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Abstract
Respondent-driven sampling (RDS) is commonly used to study hard-to-reach populations since

traditional methods are unable to efficiently survey members due to the typically highly stigmatized
nature of the population. The number of people in these populations is of primary global health
and demographic interest and is usually hard to estimate. However, due to the nature of RDS,
current methods of population size estimation are insufficient. We introduce a new method of esti-
mating population size that uses concepts from capture-recapture methods while modeling RDS as
a successive sampling process. We assess its statistical validity using information from the CDCs
National HIV Behavioral Surveillance system in 2009 and 2012.

Key Words: Hard-to-reach population sampling, Network sampling, Model-based survey sam-
pling, Capture-Recapture, Probability proportional to size without replacement sampling

1. Introduction

In some populations, such as people at high risk for HIV — such as female sex workers
(FSW), men who have sex with men (MSM), or people who inject drugs (PWID) — or
recent migrants, obtaining a probability sample can be practically impossible. This can be
for a variety of reasons, including social stigma, unwillingness to self-identify, or simply
because the people in the group may have engaged in an illegal activity.

In many cases, finding the size of these hard-to-reach populations is of great interest.
When deciding how much aid to send for HIV prevention, getting an accurate count of
people at high risk for HIV is crucial for efficient allocation of resources (UNAIDS and
Organization, 2010). Since these populations are hard to reach, traditional methods of
sampling, such as random digit dialing telephone numbers or household surveys, are un-
feasible. In addition, due to the stigma attached to many hidden populations, individuals
may refuse to release information to protect theirs or others’ privacy (Heckathorn, 1997).

An alternative way of surveying these hidden populations involves exploiting their
highly connected nature. For example, PWID are much more likely to know someone
else who injects drugs. In addition, it is much more likely that a person in the population
would even know that someone else is also in that population (e.g. it is more likely for a
PWID to know who among people they know is also a PWID). Therefore, researchers have
developed various link-tracing sampling methods, in which the network links from sampled
members of the population are traced out to unsampled members in the population in order
to grow the sample (Spreen, 1992; Handcock and Gile, 2011; Gile and Handcock, 2010).

One link-tracing method that has recently become very popular with researchers for
studying hidden populations is respondent-driven sampling, or RDS. Introduced by Heckathorn
(1997) as an alternative to traditional snowball sampling and time-location sampling tech-
niques, RDS employs a link-tracing design in the following manner:

1. Start with a small initial sample, usually a convenience sample.
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2. Give each respondent a few coupons to recruit others, with incentives for both the
recruiter and the new recruit.

3. Include each recruit in the study and give them a limited number of coupons, typically
approximately 3 (Malekinejad et al., 2008), to hand out to other members of the
population.

4. People who receive a coupon may choose to come in to join the study.

5. Each new participant is included in the study and given coupons to recruit others.

6. The process continues until a stopping condition is reached, such as a target sample
size. If the chain stops before the stopping condition is reached (e.g. due to unfruitful
referrals), new seeds may be chosen to start new chains.

RDS has several benefits over more conventional methods. First, and most prominent,
is that it enables researchers to survey a population for which a sampling frame does not
exist. Since respondents know others in the population (a reasonable assumption for pop-
ulations like MSM and FSW), it is much easier to ask them to find more people for the
study rather than for researchers to try to find them. In addition, as opposed to other net-
work sampling designs, RDS involves a dual incentive system, with incentives for both the
recruiter for recruiting others as well as participants for joining the study. In addition, the
long chains generated by RDS result in samples that are not as prone to bias by the initial
convenience sample, whereas other recruitment sampling methods may be (Heckathorn,
1997; Gile, 2011). In particular, RDS is able to reach the less visible members of the popu-
lation that may be missed by other link-tracing designs (Kendall et al., 2008). Further, RDS
does not require participants to give up any information about others. Instead, they are sim-
ply asked to recruit them into the study, giving agency to the possible recruits. This avoids
the issue of asking respondents to reveal information about their friends or acquaintances
(Heckathorn, 1997).

Due to its many benefits, respondent-driven sampling has increasingly been the method
of choice when surveying these hard-to-reach populations (UNAIDS and Organization,
2010; Bengtsson et al., 2012; Platt et al., 2006). A review in 2008 found that there had
been over 120 studies that have used RDS to sample most-at-risk populations for HIV
(Malekinejad et al., 2008). Much of the previous work has been done using respondent-
driven sampling to find proportions or other statistics (Volz and Heckathorn, 2008; Gile,
2011). Many studies comparing RDS with other methods have found that RDS is an ef-
fective and efficient method for sampling hard-to-reach populations (Abdul-Quader et al.,
2006; Semaan, 2010; Magnani et al., 2005; Platt et al., 2006).

