

 
We ignore finite population correction when comparing domain means because an 
analyst is usually interested in whether there is an underlying process causing the domain 
means to be different, not the actual difference between the means in in the finite 
population.  

  4.  An Example 

We now look at computing one-sided coverage intervals for two sets of parameters for 
the MU284 population from Särndal et al. (1992) available at  
http://lib.stat.cmu.edu/datasets/mu284.   The population consists of 284 Swedish 
administrative municipalities separated into 50 clusters with 8 strata.  We collapse the 
final two strata into a single seventh stratum.  We divide the population into two 
domains, the 26 municipalities with a 1985 population of over 64,000 are in Domain 1 
and the remaining 258 in Domain 2.  We are interested in constructing coverage intervals 
for, 1, the arithmetic average across municipalities in 1985 of the municipal taxation per 
person within each domain and, 2,  the fraction of municipalities within each domain with 
more tax receipts than 9 million kronor per 1,000 persons in 1985.  We are also interested 
in constructing coverage intervals the differences between the domains.  

We suppose a cluster sample of three clusters per stratum (nh = 3) are selected from the 
MU284 population via simple random sampling with replacement.   Letting yk  be either 
the tax revenue per person in municipality k or a (0/1)  indicator of whether that ratio is 
greater than  9 million kronor per 1,000 persons, we define  

( )

(1)
1

(1) (2)

(1) (2)
1 2

for Domain  (1 or 2), and 

for the difference between the domains,

[ ]ˆ

[ ] [ ]ˆ ˆ

hi

hi

a
k

hi h kk S

k k
hi h k kk S

a
d

e N y y
N

d d
e N y y y y

N N





 
 
 
 

 
 
 
 

= −

= − − −



    

where Nh is the number of clusters in stratum h,  Shi is the sample of municipalities in 
cluster i of stratum h (in this example, Shi is every municipality in the cluster), ( )a

k
d  = 1 

when municipality k is in Domain a, 0 otherwise, ( )a
y  is the estimated mean of the y-

values in domain a, and ˆ
a

N  is the estimated number of municipalities in domain a.   
 
For constructing coverage intervals in this example, we replace v, m3, and ̂  in equation 
(9) by what they estimate:    
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7

2 1

1

3
7

3 1
3 2

1
3/2

3

( )
,

( 1)

( )
, and

( 1)( 2)

/ ,  =  

h

h

N

hi h

i
h

h hh

N

h hi h

i
h

h h hh

e E

V N
n N

N e E

M N
n N N

VM

=

=

=

=

−

=
−

−

=
− −







     

where 1 /h
N

h hi hi
E e N

=
= .    

By using these replacements, we produce coverage intervals around the respective 
estimates close to what the average an infinite number of simulations would produce.  

TABLE 1:       Coverage  Intervals____________________________________________ 

Estimates    Target         One-Sided 95% Intervals        One-Sided 99% Intervals 
      (Compared to Estimate)          (Compared to Estimate) 

                                                    Wald  Skewness-adjusted    Wald  Skewness-adjusted 
                                                                     Lower  Upper                       Lower  Upper                                                
_____________________________________________________________________  
Municipal Tax 
Per Person 
(in 1,000s)    
   Domain 1     6.88  1.19      -1.66     0.72       1.68       -2.54     0.82 
   Domain 2     6.90  0.19      -0.20     0.18       0.27       -0.29     0.25     
   Difference    -0.02  1.15        -1.61     0.68       1.62       -2.48     0.76 
 
Fraction  
Above 9 Million 
Per Thousand 
   Domain     0.15  0.17        -0.10     0.24      0.24        -0.10     0.37 
   Domain 2     0.02*    0.02        -0.01     0.03      0.03        -0.02*   0.04 
   Difference     0.13  0.16        -0.09     0.24       0.23        -0.10     0.37  
_______________________________________________________________________ 
The average lower (upper) Wald interval is bound from below (above) by the estimate 
minus (plus) the unsigned value in the table.  The average lower (upper)  Skewness-
adjusted interval is bound from below (above) by the estimate plus the Lower (Upper) 
value in the table.   

* Computed to another digit, the target is 0.023, while the lower bound is -0.018.  
 

Table 1 compares one-sided 95% and 99% Wald coverage intervals to skewness adjusted 
Skewness-adjusted coverage intervals computed with equation (6).   

