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Abstract 
Most survey sampling estimators derive their large sample properties by establishing an 
asymptotic equivalence to the Horvitz-Thompson (HT) estimator If the proposed estimator 
is asymptotically equivalent to the HT estimator, then it inherits the HT estimator 
asymptotic properties such as design consistency with a limiting normal distribution. 
Although this approach is valid, it does not provide insights on the proposed estimator’s 
efficiency in small samples. As a result, most papers include simulation studies to examine 
these properties empirically. 
 
We take a different approach and show that methods from classical asymptotic theory for 
estimators as functions of random variables can be used to derive the asymptotic property 
of survey sampling estimators. The focus of this approach is the discrete random vector of 
the sample membership indicators as the only stochastic component of the estimator. The 
use of discrete multivariate statistics and matrix operations reduces the derivation of the 
expressions of the estimator and its asymptotic properties to an algebraic problem while 
providing new insights into its properties. We illustrate these methods by deriving the 
variance, variance estimator, and determining the sufficient conditions for the HT estimator 
and its variance estimator to be design consistent. 
 
Keywords: Large sample theory, function of random variables, discrete multivariate 
statistics, finite population, sample design  
 
 

1. Introduction 

In this paper, we derive the large sample properties of survey sampling estimators using 
the principle and tools from classical asymptotic theory (Polansky, 2011; Lehmann, 1999). 
We extend an idea developed by Tillé (2006) and postulate that sample designs are 
uniquely defined as a multivariate discrete random variable for the sample membership 
indicator with an expected value and a variance-covariance matrix with specific properties 
that determine the design. The observed sample is a realization of this multivariate discrete 
distribution. Defining survey-sampling estimators as functions of the random sample 
membership indicators facilitates the study of the large sample properties of current 
estimators and the derivation of the expression of the variance and estimate of the variance 
of new estimators. This approach requires familiarity with modern matrix notation and 
matrix operations, and provides new insights into the performance of estimators without 
the use of simulations. 
 
The rest of this paper is organized as follows. In Section 2, we summarize the current 
approach for studying the large sample properties of survey estimators based on the work 
of Isaki and Fuller (1982). Section 3 presents the ideas for the proposed approach, while 
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Section 4 and 5 describe the approach in detail. Sections 6 to 10 illustrate the use of the 
proposed framework to study the large sample properties of the Horvitz-Thompson (HT) 
estimator and derive the formulas of the variance and variance estimator. Section 11 
presents the conclusions and final thoughts. 
 
 

2. Current Framework for Studying the Asymptotic Properties of Survey 
Sampling Estimators 

Isaki and Fuller  (1982) is the seminal paper that established the standard for studying the 
large-sample properties of estimators in survey sampling theory. Before summarizing their 
approach, we introduce the concepts and notation of their approach (see Fuller, 2009). 
 
Let F= be the finite population of known size N  defined as the entire set ( )1,..., Ny y=F=  

where ( )T
1,..., Ny y=y  is the variable of interest defined for all the elements of F= where 

each element is identified by the label kU  where { }1,...,U N= . The population F= is 
sampled according to a single-stage sample design ( )p s  where a sample of size n  is drawn 
without replacement. The sample design determines the first-order probability of inclusion 
of each unit of the frame denoted as ( )0,1kπ ∈  for k U∈  and [ ] N N

kl k lπ π π ×= − ∈Δ ¡  is 
the variance-covariance matrix of the sample design where klπ ∈¡  is the second-order 
probability of inclusion of elements k  and l  defined as the probability that the 2-tuple 
( ),k l  are both selected in the sample. 
 
We are interested in estimating the population total of the y , defined as .k

k U
Y y

∈
= ∑  In the 

simplest case (without the use of any auxiliary information from the population), we can 
estimate the total Y  using the HT estimator defined as ĤT k k k

k U
Y d y s

∈
= ∑  where kd  is the 

sampling weight computed as 1
k kd π −=  and { }0,1ks ∈  is the sample membership indicator 

where 1ks =  if the unit k  is selected in the sample and 0ks =  otherwise (Horvitz and 
Thompson, 1952). 
 

