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Abstract 
Small area statistics on economic inequality are becoming important for better planning 

public regional policies. We focus on the estimation of entropy inequality measures in 

Italian provinces by using data taken from the EU-SILC sample survey for Italy. In EU-

SILC survey the number of units sampled at provincial level is generally too small to 

obtain reliable estimates, and the use of small area estimation models is advisable. We 

consider small area models specified at area level that include the “direct” survey 

weighted estimators. In these models “direct” estimators are usually assumed to be 

unbiased and normally distributed. Nevertheless, in the case of inequality measures, 

design based estimators are known to be biased for small sample sizes. To solve this 

problem, we search for a correction that can produce approximately unbiased direct 

estimators. Moreover, due to the range of values that these estimators can assume and to 

the possible asymmetry of their distribution, the normality assumption could be 

inadequate in small area estimation models. In this regard we propose a small area model 

based on more flexible distributions as alternative to the normal one. 
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1. Introduction 

 
The aim of this work is to propose a small area estimation strategy for the estimation of 

entropy inequality measures. The interest for this objective is due to the increment in the 

gap in inequality and social exclusion observed among regions, for example, within the 

EU member States. The availability of reliable information at local level may help to plan 

policies to reduce such inequality. This issue is particularly relevant for Italy, whose 

economic system is characterized by a strong territorial concentration of productive 

activities. Moreover, we have heard about the small area estimation problem above all 

with reference to poverty, but inequality mapping represents a different concept, which 

also deserves to be investigated. 

 

Using data taken from the EU-SILC sample survey for Italy in 2013, we consider the 

estimation of Generalized Entropy (GE) measures for the Italian provinces. It is well 

known that there are many other possible indices candidate to measure inequality, for 

example the popular Gini index. However, the Gini index is positional transfer sensitive, 

then the change in Gini depends on the ranks of the donor and recipients, whereas the GE 

measures are transfer sensitive, that means that they reacts to transfers depending on 

donor and recipient income levels. Moreover, this class of measures has the merit of 

satisfying the additive decomposability axiom, that allows to decompose the total 
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inequality into the part due to inequality within areas and the part due to differences 

between areas. In the analysis of regional disparity this between-regions component is 

interesting for the analysis of regional inequality, as it suggests the relative importance of 

spatial dimension of inequality. 

 

GE measures can be expressed as: 

 

GE��� = �
���	�� 
��∑ 
���� �

� − 1���� �;    � = 1,… , �; 			� ∈ �0,∞�   [1] 

 

where !�  denotes the sample mean. In particular in this work we consider a specific 

member of this class of measures, the Theil’s mean log deviation, from now on GE(0), of 

the individual equivalized income, obtained by setting � → 0. This index is found to be 

the least biased of its class in small samples (Breunig and Hutchinson, 2008). 

 

The small area of interest are the Italian provinces. Nevertheless the number of units 

sampled from many provinces is too low to provide reliable estimates of GE(0) using a 

“direct” estimator, that is an estimator calculated simply using the sample weights. This 

problem happens because EU-SILC survey is planned to provide reliable estimates for 

areas that are larger than those we are interested in. Hence we have to resort to a small 

area estimation strategy. 

 

To this purpose we consider area level models, which consist of two models: a sampling 

model, which connects the small area direct estimates #$� (where i denotes the small area) 

to the small area parameters #�, and a model linking the small area parameters to some 

small area specific auxiliary data %� (Rao and Molina, 2015). To estimate the models we 

adopt a Hierarchical Bayesian approach. Small area models rely on the assumptions of 

unbiasedness for the direct estimates, and normality for both the direct estimates and the 

underling parameters. Such assumptions are both inadequate in our case. First of all, 

design based estimators of inequality measures are known to be biased for small sample 

sizes (Breunig and Hutchinson, 2008). The reason is that inequality measures can be 

written as ratios of random variables, both of which are estimated from the sample. They 

are thus biased in small sample, because the expected value of a ratio of random variables 

is not generally equal to the ratio of the expected values. The bias of the sample measure 

is & 
���, where � is the sample size. Secondly, the normality assumption is inadequate 

for asymmetric outcomes, when sample sizes are particularly low, and for limited-range 

outcomes. 