However, the current literature on estimating the population size using only RDS data
is quite limited, and has mostly focused on using a multiplier method (Paz-Bailey et al.,
2011; Wattana et al., 2007). Some research has been done regarding using other forms of
network sampling, such as incorporating general link-tracing design to capture-recapture
(Vincent and Thompson, 2016), but very few model-based methods have been developed
specifically for RDS data (Handcock et al., 2014; Crawford et al., 2018). In addition, the
current model-based methods for RDS do not take full advantage of the multiple capture
population size estimation literature from animal abundance. Because RDS is so popular
among researchers of hidden populations, methods must be developed to estimate popula-
tion size using RDS data.

In this paper, we develop a new method to estimate population size using two RDS
surveys. In Section 2, we discuss traditional capture-recapture methods for population size
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list 2
1 0

list 1
1 a1,1 a1,0 a1,+
0 a0,1 a0,0 a0,+

a+,1 a+,0 a+,+

Figure 1: Contingency table for a simple capture-recapture design.

estimation, as well as methods developed specifically for RDS data. In Section 3, we intro-
duce our new population size estimation method that uses concepts from both traditional
capture-recapture and RDS-based methods. Then, in Section 4, we use simulation studies
to assess our new model and compare it to existing methods. Finally, we provide conclud-
ing remarks in Section 5.

2. Population Size Estimation

Even though using RDS data for population size estimation has not been studied thor-
oughly, there is a rich literature on size estimation in general. The basis of these methods
come from animal abundance. Researchers interested in finding the number of animals in
a certain area developed methods to count them. These methods were applied to surveys of
human populations, and extensions were developed to relax some of the assumptions.

2.1 Capture-Recapture

A classic method of estimating the abundance of animals is using capture-recapture. A ba-
sic capture-recapture design as it applies to animal abundance can be described as follows:

1. Capture a certain number of animals.

2. Tag them, then release them back into the wild.

3. Perform a second capture (recapture).

4. Count how many of the recaptured animals are tagged.

5. Use the overlap to estimate the abundance.

We can express the simple capture-recapture data in the form of a collapsed 2 by 2
table, as in Figure 1. Then, we see the data as capture histories. That is, we know the
capture history of “1, 1”, “1, 0”, and “0, 1”, while we do not observe the capture history “0,
0”. This is a condensed version of the complete data, and multiple list methods typically
approach the problem in this way, estimating the frequency of capture history of all “0”s.

If we assume independence of the two lists and equal capture probabilities for each unit
in the population, we get what Paz-Bailey et al. (2011) and Berchenko and Frost (2011)
refer to as the naive estimator,

N̂naive =
(a1,0 + a1,1)(a0,1 + a1,1)

a1,1
, (1)

where a1,0 is the number of people who were captured in only the first sample and a0,1 is
the number of people who were captured in only the second sample. This is also called
the Lincoln-Petersen estimator. An alternative formulation of this capture-recapture design
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uses the Hypergeometric distribution. That is, we model the second capture as a Hyperge-
ometric process, with a “success” defined as a unit that was already observed in the first
list (e.g. a tagged animal) and a “failure” defined as one that was not observed (e.g. an
untagged animal). A Bayesian implementation of this is provided by Cosenza et al. (2014).

2.2 Multiple List Methods

The basic capture-recapture method of estimating population size can be generalized to
include more lists. For example, one might consider using three lists. This would result
in a three-dimensional version of the contingency table in Figure 1, and the aim would
once again be to estimate every unit that was not captured in any list. In addition, various
methods have been developed to try to account for heterogeneity in capture probabilities,
as well as heterogeneity in lists (that is, a different propensity to capture animals) or time
effects (for example, if an animal that is tagged is more likely to be captured because of the
tagging) (Rivest and Baillargeon, 2007; Fienberg et al., 1999; Manrique-Vallier, 2016).

2.3 Network-Based Population Size Estimation Methods

One method to find the size of a population without directly sampling that population is the
network scale-up method (Bernard et al., 2010; Salganik et al., 2011). The network scale-
up method uses information about personal networks sizes of respondents in the general
population and known population proportions to make size estimates. For example, sup-
pose we want to know how many men who have sex with other men (MSM) in a particular
group of one million people. If a respondent knows 200 people (i.e. their personal network
size is 200) and knows 2 people who are MSM, then we can conclude that 1% of the pop-
ulation are MSM. Known populations are used to estimate the size of each respondent’s
personal network — if a person reports knowing 2 people named Joe and there are 10,000
Joes out of 1,000,000 people in the population, then that respondent’s personal network
size would be 200.

The network scale-up method provides an advantage in that it does not need to sample
the population of interest directly, but it does require an assumption that the unobserved and
observed members have the same distribution of characteristics. In addition, the population
of interest is hidden, which means that the general population most likely does not know
whether their acquaintances really are in that hidden population. Therefore, respondents
might report knowing much fewer members of the hidden population even if they actually
know many more members.