The symmetric Wald and asymmetric Skewness-adjusted intervals tend to be closer to 
each other in Domain 2. This is because the larger sample size in Domain 2 reduces the 
impact of skewness adjustment.  The coverage intervals for the differences tend to be 
dominated by the smaller Domain 1 samples.   
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5. Some Simple Approximations  

A key to skewness-adjusted coverage intervals, especially when finite population 
correction can be ignored, is the estimated value b = m3/v = ˆ .v   From the last section, 
the value of this term for the difference between proportions estimated for two distinction 
domains from a simple random sample is approximately (assuming a large sample) 
 

               b = 
2 2

3 1 1 1 1 2 2 2 2

1 1 1 2 2 2

(1 )(1 2 ) / (1 )(1 ) /
(1 ) / (1 ) /

m p p p n p p p n

v p p n p p n

− − − − −


− + −
                        (10) 

where pa is the estimated proportion in domain a based on na sampled elements being in 
domain a.   When p1 = p2, this collapses to  

                                                  1
1 2

1 1(1 2 ) .b p
n n

 
 − − 

 
 

 
This appears to suggest that when assessing the difference between proportions in two 
distinct domains, one should multiply the domain sample sizes by their respective design 
effects;    BUT 
the design effect captures the impact of clustering, stratification, and unequal weighting 
on the variance of an estimator, not on its third central moment.    
A wiser procedure might be to estimate B = M3/V  for an estimated proportion p =       
kS wkyk/kS wk , where p estimates the fraction of the population with  yk = 0 or 1,  and         

                            
3

2 (1 2 ),kk S
simple

k kk S k S

w
b p

w w



 

= −
 

                                                     (11) 

and then inserting ˆ /
simple simple

b v =  into equation (5) or (6).   This estimate ignores 
the impact of stratification and clustering on b.  For the proportion in a domain, S in 
equation (11) and in defining p becomes the sample in the domain.  For the difference 
between two domain means: ˆ /

simple simple
b v =  with 

            

( ) ( )

2 2
1 1 1 1 2 2 2 2

* *
1 1 1 2 2 2

3 2

2 *
3 2

(1 )(1 2 ) / (1 )(1 ) / ,
(1 ) / (1 ) /

where  , and .a a

a a

simple

k kS S

a a

k kS S

p p p n p p p n
b

p p n p p n

w w
n n

w w

− − − − −=
− + −

= =
 

 

                           (12) 
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For a more general population or domain mean of a y-variable, one can replace ̂ in 
equation (5) or (6) with             
                     

ˆ /simple simpleb v = ,  where  
3 3

2 2
( )

,
( )

k kk S
simple

k k kk S k S

w y y
b

w w y y


 

−
=

−


 
                 (13) 

 
and / .

k k kS S
y w y w=    

 
 TABLE 2:       Approximating B 

Estimates          B                      Bsimple                          Bsimple                            
                                              (equation (13))   (equation 11 or 12) 
_______________________________________________________________________ 
Municipal Tax 
Per Person 
(in 1,000s)    
   Domain 1    -0.436 -0.486  
   Domain 2    -0.011    -0.020 
   Difference    -0.436 -0.477 
 
Fraction  
Above 9 million 
Per Thousand 
   Domain     0.068   0.073       0.067 
   Domain 2     0.006    0.008      0.010 
   Difference     0.069   0.072       0.066 
 
 
Table 2 assesses equations (11) through (13) with the examples from Section 3,  
replacing 

a

b
k kk S

w z
  by 1

a

b
k kk U

w z−
 .   

The approximations are clearly not perfect, but they are closer to the true  B = M3/V  than 
0, the value implied when Wald intervals are constructed.  

The appeal of these equations results from the practical problem of computing m3, and 
consequently ˆ , using either equation (7) or (9):  there is no available software routine to 
do so.  Even if there were or a statistician wanted to program the equations herself, there 
may not be three PSUs in every stratum.  Unlike collapsing strata for variance estimation, 
the direction of the potential bias of ̂ can be positive or negative when the population 
means of the strata (the expected value of the yk in each stratum in equation (7) or the 
expected values of the uhi corresponding to the ehi for a particular h in equation (9)) being 
combined are different. Consequently, strata collapsed together should have (near) equal 
expected population means.   
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6. Calibration Weighting and the Jackknife 

 

Calibration weighting often removes much of the impact of stratification and clustering 
from an estimated mean.  For example, calibration by region can reduce the impact of 
stratification by geographical units, while calibration by race and ethnicity can reduce the 
impact of clustering within neighborhoods.  As a result, estimating the skewness of an 
estimated proportion or mean using equations (10) or (11) may not be unreasonable, 
although it would often be better to replace the yk  with a calibrated residual.  Moreover, 
when estimating domain means, the impact of calibration weighting like that of 
stratification and clustering is diminished, except for that due to any increased variability 
of the weights themselves, making the use of equations (11), (12),  or (11) within the 
intervals in equation (5) or (6) more viable. 
 
If calibrated jackknife weights have been constructed to compute v for an estimator ˆ,t  
then these weights can also be used in estimating the third central moment of t̂ :  
 

                          
2

3
3( ) ( )

11

( 1) ˆ ˆ( ) ,
( 2)

hnH
h

J hi
ih h h

n
m t t

n n ==

−
= −

−   

where t̂ is computed with calibrated weights, and ( )
ˆ

hit is computed with the calibrated 
weights for the stratum-h PSU-i jackknife replicate.  
 
Estimating the variance and third central moment of an estimator whose weights 
incorporate more than one calibration step can be difficult using the linearization methods 
of Section 2.  Computing jackknife measures is much simpler.  
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