# Proper Variance Estimation When Adjusting for Both Unknown Eligibility and Unit Nonresponse 

Dhuly Chowdhury ${ }^{1}$ Phillip S. Kott ${ }^{1}$<br>${ }^{1}$ RTI International; 6110 Executive Blvd; Rockville, MD 20852


#### Abstract

It is common practice to reweight for sampled elements with unknown eligibility within mutually exclusive weighting cells and then reweight among the eligible sampled elements in each cell for unit nonresponse. Even when the weighting cells are identical to the design strata under stratified simple random sampling, it is incorrect to treat the respondent sample as if it were a single-phase sample for variance estimation purposes. We show how variances should be estimated and then, using realistic data, compare the proposed approach to what is often done.


Key Words: Two-phase sample, completes, finite-population-correction factor

It is common practice to reweight for sampled elements with unknown eligibility within mutually exclusive weighting cells and then reweight among the eligible sampled elements in each cell for unit nonresponse. Even when the weighting cells are identical to the design strata under stratified simple random sampling, it is incorrect to treat the respondent sample as if it were a single-phase sample for variance estimation purposes as we shall see
Suppose we have a stratified simple random sample and treat the strata as the reweighting cells. To simplify the analysis, we concentrate on a single stratum which we treat as the population.

Let $N$ be the population size (number of elements in the stratum/population)
$r$ be the number of respondents, defined here as sampled elements for which eligibility can be determined
$e$ be the number of sampled eligibles
$c$ be the number of completes among the eligibles
$d=N / r$.
$a=e / c$
$w_{k}=d a$ when element $k$ is a complete, 0 otherwise. This is the final weight for $k$.
We assume that every element is equally likely to respond, and every eligible respondent is equally likely to be a complete. Under these assumptions are estimator for a population total for a variable $y$ is

$$
t=\sum_{k=1}^{c} d a y_{k}=\sum_{k=1}^{r} w_{k} y_{k}=d e \bar{y},
$$

where $\bar{y}=\frac{1}{c} \sum_{k=1}^{c} y_{k}$ (mean y-value among the completes).
The variance of the product of $d e$, the estimated number of eligibles in the population, and $\bar{y}$, the estimated average $y$-value of an eligible, is

$$
\operatorname{Var}(d e \bar{y}) \approx \bar{y}^{2} \operatorname{Var}(d e)+(d e)^{2} \operatorname{Var}(\bar{y}) .
$$

A good estimator for this variance is

$$
\begin{aligned}
v & =\left(1-\frac{r}{N}\right) N^{2} \bar{y}^{2} \frac{p(1-p)}{r-1}+\left(1-\frac{c}{p N}\right)\left(\frac{c}{c-1}\right) d^{2} a^{2} \sum_{k=1}^{c}\left(y_{k}-\bar{y}\right)^{2} \\
& =\left(1-\frac{r}{N}\right) N^{2} \bar{y}^{2} \frac{p(1-p)}{r-1}+\left(1-\frac{c}{p N}\right)\left(\frac{c}{c-1}\right) d^{2} a^{2}\left(\sum_{k=1}^{c} y_{k}^{2}-c \bar{y}^{2}\right),
\end{aligned}
$$

where $p=e / r$ and $\bar{y}=\frac{1}{c} \sum_{k=1}^{c} y_{k}$. Note that $d a=N p / c$.
One commonly used ad-hoc variance estimator for $t$ ignore the first term of $v$ :
$v_{2}=\left(1-\frac{c}{p N}\right)\left(\frac{c}{c-1}\right) d^{2} a^{2}\left(\sum_{k=1}^{c} y_{k}^{2}-c \bar{y}^{2}\right)$.
This treats the $c$ completes as the sample size and $p N$ as the population size under simple random sampling without replacement (note that $p N=d e$ estimates the population size of eligibles), so that $1-c /(p N)$ is the finite-population-correction factor.