In the Isaki and Fuller (1982) theoretical framework for the asymptotic analysis of design-
based estimators, the existence of an indexed sequence of nested finite populations, 
{ } 1N N

∞
=F  is assumed, with increasing sizes 1, NN N…  where 1 2 N⊂ ⊂ ⊂…F F F , 

1 2 NN N N< < <… , with labels for each element in the population { }{ } 1
1,..., .N N NU N ∞

=
==  

The framework also assumes that a sequence of associated probability samples { } 1N NA ∞
==  

where a sample is drawn from each fine population in the sequence according to a sequence 

of sample designs ( ){ } 1N N N Np A a ∞
=

= . Both the finite population size NN  and sample 
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size Nn  increase to infinity but that the ratio is finite, since by definition, 

( )lim 0,1N
N

N N
n

n f f
N→∞

→∞

= = ∈ . 

 
Isaki and Fuller (1982) show that the HT estimator meets the conditions stated in the 
following two lemmas: 
• Lemma 1: ( ),ˆ 1 /HT N N p NY Y nδ− =O=  for 0δ > . 

• Lemma 2: There is a sequence of sample designs ( ){ } 1N N Np A a ∞
=

=  with inclusion 

probabilities ,k Nπ  for ( )1,...,k N∈  such as ( ) ( ),ˆ 1/ .HT N N NY Y n− =OE  

 
The HT estimator is said to be design consistent because it meets these two conditions. 
These lemmas are closely related to the definition of design-consistent estimator θ̂  for the 
finite population parameter θ  given by Särndal, Swensson, and Wretman (1992): 
 
• The sequence of the estimator ˆ

Nθ  is asymptotically unbiased for the population 
parameter ˆ

Nθ  if 

 ( )ˆlim 0N N
N

θ θ
→∞

 − = E . 

• The sequence of the estimator ˆ
Nθ  is consistent for the population parameter ˆ

Nθ  if for 
any fixed 0ε > , 

 ˆlim Pr 0N N
N

θ θ ε
→∞

 − > = - . 

Although these conditions define design-consistent estimators, whether an estimator is 
design consistent does not only depend on the sequence of sample designs but also on how 

the sequence of the outcome { }{ }1 1
,...,N N NY y y ∞

=
=  is specified as N → ∞  (Särndal, 

Swensson, and Wretman, 1992). 

Breidt and Opsomer (2017) expand this and provide two sufficient conditions for the design 
consistency of the HT estimator that reflect the limiting behavior of the sequence of the 
outcome { } 1N NY ∞

= : 

• Assuming that ( )lim 0,1
N

n f
N→∞

= ∈ , then for all N , 1min 0k
k U

π λ
∈

≥ ≥  and 

, ,
lim sup max kl

k l U k lN
n

∈ ≠→∞
∆ < ∞ ; and  

• The outcome variables ky  for k U∈  satisfy 1 2lim sup k
N k U

N y−

→∞ ∈
< ∞∑ . 

If these conditions are met, then the upper bound of the variance of the HT estimator is 

 
837



 

 

 ( )
2,2

2
1 1 11

max
1ˆ

N N
N

N N kl N
k l U kNk

HT
k k

yyY
N N Nλ λ

≠ ∈

= =

∆  
 ≤ +
 
 

∑ ∑V , (2.1) 

which converges to zero as N → ∞ . In other words, ( ) 1
ĤTY

N
 =  
 

OV  (Fuller, 2009). 

 

The previous results have used in the literature as the building block for deriving the 
asymptotic estimators defined as functions of the HT estimator. This approach does not 
address the situations where the sequence for the outcome { } 1N NY ∞

=  interacts with the 

sequence of sample designs. For example, in πps sample designs (Särndal, Swensson, and 
Wretman, 1992), the probability of inclusion kπ  may be a function of auxiliary variables 
related to the outcome ky . Estimates from sample designs where kπ  is proportional to ky  
are more efficient. An implicit assumption in (2.1) is that the probabilities of inclusion are 
independent of the outcome ky .  
 
 

3. Alternative Framework for the Study of Survey Sampling Estimators 

Most of the literature related to the large sample properties of more complex estimators is 
based on the results of the HT estimator described in the previous section. However, these 
proofs are lengthy and technically difficult (Knottnerus, 2009). Many proofs are done using 
a piecewise approach where the properties of the components of the estimator are analyzed 
separately using different criteria for upped bounds producing expressions such as 
equation (2.1) that are be difficult to interpret and to derive for other estimators. The current 
approach is also not informative for the comparison of the asymptotic properties of 
different estimators and sample designs. Consequently, most papers include simulation 
studies to examine their properties empirically. 