Successive Sampling - Population Size Estimation (SS-PSE) was developed specifi-
cally to use RDS data, estimating population size using a single RDS sample and modeling
the RDS process rather than treating it as a probability sample (Handcock et al., 2014).
While performing the RDS, information on each respondent’s degree (i.e. how many peo-
ple they know in the population) is collected, along with the order of observation. The
RDS process is treated as sampling with probability proportional to size without replace-
ment (PPSWOR) (Gile, 2011).

Intuitively, if we are sampling with PPSWOR, we would expect the people with higher
degrees to be sampled first and the people with lower degrees to be sampled later on. SS-
PSE leverages this information to estimate the population size, modeling RDS with a suc-
cessive sampling approximation, which accounts for the without-replacement nature of
RDS and has been found to be effective in estimation of population means (Gile, 2011).

Crawford et al. (2018) introduce another population size estimation method specifically
developed for a single RDS survey. They assume that the population social network fol-
lows an Erdős-Rényi distribution, and use the timing of recruitment and network degree of
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recruits to gain information about the unsampled members of the population. As opposed
to SS-PSE, the RDS process is more exactly modeled (rather than treating it as sampling
with PPSWOR), but it also requires a stronger assumption that the population network is
an Erdős-Rényi graph, such that ties are independent and that there is an equal probability
of each tie.

One big limitation of both SS-PSE and the method described by Crawford et al. (2018)
is that they both only use one RDS sample. More conventional size estimation methods
use multiple samples, so while the RDS process is actually modeled, there is potential for
improvement since adding a subsequent RDS survey adds valuable recapture information.
In the next section, we will build on the network-based approaches by estimating population
size using two RDS surveys.

3. Capture-Recapture with Successive Sampling for Population Size Estimation

One of the biggest benefits of using RDS data is the ability to collect multiple samples on a
hidden population relatively easily. In a review of RDS studies related to HIV surveillance,
Malekinejad et al. (2008) found that RDS studies took, on average, 9 weeks to complete.
Because of this, we want to adapt capture-recapture methods to work with RDS data so
that we can use as much information as possible. Currently, capture-recapture and other
multiple list methods have not been tailored for RDS data. Paz-Bailey et al. (2011) has
used RDS in the recapture stage, but there have been no published studies using RDS for
each stage of multiple captures in population size estimation. In addition, Paz-Bailey et al.
(2011) only used an adjusted ratio estimator. We aim to take a model-based approach,
which will not only give us better estimates, but also better measures of variance.

We aim to improve on current methods by utilizing the degrees of each respondent
and the order in which they were sampled to develop a method specifically for multiple
RDS lists. In this section, we introduce Capture-Recapture SS-PSE, a method to estimate
population size using two RDS surveys.

We assume the existence of a population (for example, FSW in a city) with an as-
sociated unit size. This can generally be anything about the individual that affects their
catchability, but for our purposes in RDS surveys, the unit sizes will be the personal net-
work size, or degree. Our observed data consists of two RDS surveys which serve as our
lists, or captures, in which the personal network size of each observation is recorded in
order of observation. That is, we are tracking both the unit size (degree) as well as the
sequential order of the when units were including into the study for both RDS surveys.
We note that in practice, this is done in the order that respondents come into the research
center to be included in the study, regardless of which wave or which seed’s chain they
are a part of. In addition, the second RDS survey includes a question about whether the
respondent had been recruited and participated in the first RDS survey. Notably, in these
methods, we do not assume that we have unique matching between the first and second list
for those captured in both. Instead, we only know that the unit was part of the first sample.
This is similar to the information collected in previous RDS studies that have tried to use
capture-recapture methodologies, as the researchers would ask whether the respondent had
previously received a unique keychain (Paz-Bailey et al., 2011).

3.1 Likelihood Formulation

We start by describing the likelihood. Let the total population size beN , with each individ-
ual person in the population indexed 1, · · · , N . Since we want to estimate the population
size, N is unknown. Each person has an associated unit size representing the number of
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people they know in the population (e.g. the number of FSW they know). These unit sizes
are treated as an i.i.d. sample from a superpopulation model. Let U1, · · · , UN be the ran-
dom variables representing the unit sizes. Let n′ and n′′ be the sample size of the first list
and second list, respectively, and n0 refer to the size of the overlap while n refers to the
overall unique sample size (so that n′ + n′′ − n0 = n).