 

We try to solve these problems looking for a correction for the bias of the direct estimator 

(Section 2) and, after having found a correction for the bias, looking for a more suitable 

distribution than the normal one for the corrected estimator (Section 3). The results 

obtained from the chosen distributions, skew-normal and skew-t, are reported in Section 

4. Section 5 offers some conclusions and future research directions. 

 
2. Correction for the Direct Estimator 

 

2.1 Bias of the Direct Estimator 
In the case of complex sample surveys, the direct estimator of the mean log deviation of 

the individual equivalized income, Y, for small areas, may be calculated by using the 

sample weights as follows: 
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'(�0�� = �
)*+ ,∑ -./0' 1��+��2�+.�� 3;    4 = 1,… ,5     [2] 

 

where !�� 	denotes the small area sample mean calculated by using the sample weights, 

!�� = ∑ 6���7+�89
∑ 6�7+�89

, and :*� = ∑ -.�+.�� . 

 

In the literature a few papers consider the small sample bias issue for inequality measures 

and propose a correction, but only in the simple random sample context (for a review see 

Ferrante and Pacei, 2019). Breunig and Hutchinson (2008), for example, write the GE 

measures as functions of the population mean, µ, and some other population functions 

and then derive corrections for the GE measures, based on a second-order Taylor’s series 

expansion of the sample estimates around the population values. Regarding the mean log 

deviation, they obtain the following result for the approximate bias: 

 

;<4=>?'(�0�@ = − �AB	AC=D�B̂�      [3] 

 

They suggest to estimate [3] from sample data and then subtract it from '(�0� to obtain a 

bias approximately corrected inequality value. They also warn about the fact that the 

correction tends to increase the variability of the estimator, and that the overall reliability 

of estimates have to be considered. 

 

Extension of this bias correction to the weighted estimator in equation [2] is not trivial. 

We consider an heuristic solution by substituting µ with the weighted sample mean and C=D�B̂� with the estimate obtained using the standard procedure used by Eurostat for a 

two-stage stratified sample (Eurostat, 2013). In particular, in EU-SILC survey carried out 

in Italy, a stratified sample of municipalities is selected in the first stage and, in the 

second stage, a sample of households is randomly selected from the municipalities 

included in the first stage. The largest municipalities are always included in the sample 

(therefore they are called auto-representative or AR), while the other ones are selected 

according to a stratified sample where strata are defined by the administrative regions and 

the number of inhabitants (non auto-representative municipalities or NAR). The 

procedure used for estimating C=D�B̂� involves two different methods for AR and NAR 

municipalities. In our case, both estimates of µ and C=D�B̂� are calculated at small area 

level. 

 

2.1 Simulation Study to Evaluate the Correction for the Bias 
To evaluate the effectiveness of the correction adopted we carry out a design-based 

simulation study. In this simulation we consider the EU-SILC sample as the target 

population and the administrative Regions as small areas. We prefer to base our study on 

the EU-SILC dataset, rather than use data generated under some distribution models, to 

have a more realistic view of the small area estimation problem considered.  

 

We repeatedly select 1,000 two-stage stratified samples, mimicking the sample strategy 

adopted in the survey itself: in the first stage, AR municipalities are always included in 

the sample, while a stratified sample of NAR municipalities are selected; in the second 

stage, a simple random sample of households is selected from each municipality included 

in the first stage. We consider two overall sampling rates, 1.5 and 3%, to better 

understand the extent of the problem and the effectiveness of the solution with reference 

to different sample sizes. In our simulation setting the small area sample size ranges from 
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a minimum of 6 to a maximum of 28 for the 1.5% sample, and almost twice for the 3% 

sample. '(�0� and its bias corrected version, from now on '(F0DD�0�, are calculated 

considering the individuals, as usual. Individual equivalized income is, by definition, the 

same for all members of the same household. 