We propose a different framework for the study of the large sample properties of survey 
sampling estimators. We combine and extend existing ideas to formalize the definition of 
the sample design and survey sampling estimators. The proposed framework is based on 
standard asymptotic theory to derive the statistical properties of finite population 
estimators. Although in some textbooks this approach is called infinite population theory, 
this is a misnomer since this theory also address the asymptotic properties of finite discrete 
random variables (see Polansky, 2011; Lehmann, 1999). The second idea is the extension 
of the methods from the standard asymptotic theory proposed by Cornfield (1944) for 
proving the properties of finite population estimators (see Section 2.9 in Cochran, 1977). 
The proposed framework relies heavily on modern matrix notation and algebra. This idea 
is suggested by Dol, Steerneman, and Wansbeek (1996), who show the convenience of the 
use of a number of matrix-algebra results to determine the sufficient conditions for the 
consistency and the rate of convergence of the HT estimator. We expand the matrix 
notation to include element-wise operations (i.e., Hadamard operations such as product and 
division). The use of matrix algebra reduces the derivation of the formulas for expected 
values and variance to a simple algebraic exercise while providing new insights into the 
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properties of the estimators. Finally, we use Tillé's (2006) approach, which redefines the 
concept of sample design as a multivariate discrete random vector of the sample 
membership indicators.  

The proposed framework is easily extended and can be used for deriving new estimators, 
their variances, and variance estimators. Applications of this framework are described in 
Flores Cervantes (2019). The framework can also be extended to include the effect of 
nonresponse when it is modeled as a random variable with a well-defined distribution. 
 
 

4. Alternative Definition of a Sample Design 

We begin by defining single-stage sample designs where the sample is drawn without 
replacement. Any sample design can be uniquely defined as follows:  
 
Let { }0,1 N∈S  be a vector-valued random variable with a discrete multivariate distribution 

consisting of N  random sample membership indicators ( )T
1,..., NS S=S , with k kS s=  

where ks  is the realization of kS  and 1k kS s= =  if the unit k  is selected in the sample, 
and 0k kS s= =  otherwise. The probability mass function (pmf) of S  for a single-stage 
sample design without replacement is 

 ( ) ( )( )Texp Qα λ= −p S = s λ S , (4.1) 

where N∈λ ¡ , Q  is the support of ( )p S , and ( )Qα λ  is a function that ensures that the 

cumulative of ( )p S = s  is one. The expected value of S , ( ) 10,1 N×∈π , is  

 ( ) ( )
{ }

( )
{ }

( )
1

T
T

1 1 1
0,1 0,1

,..., ,...,
N

N N N
S S

S p S S p S π π
∈ ∈

 
 = = =
 
 

∑ ∑π SE , 

where [ ] ( ]0,1 N
kπ= ∈π  is the vector of the first-order inclusion probabilities 0kπ > 1 for 

k U∈ . The second moment of S , N N×∈Π ¡ , as  

 ( ) [ ]T
klπ= =Π SSE , 

where Π  is the matrix with the second-order probabilities of inclusion klπ  of elements k  

and l . Combining the previous results, the variance-covariance matrix of S , N N×∈¡∆ , 
is 

 ( ) ( ) ( )TT

T

= −

= −

SS S S

Π ππ

E E E∆
, 

 
1 In order to be a Lebesgue measure, 0kπ > . 
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where [ ] [ ]kl kl k lπ π π= ∆ = −∆  for ,k l U∈ . 
 
Not all multivariate discrete random vectors S  are useful sample designs. We are interested 
in those random vectors S  such that π  and Π , 0 1kπ< ≤  for k U∈  and 0klπ >  in Π . 
These two conditions define an estimable design. These conditions are needed because the 
survey estimators (including variance estimators) are expanded by the inverse of kπ  and 

klπ  of the sampled units. For example, the HT estimator and its variance estimator are 

 ( )T
ĤTY = y π s%  and ( ) ( )( )( )T

ĤTY = y s π Δ Π y s πe eV % % % , 

where the operators e  and %  are the Hadamard-Schur or element-wise matrix product 
and division (Horn and Johnson, 2013). The definition of an estimable design is similar to 
the concept of a measurable design (Särndal, Swensson, and Wretman, 1992). 

 
In order to determine the regularity condition of the large sample properties of the 
estimators, we rely on the properties of the covariance matrix ∆  of estimable designs. ∆  
is a Hermitian matrix with the following properties: 
 
(a.) A real (square) symmetric matrix; 
(b.) A normal matrix such that T T=ΔΔ Δ Δ ; 
(c.) A matrix that can be diagonalized by a unitary matrix with real elements on the 

diagonal (finite-dimensional spectral theorem); and 
(d.) A matrix with real and linearly independent eigenvalues. 
 
Additional properties of the variance-covariance matrix Δ  depend on the type of sample 
designs as described in the next section. 
 