We have an ordered sampling design, with G′ = (G′
1, · · · , G′

n′) representing the ran-
dom indices of the sequentially sampled units with realization g′ = (g′1, · · · , g′n′) in the
first list, and G′′ = (G′′

1, · · · , G′′
n′′) the random indices of the sequentially sampled units

with realization g′′ = (g′′1 , · · · , g′′n′′) in the second list. U ′
obs = (Ug′1 , · · · , Ug′n′

) is the unit
sizes, in order of the first list, and U ′′

obs = (Ug′′1 , · · · , Ug′′n′′
) the ordered unit sizes in order

of the second list, with realizations u′obs = (ug′1 , · · · , ug′n′
) and u′′obs = (ug′′1 , · · · , ug′′n′′

),
respectively. Y ′′

obs = (Y ′′
g′′1
, · · · , Y ′′

g′′
n′′
) with realizations y′′obs = (y′′g′′1

, · · · , y′′g′′
n′′
) represent

the recapture information. In other words, y′′gi = 1 if unit gi was observed in the first
list and 0 otherwise. U = (U1, · · · , UN ) and u = (u1, · · · , uN ) are the unit sizes of the
population. We will assume that the unit sizes are independent and identically distributed
by some probability mass function f(·|η). The choice of parametric model for the unit
size distribution is discussed further in Section 3.7. Finally, for simplicity, we will use
Uobs = {U ′

obs, U
′′
obs, Y

′′
obs}, with realizations uobs = {u′obs, u′′obs, y′′obs}, to represent all

observed data, including both lists as well as information about their overlap.

L(N, η|Uobs = uobs)

∝ p(Uobs = uobs|N, η)
= p(U ′

obs = u′obs|N, η) · p(U ′′
obs = u′′obs, Y

′′
obs = y′′obs|U ′

obs = u′obs, N, η)

= p(U ′
obs = u′obs|N, η) · p(U ′′

obs = u′′obs|Y ′′
obs = y′′obs, U

′
obs = u′obs, N, η)·

p(Y ′′
obs = y′′obs|U ′

obs = u′obs, N, η)

=
∑
u

[(∑
g′

p(U ′
obs = u′obs|U = u,G′ = g′, η)p(G′ = g′|U = u, η)

)
·

(∑
g′′

p(U ′′
obs = u′′obs|U ′

obs = u′obs, Y
′′
obs = y′′obs, U = U,G′′ = g′′, η)·

p(G′′ = g′′|Y ′′
obs = y′′obs, U

′
obs = u′obs, U = u)

p(Y ′′
obs = y′′obs|U ′

obs = u′obs, U = u, η)

)
· p(U = u|η)

]
=

N !

(N − n)!

∑
v∈U

[
p(G′ = (1 · · ·n′)|U = v)

p(G′′ = g∗|U ′
obs = u′obs, Y

′′
obs = y′′obs, U = v, η)·

p(Y ′′
obs = y′′obs|U ′

obs, U = v, η)
N∏
j=1

f(uj |η)
]
.

Here, U is the set of equivalence classes of unit sizes possible for the N units given that the
observed data was uobs. Intuitively, the elements of U include all possible unit sizes for
each of theN units, except n of them are constrained to be the observed unit sizes. Since the
likelihood is equivalent for all values of g′ and g′′ as long as they have the same unit sizes,
we assign the labels sequentially starting from 1 and incrementing up when we sample a
previously unobserved unit, then multiply by the number of permutations outside the sum.
So, in the first list, we have g′ = {1, · · · , n′} and in the second list, we have g′′ = g∗, where
the values of g∗ takes on the original label from the first list if it was already observed in

 
1970



the first list, and the next available sequential value if it was not observed in the first list.
In other words, the newly-observed units in g∗ are in order from n′ + 1 to n (recall that n
refers to the combined sample size, or the number of unique units sampled in the two lists),
while the previously-observed units retain their original labeling. Since we are choosing n′

indices from N possible in the first list and n′ − n0 indices from N − n′ possible in the
second list, the multiplicative factor is

N !

(N − n′)!
· (N − n′)!

(N − n′ − (n′′ − n0))!
=

N !

(N − n)!
. (2)

We note that even though n is not fixed by the study design as n′ and n′′ are, it is determined
by the observed data (specifically, the overlap information), and we are able to apply the
multiplicative factor outside the summation due to how we have constructed U .

3.2 Modeling RDS as PPSWOR

RDS is a complex process that is extremely difficult to find a statistical representation
for because it relies on the network structure of the population and is not fully controlled
by surveyors. There have been many attempts at approximating the RDS process (Gile,
2011; Heckathorn, 1997; Volz and Heckathorn, 2008). Gile (2011) provides theoretical
and empirical justification for treating the RDS process as a successive sampling process,
using a probability proportional to size without replacement (PPSWOR) sampling scheme
to approximate RDS, showing that it reduces finite population biases for RDS estimates of
population characteristics.