A more conservative $a d-h o c$ variance estimator is

$$
\begin{aligned}
v_{\mathrm{C}} & =\left(1-\frac{c}{p N}\right)\left(\frac{\mathrm{r}}{\mathrm{r}-1}\right)\left[\sum_{k=1}^{c} w_{k}^{2} y_{k}^{2}-\frac{\left(\sum_{k=1}^{c} w_{k} y_{k}\right)^{2}}{r}\right] \\
& =\left(1-\frac{c}{p N}\right)\left(\frac{\mathrm{r}}{\mathrm{r}-1}\right) d^{2} a^{2}\left(\sum_{k=1}^{c} y_{k}^{2}-c^{2} \frac{\bar{y}^{2}}{r}\right) .
\end{aligned}
$$

This estimator treats $r$ as the sample size (and incompletes as 0 s ), but again treats $p N$ as the population size, and $1-c /(p N)$ as the finite-population-correction factor.

To see how the variance estimators can differ, we generate a respondent samples of 20 elements $(k=1, \ldots, 20)$ from a $\chi_{1}^{2}$ distribution. Let that value be $y_{k}$. Note that for our purposes, the sample size is the respondent sample size ( $r=20$ ).
For each $k$, we generate a $\rho$ from a uniform $[0,1)$ distribution. We call a sampled respondent eligible when $y_{k}>b$ (note that eligibility is determined by the size of $y_{k}$ ). Call an eligible respondent complete when $\rho \geq q$.

We set $b$ at $0, .1, .2, .3, .4$;
$q$ at $0, .1, .2, .3, .4$; and
N at $50,100,150,200$.
$100(5 \times 5 \times 4)$ settings in all. Note that $e$ and $c$ depend on $b$ and $q$.

In the following tables, we report $e$ and $c$ for each value of $q$ and $b$, and we report the relative variance estimate using $v$ (i.e., $v / t^{2}$ ), $v_{2}$, and $v_{C}\left(\right.$ i.e., $\left.v_{C} / t^{2}\right)$ for each value of $e, c$, and $N$.

Our proposed variance estimator, although always at least as large as the $a d$-hoc estimator $v_{2}$, returns a smaller value that the conservative $v_{C}$ except when all responding eligibles are complete.

Table 1: Frame size $(N)=200$ and Number of respondents with known eligibility $(r)=20$

| $\begin{array}{\|c\|} \text { Total } \\ \text { Eligible } \\ \text { e } \end{array}$ | Total Complete c | Estimated Total t | First Variance Term | Second Variance Term $v_{2}$ | Standard <br> Error $\sqrt{v}$ | $\begin{gathered} \hline \text { Relative Bias } \\ \text { of } \sqrt{ } v_{2} \\ \left(\sqrt{ } v_{2} / \sqrt{ } v-1\right) \\ \times 100 \% \end{gathered}$ | $\begin{gathered} \hline \text { Relative Bias } \\ \text { of } \sqrt{ } v_{C} \\ \left(\sqrt{ } v_{C} \sqrt{ } v-1\right) \\ \times 100 \% \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 20 | 214.0 | 0.0 | 4363.6 | 66.1 | 0.0 | 0.0 |
| 20 | 17 | 227.9 | 0.0 | 5757.6 | 75.9 | 0.0 | 3.3 |
| 20 | 14 | 203.9 | 0.0 | 5968.2 | 77.3 | 0.0 | 6.0 |
| 20 | 13 | 215.7 | 0.0 | 6847.8 | 82.8 | 0.0 | 7.3 |
| 20 | 10 | 196.4 | 0.0 | 10680.5 | 103.3 | 0.0 | 6.2 |
| 13 | 13 | 211.4 | 1140.1 | 3369.1 | 67.2 | -13.6 | -1.1 |
| 13 | 12 | 207.1 | 1094.4 | 3996.0 | 71.3 | -11.4 | 1.3 |
| 13 | 10 | 182.2 | 847.1 | 4172.6 | 70.9 | -8.8 | 5.3 |
| 13 | 9 | 198.9 | 1008.8 | 4937.5 | 77.1 | -8.9 | 8.4 |
| 13 | 7 | 178.3 | 810.6 | 8285.3 | 95.4 | -4.6 | 7.0 |
| 12 | 12 | 210.0 | 1392.5 | 3158.7 | 67.5 | -16.7 | -1.2 |
| 12 | 11 | 207.0 | 1353.5 | 3815.9 | 71.9 | -14.1 | 1.5 |
| 12 | 9 | 185.0 | 1080.9 | 4127.8 | 72.2 | -11.0 | 6.4 |
| 12 | 8 | 204.4 | 1319.0 | 4904.9 | 78.9 | -11.2 | 10.5 |
| 12 | 6 | 189.1 | 1129.4 | 9121.3 | 101.2 | -5.7 | 9.0 |
| 10 | 10 | 204.5 | 1981.9 | 2692.9 | 68.4 | -24.1 | -1.5 |
| 10 | 9 | 204.8 | 1987.0 | 3403.5 | 73.4 | -20.5 | 2.3 |
| 10 | 7 | 190.4 | 1718.1 | 4022.6 | 75.8 | -16.3 | 9.8 |
| 10 | 7 | 190.4 | 1718.1 | 4022.6 | 75.8 | -16.3 | 9.8 |
| 10 | 5 | 183.2 | 1590.6 | 8564.1 | 100.8 | -8.2 | 9.8 |
| 9 | 9 | 201.2 | 2343.8 | 2397.1 | 68.9 | -28.9 | -1.6 |
| 9 | 8 | 203.6 | 2400.2 | 3113.3 | 74.3 | -24.9 | 3.0 |
| 9 | 6 | 195.0 | 2200.5 | 3853.0 | 77.8 | -20.2 | 13.0 |
| 9 | 6 | 195.0 | 2200.5 | 3853.0 | 77.8 | -20.2 | 13.0 |
| 9 | 4 | 198.6 | 2284.2 | 9819.2 | 110.0 | -9.9 | 13.9 |