Example 1:  
 
A commonly used sampling design is systematic sampling (Cochran, 1977), however, 
although there is a pmf that defines systematic sampling, there are 2-tuples ( ),k l  with the 
second-order probabilities of selection with 0 values. In other words, there are pairs of units 
that are never selected in the same sample. Although the HT estimator ĤT k k k

k U
Y s d y

=
= ∑

of the total of the population k
k U

Y y
=

= ∑  for a systematic sample design is defined, the 

estimator of the variance cannot be computed. In practice, practitioners assumed that the 
sample is drawn with replacement. In this case, the assumed design has a pmf with the off-
diagonals of Π defined as kl k lπ π π= . The elements of the Hadamard division Δ π%  is 

kl kl k l

kl kl

π π π
π

∆ −
=

Π
 when the element is not in the diagonal is 0, or 

( )1
1k kkk

k
kk k

π π
π

π
−∆

= = −
∏

 otherwise.  
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Example 2:  
 
Suppose there is a sample design defined by the pmf of S  for a population of size 100,N =  
where the ( ) 0kS =E  for 90k ≥ . In this example, the 90th to 100th units of the population 

do not have a positive value of selections. The HT estimator for the total k
k U

Y Y
∈

= ∑  is not 

defined (i.e., division by zero for units with 0)kπ =  and this design is estimable. In 
practice, the HT estimator can be computed for the subset of units with positive values; 
however, in this case, the HT estimator produces an estimate of the total 

{ }

*

1,...,89
,k

k
Y Y

∈
= ∑  

which is a biased estimator of Y . 
 
 

5. Types of Sample Designs 

We use the variance of the sum of the elements of S  to classify the sample designs. Let 
: NZ ¡ a ¡  be the vector-to-scalar function defined as ( ) TZ Z= =S 1 S . The variance of 

Z  is ( ) TZ = 1 Δ1V , which is directly derived using the standard rules for variance 
computation for random vectors (see Gallager, 2013). In this case, ( )Z S  is a linear 
function of kS  for k U∈  since it can be written as the linear combination of the elements 
of the random vector S  as 

 1 1 ...k k N N
k U

Z a S a S a S
∈

= = + +∑ , 

where 1ka =  for k U∈ . 
 
The variance of the sample size, ( )ZV , corresponds to the grand sum of Δ  (i.e., the sum 
of all the elements of Δ ) and can be decomposed as the sum of the contribution of the 
variances and covariance of the elements kS  as 

 ( ) ( ) ( )T

, ,
,k k l

k U k l U k l
Z S S S

∈ ∈ ≠
= = +∑ ∑1 Δ1V V C .  (5.1) 

This expression has an intuitive meaning. Each element of S , kS , contributes to the total 
variance ( )ZV  through the variance component, ( )kSV , and the sum of the covariance 
with the other elements ( )

,
,k l

l U k l
S S

∈ ≠
∑ C . When the sample design is Bernoulli or Poisson 

sampling, then ( ), 0k lS S =C  for all k l U≠ ∈ . In this case, the variance of the sample size 
is the sum of the contributions of the variance of each unit in the frame as 

( ) ( )1k k
k U

Z π π
∈

= −∑V . 
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The random vector S  represents a fixed sample size design if ( )T 0=1 SV . Some examples 

of fixed sample size designs are simple random sampling, Sampford, Midzuno-Sen, 
Sumter, and Tillé sampling (see Tillé, 2006). These designs have the following properties: 
 
(a) Δ  is positive semidefinite. 
(b) If ( ) ( )min 1 2 max...Nλ λ λ λ−≤ ≤ ≤ ≤Δ Δ  are the ordered eigenvalues of Δ , then 

( )min 0λ =Δ ; that is, the eigenvalues ( )kλ Δ  for k U∈  are nonnegative. 

(c) row 0k =1 Δ  and T col 0k =1 Δ  for k U∈ , and ( )Tr 0=IΔ — that is, the sums of 
rows, the sum of columns, and the total sum of the elements of Δ — is zero. 

(d) The sample size is Tn = 1 π . 
 
When the sample size is fixed, the sum of the diagonal of Δ , ( )1k k

k U
π π

∈
−∑ , has the same 

value as the sum of the off-diagonal elements, ( )kl k l
k U l U

π π π
∈ ∈

−∑ ∑ . This equality can be 

proved using the properties of the variance-covariance matrix Δ  for fixed-size sample 
designs listed above. 
 