As such, we model the RDS process as a successive sampling procedure, following
Gile (2011). Specifically, our model for the first list is the same as in SS-PSE (Handcock
et al., 2014):

L(N, η|Uobs = uobs)

∝ N !

(N − n)!

∑
v∈U

[( n′∏
k=1

ug′k
r′k

)
p(G′′ = g∗|U ′

obs = u′obs, Y
′′
obs = y′′obs, U = v, η)·

p(Y ′′
obs = y′′obs|U ′

obs, U = v, η)
N∏
j=1

f(uj |η)
]
,

where

r′k =

n′∑
i=1

ug′i −
k−1∑
j=1

ug′j . (3)

We can think of r′k as representing the remaining total degree (that is, the sum of the degrees
of everyone in the population who has not yet been sampled). For the second list, we split it
up into two parts: whether the units in second list were in the first list or not, and the order
in which they were captured given the information about whether they were in the first list.
We start with the latter.

Given we know whether the unit was in the first list or not, we can treat the sampling
process as PPSWOR out of the two groups: captured in first list and not captured in first
list. Let g+k , k ∈ {1, · · · , n0} refer the indices of units caught in the first list and g−k , k ∈
{1, · · · , N − n′} refer to the indices of units not caught in the first list. Then, we obtain

p(G′′ = g∗|U ′
obs = u′obs, Y

′′
obs = y′′obs, U = v, η) =

n′′−n0∏
k=1

ug+k
r+k

n0∏
k=1

ug−k
r−k

, (4)
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where

r+k =

n′′∑
i=1

ug′′i −
k−1∑
j=1

ug+j
and r−k =

n′′∑
i=1

ug′′i −
k−1∑
j=1

ug−j
. (5)

So, our full likelihood becomes

L(N, η|Uobs = uobs)

∝ N !

(N − n)!

∑
v∈U

[ n′∏
k=1

ug′k
r′k

n′′−n0∏
k=1

ug+k
r+k

n0∏
k=1

ug−k
r−k

· p(Y ′′
obs = y′′obs|U ′

obs, U = v, η)
N∏
j=1

f(uj |η)
]
.

(6)

(7)

Recall that Y ′′
obs represents a vector of indicator variables for whether the units in the second

list were captured in the first list. Again, we model the process as PPSWOR, so that

p(Y ′′
obs = y′′obs|U ′

obs = u′obs, U = v, η) =
n′′∏
k=1

1

r′′k

n′′−n0∏
k=1

r+k

n0∏
k=1

r−k (8)

where

r′′k =
n′′∑
i=1

ug′′i −
k−1∑
j=1

ug′′j . (9)

After simplification, we obtain

L(N, η|Uobs = uobs) ∝
N !

(N − n)!

∑
v∈U

[ n′∏
k=1

ug′k
r′k

n′′−n0∏
k=1

ug+k

n0∏
k=1

ug−k

n′′∏
k=1

1

r′′k

N∏
j=1

f(uj |η)
]
.

(10)

3.3 Bayesian Inference for unit size distribution and population size

The joint posterior is given by

p(η,N |Uobs = uobs) ∝ π(η,N) · L[η,N |Uobs = uobs], (11)

where π(η,N) is the joint prior for the unit size distribution parameter and the population
size. West (1996) and Handcock et al. (2014) note that the likelihood is difficult to compute
due the complexity of U . They develop an ancillary variable to finesse this. We use a variant
of this method to sample from the augmented posterior,

p(N, η, Uunobs = uunobsΨ|Uobs = uobs), (12)

using a four component Gibbs sampler. We start by developing inference for the unit size
distribution assuming the population size is known in Section 3.4, then adjusting the method
to treat the population size N as a parameter in Section 3.5.

3.4 Bayesian Inference for the unit size distribution

We start by developing inference for the unit size distribution conditional on known N .
The posterior is given by

p(η|Uobs = uobs) ∝ π(η) · L[η|Uobs = uobs], (13)
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where π(η) is the prior for the unit size distribution parameter. West (1996) and Handcock
et al. (2014) note that the likelihood is difficult to deal with and use

p(U = u|G′ = g′, G′′ = g′′, η) =
N !

(N − n)!

n′∏
k=1

ug′k
r′k

n′′∏
h=1

ug′′h
r′′h

N∏
j=1

f(uj |η). (14)

So, from (14),

p(Uunobs = uunobs|η,Uobs = uobs) ∝
n′∏
k=1

1

r′k

n′′∏
h=1

1

r′′h

N∏
j=n+1

f(uj |η). (15)

West (1996) and Handcock et al. (2014) note that the r′k and r′′k terms are difficult to deal
with and use a method involving augmenting the data. We adapt the method to include
multiple lists. For k ∈ {1, · · · , n′}, h ∈ {1, · · · , n′′}, let ψ′

k and ψ′′
h have the exponential

distribution with rate parameter r′k and r′′h, respectively. Then,∫ ∞

0
r′ke

−r′kψ
′
kdψ′

k = 1 =⇒
∫ ∞

0
e−r

′
kψ

′
kdψ′

k =
1

r′k

and ∫ ∞

0
r′′he

−r′′hψ
′′
hdψ′′

h = 1 =⇒
∫ ∞

0
e−r

′′
hψ

′′
hdψ′′

h =
1

r′′h
.