Table 2: Frame size $(N)=150$ and Number of respondents with known eligibility $(r)=20$

| Total Eligible e | Total Complete c | Estimated Total t | First Variance Term | Second Variance Term $v_{2}$ | Standard <br> Error $\sqrt{ } v$ | $\begin{array}{c\|} \hline \text { Relative Bias } \\ \text { of } \sqrt{ } v_{2} \\ \left(\sqrt{ } v_{2} / \sqrt{ } v-1\right) \\ \times 100 \% \\ \hline \end{array}$ | $\begin{gathered} \text { Relative Bias } \\ \text { of } \sqrt{ } v_{C} \\ \left(\sqrt{ } v_{C} \sqrt{ } v-1\right) \\ \times 100 \% \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 20 | 160.5 | 0.0 | 2363.6 | 48.6 | 0.0 | 0.0 |
| 20 | 17 | 171.0 | 0.0 | 3138.4 | 56.0 | 0.0 | 3.3 |
| 20 | 14 | 152.9 | 0.0 | 3272.9 | 57.2 | 0.0 | 6.0 |
| 20 | 13 | 161.8 | 0.0 | 3762.6 | 61.3 | 0.0 | 7.3 |
| 20 | 10 | 147.3 | 0.0 | 5902.4 | 76.8 | 0.0 | 6.2 |
| 13 | 13 | 158.6 | 617.6 | 1824.9 | 49.4 | -13.6 | -1.1 |
| 13 | 12 | 155.4 | 592.8 | 2171.6 | 52.6 | -11.4 | 1.3 |
| 13 | 10 | 136.7 | 458.9 | 2281.9 | 52.4 | -8.8 | 5.4 |
| 13 | 9 | 149.2 | 546.4 | 2708.5 | 57.1 | -8.8 | 8.5 |
| 13 | 7 | 133.7 | 439.1 | 4572.1 | 70.8 | -4.5 | 7.1 |
| 12 | 12 | 157.5 | 754.3 | 1710.9 | 49.7 | -16.7 | -1.2 |
| 12 | 11 | 155.3 | 733.1 | 2074.2 | 53.0 | -14.0 | 1.6 |
| 12 | 9 | 138.8 | 585.5 | 2259.1 | 53.3 | -10.9 | 6.5 |
| 12 | 8 | 153.3 | 714.5 | 2693.3 | 58.4 | -11.1 | 10.6 |
| 12 | 6 | 141.8 | 611.8 | 5040.7 | 75.2 | -5.6 | 9.1 |
| 10 | 10 | 153.4 | 1073.5 | 1458.7 | 50.3 | -24.1 | -1.5 |
| 10 | 9 | 153.6 | 1076.3 | 1851.4 | 54.1 | -20.5 | 2.4 |
| 10 | 7 | 142.8 | 930.6 | 2206.0 | 56.0 | -16.1 | 10.0 |
| 10 | 7 | 142.8 | 930.6 | 2206.0 | 56.0 | -16.1 | 10.0 |
| 10 | 5 | 137.4 | 861.6 | 4732.8 | 74.8 | -8.0 | 10.0 |
| 9 | 9 | 150.9 | 1269.6 | 1298.5 | 50.7 | -28.9 | -1.6 |
| 9 | 8 | 152.7 | 1300.1 | 1694.3 | 54.7 | -24.8 | 3.1 |
| 9 | 6 | 146.2 | 1191.9 | 2115.7 | 57.5 | -20.0 | 13.3 |
| 9 | 6 | 146.2 | 1191.9 | 2115.7 | 57.5 | -20.0 | 13.3 |
| 9 | 4 | 149.0 | 1237.3 | 5437.6 | 81.7 | -9.7 | 14.1 |