 '(�0� and '(F0DD�0� are compared in terms of bias and accuracy using the average 

absolute relative bias (AARB) and the average absolute relative error (AARE): 

 

;;G< = �
H∑ I ��JJJ∑ �(>KL� MN�0��⁄ − 1��JJJL�� IH���     [4.a] 

;;GN = �
H∑ �

�JJJ∑ |(>KL� MN�0��⁄ − 1|�JJJL��H���      [4.b] 

 

where (>KL�  denotes the value of an estimator (alternatively '(�0�  or '(F0DD�0��	obtained for the r.th simulated sample and i.th small area, and MN�0�� is the 

true small area mean log deviation. Percentage values of indicators in [4.a] and [4.b] are 

reported in Table 1. Results show that the correction considered greatly reduces the bias 

of the non-corrected estimator, although the corrected estimates remain a little biased on 

average. On the other hand, with respect to the concern about the reduction of the overall 

reliability of the estimates due to the correction, we find instead a negligible increase in 

the accuracy indicator. 

 

 
Looking at the Relative Bias obtained for the corrected and non-corrected estimators for 

each small area (Figure 1), and observing the relationship between the bias and the small 

area sample size, we can notice that the bias of the non-corrected estimator is negative, 

decreases as the sample size increases, and is small but not zero for large sample sizes. 

Moreover, the reduction of the bias provided by the correction is noticeable. 

 

 
Figure 1: Relative Bias for ge(0) and geCorr(0) estimators - 1.5%  sample 

Table 1: Percentage performance measures for the corrected and non-corrected 

estimators (simulation study based on EU-SILC survey data) 
 

               1% sample                                             3% sample 

  '(�0� '(F0DD�0� '(�0� '(F0DD�0� 
AARB%   15.9   4.0 7.9 2.6 

AARE%   51.8 52.3 37.8 38.2 
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3. Small Area Model: Alternative Distributional Assumptions 

 

3.1 Analysis of the Empirical Distribution of the Corrected Estimator 
It is well known that the distribution of the equivalized income is characterized by a 

positive skewness. However, little is known about the distribution of entropy inequality 

estimators in small samples. To analyse the empirical distribution of the corrected 

estimator proposed, in small areas, we use the simulation study described in the previous 

Section. We consider the 3% sample. Looking at the histogram by region (Figure 2), the 

distribution of the corrected estimator appears skewed in all regions, with different 

degrees of skewness. The skewness, as expected, is always positive.  

 

    

    

    

    

    
 

Figure 2: Histograms of geCorr(0) empirical distribution in Italian regions (3% sample). 

 

3.2 Skew-normal and skew-t models 
In the presence of skewed data, the assumption of normality at the sampling level of a 

small area level model cannot be justified invoking the central limit theorem when 

dealing with small sample sizes. To take into account the asymmetry of data, we relax the 

normality assumption of the most popular so-called normal–normal model (Fay and 

Herriot, 1979) by adopting a skew normal or a skew t distribution in the sampling 

models. We consider an asymmetric distribution only in the sampling model, because we 

noticed in a previous work (Ferrante and Pacei, 2017) that the specification of a skewed 

distribution also in the linking model tends to have a negligible effect on the results. 
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3.2.1 Skew-normal and skew-t distributions 

The class of skew-normal distributions proves to be quite useful in modelling real data 

sets and enjoys remarkable properties in terms of mathematical tractability (Azzalini, 

1985; Azzalini and Capitanio, 1999). Moreover, the skew-normal specification offers 

some other advantages with respect to other non-symmetric distributions as, for example, 

the inclusion of the normal distribution as a special case.  