In other words,

p(ψ′
k = ψ′|η, Uunobs = uunobs,Uobs = uobs) = r′k exp(−r′kψ′) (16)

and
p(ψ′′

h = ψ′′|η, Uunobs = uunobs, η,Uobs = uobs) = r′′h exp(−r′′hψ′′). (17)

We can then augment the data with Ψ′ = (ψ′
1, · · · , ψ′

n′) and Ψ′′ = (ψ′′
1 , · · · , ψ′′

n′′), where
the components of Ψ′ and Ψ′′ are all conditionally independent of one another. Let Ψ =
(Ψ′,Ψ′′). Then,

p(Uunobs = uunobs,Ψ|η,Uobs = uobs)

=p(Ψ′ = ψ′|η,Uobs = uobs)p(Ψ
′′ = ψ′′|η,Uobs = uobs)·

p(Uunobs = uunobs|η,Uobs = uobs)

∝
n′∏
j=1

e−r
′
jψ

′
j

n′′∏
j=1

e−r
′′
j ψ

′′
j

N∏
j=n+1

f(uj |η). (18)

Using (3), (5), and (18),

 
1973



p(Uunobs = uunobs|Ψ′,Ψ′′, η,Uobs = uobs)

∝
n′∏
j=1

e−r
′′
j ψ

′
j

n′′∏
k=1

e−r
′′
j ψ

′′
j

N∏
j=n+1

f(uj |η)

∝
n′∏
i=1

e
−ψ′

i

∑N
j=n′+1 ug′j

n′∏
i=1

e
−ψ′

i

∑n′
j=i ug′

j

n′′∏
i=1

e
−ψ′′

i

∑N
j=n′′+1 ug′′j

n′′∏
i=1

e
−ψ′′

i

∑n′′
j=i ug′′

j

N∏
j=n+1

f(uj |η)

∝
N∏

j=n+1

exp

(
− uj

n′∑
i=1

ψ′
i

)
exp

(
− uj

n′′∑
i=1

ψ′′
i

)
f(ugj |η)

=
N∏

j=n+1

exp

(
− uj

(
n′∑
i=1

ψ′
i +

n′′∑
i=1

ψ′′
i

))
f(ugj |η). (19)

We see that the unobserved units are conditionally independent from the unnormalized
PMF exp(−uj(

∑n′

i=1 ψ
′
i +

∑n′′

i=1 ψ
′′
i ))f(ugj |η). In addition, they are independent of all

observed information. Thus, we can get draws from the augmented posterior,

p(η, Uunobs = uunobs,Ψ|Uobs = uobs), (20)

using a three component Gibbs sampler.

3.5 Bayesian Inference for the population size

In the previous section, we assumed known N . However, when estimating the population
size, we do not know N and want to estimate it. To do this, we adjust the method in the
previous section to treat N as a parameter.

We derive the conditional for N.

p(N |η,Ψ′,Ψ′′,Uobs = uobs) ∝ π(N)p(Uobs = uobs|N, η,Ψ′,Ψ′′)

=
N !

(N − n)!
π(N)

∑
v∈U

 N∏
j=n+1

exp

(
− uj

(
n′∑
i=1

ψ′
i +

n′′∑
i=1

ψ′′
i

))
f(ugj |η)


=

N !

(N − n)!
π(N)

N∏
j=n+1

 ∞∑
vj=1

exp

(
− vj

(
n′∑
i=1

ψ′
i +

n′′∑
i=1

ψ′′
i

))
f(j|η)


=

N !

(N − n)!
π(N)

[
γ(

n′∑
i=1

ψ′
i +

n′′∑
i=1

ψ′′
i , η)

]N−n

,where γ(α, η) =
∞∑
j=1

e−αjf(j|η).

(21)

We can use (21) to obtain samples from the joint augmented posterior,

p(N, η, Uunobs = uunobsΨ|Uobs = uobs), (22)

which we can then use to obtain the marginal posterior distribution of N and η. The full
details of the MCMC algorithm are given in the next section.

 
1974



3.6 Algorithmic Details

Here, we describe in the detail the algorithm for drawing from the joint posterior.