Table 3: Frame size $(N)=100$ and Number of respondents with known eligibility $(r)=20$

| $\begin{array}{\|c\|} \text { Total } \\ \text { Eligible } \\ \text { e } \end{array}$ | Total Complete c | Estimated <br> Total t | First Variance Term | Second Variance Term $v_{2}$ | Standard Error $\sqrt{v}$ | $\begin{array}{c\|} \hline \text { Relative Bias } \\ \text { of } \sqrt{ } v_{2} \\ (\sqrt{v} / \sqrt{ } v-1) \\ \times 100 \% \\ \hline \end{array}$ | $\begin{gathered} \text { Relative Bias } \\ \text { of } \sqrt{ } v_{C} \\ \left(\sqrt{ } v_{C} \sqrt{ } v-1\right) \\ \times 100 \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 20 | 107.0 | 0.0 | 969.7 | 31.1 | 0.0 | 0.0 |
| 20 | 17 | 114.0 | 0.0 | 1305.7 | 36.1 | 0.0 | 3.3 |
| 20 | 14 | 101.9 | 0.0 | 1379.8 | 37.1 | 0.0 | 6.0 |
| 20 | 13 | 107.8 | 0.0 | 1592.9 | 39.9 | 0.0 | 7.3 |
| 20 | 10 | 98.2 | 0.0 | 2529.6 | 50.3 | 0.0 | 6.2 |
| 13 | 13 | 105.7 | 253.4 | 748.7 | 31.7 | -13.6 | -1.1 |
| 13 | 12 | 103.6 | 243.2 | 897.4 | 33.8 | -11.3 | 1.4 |
| 13 | 10 | 91.1 | 188.3 | 956.2 | 33.8 | -8.6 | 5.6 |
| 13 | 9 | 99.4 | 224.2 | 1142.6 | 37.0 | -8.6 | 8.8 |
| 13 | 7 | 89.1 | 180.1 | 1953.4 | 46.2 | -4.3 | 7.3 |
| 12 | 12 | 105.0 | 309.4 | 701.9 | 31.8 | -16.7 | -1.2 |
| 12 | 11 | 103.5 | 300.8 | 857.7 | 34.0 | -14.0 | 1.7 |
| 12 | 9 | 92.5 | 240.2 | 948.3 | 34.5 | -10.7 | 6.8 |
| 12 | 8 | 102.2 | 293.1 | 1138.6 | 37.8 | -10.8 | 11.0 |
| 12 | 6 | 94.6 | 251.0 | 2160.3 | 49.1 | -5.3 | 9.3 |
| 10 | 10 | 102.3 | 440.4 | 598.4 | 32.2 | -24.1 | -1.5 |
| 10 | 9 | 102.4 | 441.6 | 766.7 | 34.8 | -20.3 | 2.5 |
| 10 | 7 | 95.2 | 381.8 | 930.0 | 36.2 | -15.8 | 10.5 |
| 10 | 7 | 95.2 | 381.8 | 930.0 | 36.2 | -15.8 | 10.5 |
| 10 | 5 | 91.6 | 353.5 | 2028.3 | 48.8 | -7.7 | 10.4 |
| 9 | 9 | 100.6 | 520.8 | 532.7 | 32.5 | -28.9 | -1.6 |
| 9 | 8 | 101.8 | 533.4 | 702.4 | 35.2 | -24.6 | 3.3 |
| 9 | 6 | 97.5 | 489.0 | 894.5 | 37.2 | -19.6 | 13.9 |
| 9 | 6 | 97.5 | 489.0 | 894.5 | 37.2 | -19.6 | 13.9 |
| 9 | 4 | 99.3 | 507.6 | 2340.6 | 53.4 | -9.3 | 14.6 |