The discrete random vector S  with parameters ( ) =S πE  and ( ) =S ΔC  is a random 

sample size design if ( )T 0≠1 SV . Some examples of random size designs are Bernoulli, 

and Poisson sampling, see Tillé (2006). Although this type of sampling is less frequently 
implemented in practice, random size designs are especially useful for modeling 
nonresponse. The properties of the random sample size designs are: 
 
(a) Δ  is positive definite with all eigenvalues ( ) 0kλ >Δ  for k U∈ . 
(b) ( )diag=Δ π  because kl k lπ π π=  in Δ  for , :k l U k l∈ ≠ . 

(c) The row and column sums are T rowk kπ=1 Δ , coll lπ=1 Δ  for ,k l U∈ , and 

( )Tr n=IΔ , where n  is the expected sample size, ( )T .n = 1 SE  

(d) ( ) ( )( )T T T= 1= −1 S 1 Δ1 1 π πeV . 

(e) Let { } 10,1 N×∈s  be the vector of one realization of S , =S s , then the observed 

sample size on  is T
on = 1 s . 

(f) If ( ) ( )min 1 2 max...Nλ λ λ λ−≤ ≤ ≤ ≤Δ Δ  are the ordered eigenvalues of the 
variance-covariance matrix Δ , then the eigenvalues are the first-order probability 
of inclusion π . The largest eigenvalue of Δ  is ( ) { }max arg max k

k U
λ π

∈
=Δ . 
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6. Functions of the Random Vector S 

We now explore two basic functions of the random vector S  using results from 
multivariate standard statistical limit theory. 
 
 
6.1 Function for the Mean Vector of Random Vectors 

Let : N N→Z ¡ ¡  be a vector-valued function defined as ( )
1

1 N
k

kN =
= ∑Z S S  where kS  is 

the k -th realization of the random vector S  for { }1,...,k N∈ . The random vector Z  is the 
average of N  vectors kS  of size N  each. This function is a typical example found in 

statistical limit theory textbooks (e.g., Polansky, 2011). Define { } 1N N
∞

=Z  as the sequence 

of estimators Z . Then 
 
(a) ( )lim |N

N→∞
=Z πE F . 

(b) ( )|NZV F  is bounded, ( ) 1|N N
 =  
 

ZV F O . 

(c) Following from (a) and (b), the sequence of estimators { } 1N N
∞

=Z  is consistent for 

π  (weak convergence; Polansky, 2011). 
 
6.2 Function for the Mean of the Elements of the Random Vector S 
The second function is defined in terms of the elements of a single vector Z  that increases 
in size N  in the sequence as N → ∞ . This is in contrast to the first function in Section 
6.1, where the number and size of the averaged vectors increases as the population size 

increases. Let Z : N →¡ ¡  be a vector-to-scalar valued function ( ) T1Z
N

=S 1 S . This 

function differs from the one in the previous section because Z  is the average of the N  
elements kS  of a single realization of S . The function Z  is the expected overall sampling 

rate. To study the asymptotic properties of Z , let { } 1N NZ ∞
=  be the sequence of estimators 

Z . The expected value and variance of this sequence are 

 ( ) T1
N N NZ

N
= 1 πE , and (6.1) 

 ( ) T
2

1
N N N NZ

N
= 1 Δ 1V . (6.2) 

The function ( )Z S  is not as common and the elements kS ∈S  are not required to have the 
same expected value, that is, ( ) ( )k lS S≠E E  for k l≠  and ,k l U∈ , and the 2-tuples ( ),k l  
can be correlated (they are not independent).  
 

 
843



 

 

In our approach, we can simplify these expressions depending on the type of sample design. 

If S  is a fixed sample size design, then ( ) 1
k

k U

nZ f
N N

π
∈

= = =∑E , where k
k N

n π
∈

= ∑  is 

the sample size, and f  is the overall sampling rate. In these designs, because ( ) 0Z =V , 

there is no need to find an upper bound for the sequence of estimators { } 1N NZ ∞
= . 

 
On the other hand, if S  is a random sample size design, then the sequence { } 1N NZ ∞

=  

converges to the expected sample size n . To obtain the upper bound of the variance 
( )NZV , we apply the standard rules for variances of random vectors, inequalities for 

quadratic forms of Hermitian matrices, and inequalities for eigenvalues in terms of matrix 
norms. So 

 

( )

( )

( ) ( )

T
2

2

2 max
max 22

1

1

1

N

N N N N

N

N
N N

Z
N

Q
N

NN

λ
λ

=

=

≤ =

Δ

1 Δ 1

1

Δ
Δ 1

V

, (6.3) 

where ( ) T
N N N N NQ =Δ 1 1 Δ 1  is the quadratic form of the vector N1  with respect to the 

matrix NΔ , ( )max Nλ Δ  is the maximum eigenvalue of the matrix NΔ , and 2
2N1  is the 

squared 2L -norm of the vector N1 , where 2 2
2 1N

k N
N

∈
= =∑1 . The variance ( )NZV  of 

the sampling rate is bounded by a function that depends on the largest eigenvalue of NΔ , 
( )max Nλ Δ . 