 

According to the definition of Azzalini (1985), Y is a skew-normal variable with location 

parameter ξ, scale parameter ϕ and shape parameter λ, Y∼SN(ξ, QA , λ), if it has the 

following pdf 

 A
RS�T�Φ�VT�,							T = �	W

R        [5] 

 

where S�. � and Φ�. � are the density and the distribution function, respectively, of the 

N(0,1) distribution. The mean and the variance of the skew-normal distribution are: 

 

B = Y + [A\Q]  ^A = QA 
1 − A
\ ]A�     [6] 

 

where ] = _
√�a_b. 

 

However, the presence of a single parameter to regulate the density shape in the skew 

normal distribution could not be sufficient to handle adequately the very diverse types of 

situations met in practical work (Arellano-Valle and Azzalini, 2013). In this regard, a 

more flexible distribution than the skew-normal one is given by the skew-t distribution, 

which allows the capture of heavy tailed data. The density function of the skew-t 

distribution is: 

 

A
R K�T; c�T eVT[ fa�fagb ; c + 1h ,							T = �	W

R      [7] 

 

where K�. ; c� and T�. ; c� are the density and the distribution function, respectively, of the 

Student’s t distribution with c degrees of freedom. The mean and the variance of the 

skew-t distribution are given by the same functions showed for the skew-normal 

distribution (equations [6]). 

 

3.2.2 Skew-normal and skew-t area level models 

In the context of area level model-based estimation and of the Bayesian framework for 

inference, Ferraz and Moura (2011) tackled the problem of skewness by assuming a skew 

normal distribution at the sampling model level. Ferrante and Pacei (2017), dealing with 

correlated outcomes, proposed a multivariate skew normal area level model, where a 

multivariate skew normal model is specified both in the sampling and linking models. 

 

In the skew-normal area level model considered in this work, the corrected estimator of 

the mean log deviation for area i, #$�  = ge(0)corri, is supposed to be skew normally 

distributed with location parameter #�, scale parameter Q� and shape parameter V�:  
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#$�|#� ,Q�, V, �� ∼ k:�#� , Q� , V��  4 = 1,… ,5.    [8] 

 

Each shape parameter V� is set equal to a parameter common for every area λ, divided by 

the square root of the sample size in the small area (Gupta and Kollo, 2003), so that, 

when the sample size increases, the shape parameter tends to 0 and the skew-normal 

distribution tends to the normal one: 

 

V� = V l��⁄          [9] 

 

The scale parameter, Q� , can be obtained as a function of the variance of the direct 

estimates and the shape parameter, according to the relationship between the variance and 

the parameters in the skew-normal distribution: 

 

Q� = C?#$�@ 
1 − A
\ ∙ ]�A�n  ]�A = V� [1+ V�An     [10] 

 

In the linking model, parameter #� is supposed to be normally distributed with mean B� , 
which is a linear function of the area level auxiliary variables %�, and common variance ^oA: 
 #�|B�, ^o ∼ :�B� , ôA�        [11a] B4 = %�pq         [11b] 

 

Our parameter of interest is the expectation of the distribution of #$�, under the model 

described, which, because of the properties of the skew-normal distribution, is given by a 

function of the parameters of the sampling distribution: 

 

#�∗ = #� +[A\Q�]�        [12] 

 

In the skew-t area level model, the corrected estimator is supposed to follow a skew-t 

distribution with location parameter #�, scale parameter Q� and shape parameter V�: 
 #$�|#� ,Q�, V, �� ∼ kK�#� , Q� , V� , �� − 1�      [13] 

 

The same assumptions of the skew-normal model [9]-[10] apply to the parameters of the 

skew-t model. The degrees of freedom allow for the convergence to the skew-normal 

distribution. In the linking model the normal distribution is again assumed. The parameter 

of interest is given by the same function of the sampling model parameters reported in 

[12]. 

 

As it is customary, we assume that the variances of the direct estimates, C?#$�@, are 

known, and we substitute them with their respective estimates. These estimates are 

obtained using a Bootstrap strategy, that is by repeatedly selecting random samples with 

replacement from the survey sample by province, calculating the corrected estimates for 

each replication by province, and then calculating the variance of these estimates by 

province. 