Table 4: Frame size $(N)=50$ and Number of respondents with known eligibility $(r)=20$

| Total Eligible e | Total Complete c | $\begin{array}{\|c} \hline \text { Estimated } \\ \text { Total } \\ \text { t } \end{array}$ | First Variance Term | Second Variance Term $v_{2}$ | Standard Error $\sqrt{v}$ | Relative Bias of $\sqrt{ } v_{2}$ $(\sqrt{v} / \sqrt{ } v-1)$ $\times 100 \%$ | $\begin{gathered} \text { Relative Bias } \\ \text { of } \sqrt{ } v_{C} \\ \left(\sqrt{ } v_{C} \sqrt{ }{ }^{2}-1\right) \\ \times 100 \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 20 | 53.5 | 0.0 | 181.8 | 13.5 | 0.0 | 0.0 |
| 20 | 17 | 57.0 | 0.0 | 259.6 | 16.1 | 0.0 | 3.3 |
| 20 | 14 | 51.0 | 0.0 | 288.8 | 17.0 | 0.0 | 6.0 |
| 20 | 13 | 53.9 | 0.0 | 338.7 | 18.4 | 0.0 | 7.3 |
| 20 | 10 | 49.1 | 0.0 | 562.1 | 23.7 | 0.0 | 6.2 |
| 13 | 13 | 52.9 | 47.5 | 140.4 | 13.7 | -13.6 | -1.1 |
| 13 | 12 | 51.8 | 45.6 | 173.6 | 14.8 | -11.0 | 1.7 |
| 13 | 10 | 45.6 | 35.3 | 195.6 | 15.2 | -8.0 | 6.3 |
| 13 | 9 | 49.7 | 42.0 | 239.7 | 16.8 | -7.8 | 9.7 |
| 13 | 7 | 44.6 | 33.8 | 429.4 | 21.5 | -3.7 | 8.0 |
| 12 | 12 | 52.5 | 58.0 | 131.6 | 13.8 | -16.7 | -1.2 |
| 12 | 11 | 51.8 | 56.4 | 166.3 | 14.9 | -13.6 | 2.1 |
| 12 | 9 | 46.3 | 45.0 | 195.2 | 15.5 | -9.9 | 7.8 |
| 12 | 8 | 51.1 | 55.0 | 240.9 | 17.2 | -9.8 | 12.3 |
| 12 | 6 | 47.3 | 47.1 | 480.1 | 23.0 | -4.6 | 10.2 |
| 10 | 10 | 51.1 | 82.6 | 112.2 | 14.0 | -24.1 | -1.5 |
| 10 | 9 | 51.2 | 82.8 | 149.6 | 15.2 | -19.8 | 3.3 |
| 10 | 7 | 47.6 | 71.6 | 194.6 | 16.3 | -14.5 | 12.2 |
| 10 | 7 | 47.6 | 71.6 | 194.6 | 16.3 | -14.5 | 12.2 |
| 10 | 5 | 45.8 | 66.3 | 450.7 | 22.7 | -6.6 | 11.7 |
| 9 | 9 | 50.3 | 97.7 | 99.9 | 14.1 | -28.9 | -1.6 |
| 9 | 8 | 50.9 | 100.0 | 137.6 | 15.4 | -23.9 | 4.3 |
| 9 | 6 | 48.7 | 91.7 | 189.2 | 16.8 | -17.9 | 16.3 |
| 9 | 6 | 48.7 | 91.7 | 189.2 | 16.8 | -17.9 | 16.3 |
| 9 | 4 | 49.7 | 95.2 | 528.1 | 25.0 | -8.0 | 16.4 |