 
In sample designs where the sample draws are independent (e.g., for , , ),k l k l U≠ ∈  then 

the variance-covariance matrix is ( )( )diagN N N N= −Δ π 1 πe . Since for diagonal 
matrices the eigenvalues are the elements of the diagonal, the largest or maximum 
eigenvalue is  

 ( ) { } ( ){ }max , , ,max arg max arg 1
N N

N N kk N k N k
k U k U

λ π π
∈ ∈

= ∆ = −Δ . (6.4) 

The eigenvalue ( )max Nλ Δ  is a function of ,N kπ . Sometimes it is desirable to have a 
bound that does not depend on the first-order inclusion probabilities. This upper bound can 
be found by noticing that ( )max Nλ Δ  is the variance of a random variable with a Bernoulli 

distribution with the parameter ( ){ }, ,max arg 1
N

N k N k
k U

π π π
∈

= − . Since the possible values of 
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π  are constrained between 0 and 1, then ( )1π π−  has a global maximum at 1
2

π = . Then, 

the upper bound of the variance of the sequence { } 1N NZ ∞
=  is  

 ( ) 1N
N

KZ
N N

 ≤ =  
 

V O , (6.5) 

where 0.5NK = . The expression (6.5) assumes that ( )= 1NK =O , which is true since, by 
definition, the vector S  is an estimable design where ( )maxlim 0N

N
λ

→∞
>Δ  and 

( )maxlim 1N
N

λ
→∞

<Δ  for any N . 

 
 

7. Linear Functions of the Elements of the Random Vector S 

We now introduce a constant vector N∈a ¡  in the function Z . Let [ ] N
ka= ∈a ¡  be a 

vector of constants, and let : NZ →¡ ¡  be the function of S  defined as ( ) T1Z
N

=S a S , 

the linear combination of the sample membership indicators ks  for k U∈  of the form 

 ( ) 1 1
1 1... N NZ a s a s
N N

= + +S . 

To study the asymptotic properties of this estimator, we define the sequence of estimators 
{ } 1N NZ ∞

=  and apply the rules used in Section 6. The expected value and variance of the 

sequence { } 1N NZ ∞
=  are 

 ( ) T1
N N NZ

N
= a πE , and (7.1) 

 ( ) ( ) ( ) 2
maxT 2

2 2
1 1 Q

N
NN

N N N N NZ
N NN N

λ ∆
= = ≤Δ

a
a Δ a aV , (7.2) 

where 2
2Na  is the square of the 2L -norm of Na , 2 2

2N Nk
k N

a
∈

= ∑a . The upper bound of 

( )NZV  is a function of the largest eigenvalue of the variance-covariance matrix NΔ . 
Replacing ( )max Nλ ∆  by ( )maxN NK λ≥ ∆ , the upper bound is  

 ( )
2

NN
N

KZ
N N

≤
aV ,  

where NK  can be any vector-induced matrix norms for NΔ . Instead of using the 
matrix-induced norms, we can use the largest eigenvalue of NΔ  directly for these designs 
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since the variance-covariance matrix is ( )( )diag 1N N N= −Δ π πe . The largest 
eigenvalue of NΔ  is 

 ( ) [ ]{ } ( ){ }max max arg max arg 1
N N

N Nkk Nk Nk
k U k U

λ π π
∈ ∈

 ∆ = = − Δ . (7.3) 

As in the previous section, we can use an upper bound of the largest eigenvalue noting that 
( )max Nλ ∆  is the variance of a Bernoulli random variable with the parameter 

( ){ }, ,max arg 1
N

N k N k
k U

π π π
∈

= − , which has a global maximum at 1
2

π = . After combining 

these results, the upper bound of the sequence of estimators ( )Z S  is  

 ( ) ( )
2

1 11NN
N

KZ
N N N N

   ≤ = =   
   

aV O O O , (7.4) 

where 1
2NK = . The upper bound of ( )Z S  is of the order 1

N
 
 
 

O  after applying Slutsky's 

theorem and assuming that ( )
2
2 1

N

N
=

a
O . The expression (7.4) assumes that 

( ) ( )max 1Nλ ∆ =O  as N → ∞ , which is true since, by definition, S  is an estimable design. 
 