1. Initialize N at a point estimate and Uunobs at a set of unit sizes.

2. Sample η from

p(η|Uunobs,Uobs = uobs.Ψ
′,Ψ′′, N) = π(N) ·

N∏
j=1

f(uj |η) (23)

This is done using a Metropolis-Hastings algorithm. In our applications, we used the
Conway-Maxwell-Poisson distribution as our unit size distribution, so we had two
parameters η = ((log(µ), σ2). We used a Gaussian proposal for the log mean and an
Inverse-χ2 for the variance.

3. Sample Ψ′,Ψ′′ from

p(ψ′
k = ψ′|η, Uunobs = uunobs,Uobs = uobs) = r′k exp(−r′kψ′)

and

p(ψ′′
k = ψ′′|η, Uunobs = uunobs, η,Uobs = uobs) = r′′k exp(−r′′kψ′′).

These are independent standard Exponential draws.

4. Sample N from equation (21). In order to make computation easier, we set Nmax a
maximum value for N . We compute (21) for each value between n and Nmax and
use this to sample a value between n and Nmax directly.

5. Sample Uunobs from equation (19). This is done using a rejection sampling method,
similar to the one described in West (1996) and used in SS-PSE by Handcock et al.
(2014).

The rejection sampling process is

(i) Draw d from f(·|η) and, independently, u ∼ U(0, 1).

(ii) If log(u) > −(
∑n′

i=1 ψ
′
i +
∑n′′

i=1 ψ
′′
i ) · d, reject d and return to (i). Otherwise,

save d and repeat until N − n elements of uunobs have been sampled.

6. Repeat until convergence.

3.7 Unit Size Distribution Model

For our purposes, we need a super-population model for unit size. Here, we focus on the
cases in which the unit sizes are the personal network sizes, or degrees. There has been a
considerable amount of work done on modeling the degree distribution of a network. Hand-
cock et al. (2014) notes that certain long-tailed distributions such as the Poisson-log-normal
and the Waring and Yule distributions, which allow for power-law over-dispersion (Hand-
cock and Jones, 2006), are not able to represent the under-dispersion in degree counts,
suggesting the Conway-Maxwell-Poisson distribution (Shmueli et al., 2005) as an alterna-
tive.

For the applications in this paper, we chose to use the Conway-Maxwell-Poisson dis-
tribution as it offers greater flexibility over similar distributions such as the Poisson while
using only one additional parameter.
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3.8 Prior specification

We can parametrize the Conway-Maxwell-Poisson distribution in terms of its mean and
standard deviation. We then put priors on the log mean and variance parameters, using the
Normal distribution for the prior log mean, µ, given the prior standard deviation, σ, and
scaled Inverse Chi-squared for the variance, σ2, so

log(µ)|σ ∼ N(µ0, σ/dfmean) and σ2 ∼ Invχ2(σ20; dfsigma). (24)

In our applications, we use diffuse priors with dfmean = 1 and dfsigma = 5.
For the population size, Handcock et al. (2014) uses a two parameter class of priors,

π(N) =
βn(N − n)β−1

Nα+β
for N > n,α > 0, β > 0. (25)

This prior can be thought of specifying knowledge about the sample fraction (n/N) as a
Beta(α, β) distribution. This class of priors was chosen after consultation with field re-
searchers the hyperparameters can be specified by them based on budget and logistic con-
siderations for their choice of sample size. For more information about this prior choice,
see Handcock et al. (2014).

4. Assessment of CR-SS-PSE

In this section we compare our method, Capture-Recapture Successive Sampling-Population
Size Estimation (CR-SS-PSE), with other population size estimation methods. One ap-
proach to assessment would be using asymptotic approximations of its statistical properties.
However, in the case of population size estimation, there are a number of different asymp-
totic frameworks involving the relative sizes of n and N , and the real-world relevance of
each proposed asymptotic approximation would need to be carefully considered. Instead,
we assess the performance of CR-SS-PSE via simulation studies using ranges of n and N
that are commonly met in practice. We can also precisely specify the statistical properties
of the networked populations and RDS schemes. This allow us to see how CR-SS-PSE
performs under known conditions and the dimensions under which it breaks down.

4.1 Simulation of Networks with Known Statistical Properties

For our simulation studies, we use a real network from the Add Health data set. The Add
Health data set was constructed from a series of questionnaires given to students in school.
The students were asked to nominate friends either in the same school or in a “sister”
school, and a friendship network was generated based on these responses (Harris et al.,
2009). We used a network with N = 2587 for our simulations. Though the networks gen-
erated were directed, we treated them as undirected by turning each tie into an undirected
one.

When we apply traditional capture-recapture models, we implicitly make assumptions
about the RDS process. That is, we may be treating the RDS as a simple random sample as
in the basic Lincoln-Petersen estimator. However, we have reason to believe that the RDS
process is actually very different from this (Gile, 2011). Therefore, in these simulations,
we try to get as close to real RDS surveys as possible.