 

In the linking model we include three auxiliary variables: the proportion of income tax 

returns on the total population, the mean income of the population and an indicator of the 
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aging population rate given by the ratio between the number of over 64-year-olds and the 

population between 15 and 64 years old. We obtain this information using data available 

from the registry offices and the tax archives. 

 

To estimate the models we adopt a Hierarchical Bayesian approach implemented by 

using MCMC computational methods. To this purpose we use OpenBugs program. This 

program does not take the described distributions into consideration, therefore we 

explicitly write the density formulas into the BUGS code, using what is known as “the 

trick for specifying new distributions” (Spiegelhalter et al., 2003). 

 

To complete the specification of our Bayesian model we use non informative priors for 

the variance and the regression coefficients in the linking model. Only for the shape 

parameter we presume a positive value, and specify a normal distribution truncated at 

zero: 

 st~:�0, <�,	 ^o	�~M=55=�=o , vo�,  V~w:�J,xy�0,z�  [14a] 

({ = 1,2,3; < = 0.0001; =o = 0.001, vo = 0.001,z = 0.0001)   [14b] 

 

4. Results 
 

To evaluate the performance of the models considered we compare them with the Fay-

Herriot model. The comparison is carried out in terms of fit of the data and gain in 

efficiency provided by the small area estimators compared with the direct estimator. For 

the fit of the data we use the Logarithm of the Pseudo Marginal Likelihood (LPML), 

while we use the percentage Coefficient of Variation Reduction (CVR) of small domain 

model estimator (HB) versus the direct one (dir) to measure the gain in efficiency: 

 

FCG� = 100 ∙ �1 − FC�~� FC���L�⁄       [15] 

 

Results are reported in Table 2. 

 

 

As models with the highest LPML are better supported by the data, the skew-t model 

shows the best fit, followed by the skew-normal model, both preferable to the Fay-

Herriot model. Regarding the gain in efficiency, it is relevant for all the small area 

models and in particular for the skew-t model. The reduction of the coefficient of 

variation for the skew-t model is more than 40% on average and on median. 

 

To better understand how much the small area estimates differ from the direct estimates 

we carry out a graphical analysis. Figure 3 shows the model-based estimates versus the 

Table 2: Performance measures: LPML and summaries for the CVR of the HB 

      estimators versus the direct estimator (EU-SILC sample survey) 
 

   N-N (Fay-Herriot) SN-N St-N  

       

LPML   189.9 237.0 273.6  

       

 Mean  37.5 38.2 41.3  FCG� Median  36.4 35.9 40.7  

 25° percentile  26.5 20.5 26.7  

 75° percentile  47.0 54.0 58.4  
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direct estimates. For the skew-normal model and even more for the skew-t model the 

points are closer to the bisector (the continuous line) than for the Fay-Herriot model. This 

suggests that the skew-normal and skew-t small area estimates are approximately design-

unbiased, even though we can observe a slight shrinkage for the highest estimates. 

 

 
Figure 3: Direct estimates versus model-based estimates 

 
Finally, in Figure 4 small areas are plotted according to the coefficient of variation 

obtained for the skew-t estimates and that obtained for the direct estimates. The 

coefficient of variation of the skew-t estimates appears markedly smaller than that of the 

direct estimates for most of the small areas.  

 

Figure 4: CV% comparison - model-based skew-t estimates versus direct estimates 

(continuous line = bisector) 
 

4. Conclusions 
 

This work proposes a small area estimation strategy for the estimation of entropy 

inequality measures. The strategy includes the adoption of a correction for the bias of the 
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direct estimator, and the choice of a skewed distribution to be used in the small area level 

model. The results obtained for the correction for the bias are promising, as well as those 

obtained from the specification of an asymmetric distribution in the small area model. 

However, it is necessary to carry out a simulation study to better understand the 

properties of the strategy proposed. Furthermore, since the analysis of a set of inequality 

measures is usually required, the joint estimation of several measures through 

multivariate models should be addressed. 
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