 
8. The Horvitz-Thompson Estimator as a Linear Function of the Elements of the 

Random Vector S 

We have already derived some of the properties of the HT estimator of the population mean 
T1Y

N
= 1 y , defined as 

 ( ) ( )T1ˆ
HTY Z

N
= =S d y Se , (8.1) 

because ˆ
HTY  is the linear function ( )Z S  from the previous section but with the vector of 

constants a  defined as =a d ye , where 1N×∈d ¡  is the vector with the sampling weights  

 ( ) [ ]1 1
k kd π− − = = = = =  d 1 S 1 π πeE% % , 

where 1−πe  is the Hadamard inverse of π  or the Hadamard division of 1  by π , and 

1N×∈y ¡  is the vector with the outcome [ ]ky=y  for k U∈ . Let { },
1

ˆ
HT N

N
Y

∞

=
 be the 

sequence of HT estimators defined in (8.1); then the expected value and variance are 

 ( ) T
,

1ˆ
HT N N NY Y

N
= =1 yE  and (8.2) 
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 ( ) ( ) ( )T
, 2

1ˆ
NHT N N N N NY

N
= ∆d y d ye eV . (8.3) 

 
To study the large sample properties of the variance of HT estimator in (8.3), we 
reparametrize it using the variable S

(
, defined as follows: 

 
Let : N N→S

(
¡ ¡  be a vector-to-vector valued function of S , where .=S d S

(
e  The 

expected value of S
(

 is  

 ( ) ( )= = =S d S d π 1
(

e eE E . (8.4) 

Since S
(

 is a random vector, we can compute the variance-covariance matrix of ,S
(

 
N N×∈SΔ( ¡ , as 

 
( ) ( )T

T 2 1k l

kl

d d
d

= =

 
= = = − 

 

SS Δ d S d

dΔd Δ d

(

e

(
V V

%
, (8.5) 

where 2de  is the Hadamard product d de . The variance of the sequence of HT 

estimators, { },
1

ˆ
HT N

N
Y

∞

=
, can be rewritten in terms of S

(
 as 

 
( ) ( )

( )
,

T
, ,2 2

2
max , 2

1 1
NHT N N N NN

N N

Y
N N

N N

λ

= =

≤

SΔS

S

y Δ y Q y

Δ y

((

(

V
, (8.6) 

where ( )
,N NSΔ

Q y(  is the quadratic form of the vector Ny  with respect to the matrix , ,NSΔ (  

and ( )max ,Nλ SΔ (  is the largest eigenvalue of the matrix ,NSΔ ( . Then the upper bound of 

the sequence of HT estimators is a function of ( )max ,Nλ SΔ ( , the largest eigenvalue of the 

reparametrized covariance matrix ,NSΔ ( . We can refine the upper bound by replacing 

( )max ,Nλ SΔ (  by its upper bound ( )max ,N NK λ≥ SΔ (  using any of the matrix norms 

induced by the vector 1-norm, ∞-norm, or Frobenius norm as 
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( )

1
, , ,1 1 1

1
, , ,

1 1
1/2T

, , ,

max max 1 1- norm

max max 1 -norm

tr Frobenius norm

N N

N N

N N

Nk Nl NklN N kll U l Uk k
N N

N Nk Nl NklN N klk U k Ul l

N N NF

d d d

K d d d

−

∈ ∈= =

−
∞ ∈ ∈= =


= ∆ = −



= = ∆ = − ∞



  =   

∑ ∑

∑ ∑

S S

S S

S S S

Δ

Δ

Δ Δ Δ

( (

( (

( ( (

. 

For random sample size designs, the matrix norm NK  can be simplified to  

 { } max max,arg max 1
N

N N NN
k U

K d d
∈

= ∆ = − >S
( , 

since ( ), diag 1NN = −SΔ d(  for these designs. The upper bound of the sequence 

{ },
1

ˆ
HT N

N
Y

∞

=
 is a function of the maximum sampling weight ,k Nd , not the maximum ,k Nπ  

as in the estimator in Section 7. The upper bound of the variance of { },
1

ˆ
HT N

N
Y

∞

=
 is  

 ( ) ( )
2
2

,
1 11NN

HT N
KY
N N N N

   ≤ = =   
   

y
V O O O =, (8.7) 

where 2
2Ny  is the square of the Euclidian norm of Ny , 2 T

2N N N=y y y . The order of the 

variance of the HT estimator, ( ),HT NYV , is ( )1N −O  after applying Slutsky's theorem. 