In the simulations performed in this chapter, we will define a trial as consisting of col-
lecting two respondent-driven samples and recording the order of observation and personal
network size (unit size) as well as recapture information. The latter is only collected in the
second sample as the answer to, “Were you in the first sample?” In other words, we do not
track unique matching between the two lists.
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Figure 2: Trace plots and histogram of the posterior distribution for N , λ, and ν using the
Add Health data set (N = 2587)
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We started with a random sample of 10 initial seeds, which is consistent with a review of
over 120 RDS studies that found an average of 10 seeds used (Malekinejad et al., 2008), and
the number used in a pilot study run by the CDC (Abdul-Quader et al., 2006). We used two
coupons for each respondent. In the simulation, starting with the seeds, we sampled two
recruits randomly from the nodes connected to each respondent. Then, we used the newest
wave of recruits to repeat the process. If a respondent had only one available link to an
unsampled person, that person only recruited one person. We stopped the RDS recruitment
when we reached our target sample size. The recruiting was assumed to have been done at
random from each respondent’s personal network.

4.2 Population Size Estimation Methods

We compare our method, CR-SS-PSE, to five other methods. We include two methods
that used multiple list concepts: Simple capture-recapture using the Hypergeometric dis-
tribution (Cosenza et al., 2014) and the Non-Parametric Latent Class Model (NPLCM)
(Manrique-Vallier, 2016). We used a Bayesian implementation of the Hypergeometric
model so that we could use the same priors as in all of our other methods.

We also used three variants of the Successive Sampling - Population Size Estimation
(SS-PSE) model: SS-PSE with just the first list (which we call SS-PSE); SS-PSE using
the first list, then SS-PSE with the second list using the posterior from the first as the prior
(which we call Independent SS-PSE); and SS-PSE with one combined list consisting of
all unique units in the order they were sampled, removing any double-counting from the
second list (which we call Combined SS-PSE).

4.3 Add Health Friendship Network (N = 2587)

We first used CR-SS-PSE to estimate the size of the Add Health Network. The Add Health
data set was constructed from a series of questionnaires given to students in school. The
students were asked to nominate friends either in the same school or in a “sister” school,
and a friendship network was generated based on these responses (Harris et al. 2009). We
used a network of N = 2587 for our simulations. Though the networks generated were
directed, we treated them as undirected by turning each tie into an undirected one.

The trace plots and posterior distributions for the population size N and the unit size
distribution parameters η are shown in Figure 2. The MCMC seems to be well-behaved,
with good convergence. The posterior distribution looks reasonable based on our true pop-
ulation size of N = 2587.

We use 1000 simulated RDS trials, apply each of the six methods, and compare their
posterior means and 95% highest posterior density as shown in Figure 3. We see that CR-
SS-PSE performs the best, with every single other method besides the Combined SS-SPE
underestimating the true population size. Every single point estimate in the SS-PSE and
Independent SS-PSE methods coming under the true population size. Table 1 shows this
difference even more clearly. CR-SS-PSE again has the lowest MSE, and the bias for the
SS-PSE methods are all quite high. Combined SS-PSE again does well in coverage rate due
to very wide interval estimates, but CR-SS-PSE performs better than every other method.

5. Conclusion

We have proposed a new method of estimating the size of a hidden population using multi-
ple RDS surveys. This model, called Capture-Recapture Successive Sampling for Popula-
tion Size Estimation, or CR-SS-PSE, uses information from RDS samples more efficiently
than existing methods and is shown to have good properties when applied to networks with
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Figure 3: Boxplots of posterior means with six methods using the Add Health network.
The value underneath each boxplot represents the proportion of 95% SCIs containing the
true size. The median upper and lower bounds of the 95% SCI are also shown. The dashed
line shows the true population size (N = 2587).

Method MSE Bias Variance Bias Proportion of MSE
CR-SS-PSE 1.7× 105 80 1.7× 105 0.037

SS-PSE 2.4× 106 −1497 2.0× 105 0.919
Independent SS-PSE 2.5× 106 −1523 1.6× 105 0.935
Combined SS-PSE 6.5× 106 1373 4.7× 106 0.288
Hypergeometric CR 2.9× 105 −433 9.9× 104 0.656

NPLCM 5.1× 105 −617 1.3× 105 0.749

Table 1: Mean Squared Error (MSE), Bias, Variance of the posterior means, and the Bias
Proportion of MSE (Bias2/MSE) for each of the six methods with the Add Health network.
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known statistical properties, and has outperformed many existing methods. Due to the pop-
ularity of RDS because of the relative ease with which RDS surveys can be implemented,
CR-SS-PSE can be useful in providing better estimates by using more of the available in-
formation rather than only the network information or a simple capture-recapture approxi-
mation.
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