Two implicit assumptions in (8.7) are ( )1NK =O  and ( )
2
2 1N

N
=

y
O .  

For random size designs, the matrix-induced norms are functions of the sum of the 

elements; for example, for the 1-norm, these are sums by rows, 1
, , ,

1
1

N
k N l N kl N

k
d d d −

=
−∑ , of 

, 1NSΔ ( . The terms to sum to determine the row with the largest value for the 1-norm are 

listed in the Table 1. 
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Table 1: Elements of the matrix ,NSΔ (  

 
 Column l 
Row k 1 2 … N 

1 1, 1Nd −
 

1, 2,

12
1

,
N Nd d

d N
− ...  

1, ,

1 ,
1N N N

N N

d d
d

−  

2 2, 1,

21,
1N N

N

d d
d

−
 

2, 1Nd −
 L  

2, ,

2 ,
1N N N

N N

d d
d

−
 

… M  M  M  M  

N , 1,

1,
1N N N

N N

d d
d

−
 

L  L  , 1N Nd −
 

Since the summands are absolute values, the largest row sum corresponds to the row k  
with the largest weight { }max arg max

N
N

k U
d

∈
= d . Then the upper bound or 1-norm is  

 max, 1, max, ,
max, max,

max1, max ,
1 ... 1 ... 1N N N N N

N N
N N N

d d d d
K d

d d
= − + + − + + − .  

After rewriting the norm in terms of the inclusion probabilities, we obtain  

 max1, max ,
max, max,

max, 1, max, ,
1 1 ... 1N N N

N N
N N N N N

K d
π π

π π π π
= − + − + + − . 

Since we assume that S  is an estimable design where the sums by rows of Δ  are equal to 
0 for N → ∞  (see properties of Hermitian matrix for this design in Section 5), then ,kl Nπ  

converges to , ,k N l Nπ π  for all k l U≠ ∈ . This equality is needed in order to maintain the 
row sum in Δ  as the population size increases. Combining these results, then the upper 
bound of the 1-norm can be written as 

  { } max,arg max
N

N N N
k U

K d
∈

> =d .  

After substituting NK  in (8.2), we obtain the same expression in (8.7) for the upper bound 
of the variance of HT estimator for designs with random sample sizes. 

 
Comparing the expression of the upper bound from Breidt and Opsomer (2017) in (2.1), 
we notice that the first term matches (8.7), because 10 min maxk k

k U k U
dλ π

∈ ∈
< ≤ = . Note that by 

definition S  is an estimable design, then 0kπ >  for all k U∈ ; therefore there is no need 

 
849



 

 

for the lower bound  1λ  to be greater than zero in the first term of the equation (2.1). 
The second term of (2.1) is not needed because it goes to 0 as N → ∞ . 
 
 
9. The Design Consistency of the Horvitz-Thompson Estimator in Sample Designs 

When π  and y  Are Related 

A more complete study of the asymptotic properties of an estimator requires examining the 
limiting behavior of all the quantities that are used to compute the sequence of estimators 
as N → ∞  and n → ∞ . This is where the main difference arises between the current 
approach and our approach. First, we do not consider the sequence of sample size 
separately from the design because, by definition, the sample size is determined by the 
design as the sum of the probabilities of inclusion ,

N
k N

k U
π

∈
∑ . In other words, the increasing 

sample size when n → ∞  is not arbitrary since it depends by the sample design .S  Second, 
the proposed framework for large simple analysis considers three sequences: the population 
size, the outcome y , and the design S  through the probability of inclusion (determined by 
the design) that may be determined by a sequence of auxiliary variables x  related to y . 
However, to avoid inconsistencies resulting from multiple sequences converging to 
infinity, we express all tow of these sequences in terms of the order of the population size 

N ; for example, ( ),
N

N k N
k U

Y y N
∈

= =∑ O  and 1/2
1

K
k N

x

N N
∈  

=  
 

∑
O . Defining the 

sequences as functions of the order of the population size N  enables us to use the algebraic 
rules for the order of a function O  –the Bachmann-Landau order operator– when studying 
the large sample properties of the estimators. 

 
The results for the upper bounds of the variance of the HT estimator from the literature and 
those presented in the previous section assume that the sample design S  is independent of 
the outcome sample y . However, in practice samples are designed with the goal of 
producing efficient estimates (with minimum variance) of the outcome of interest. A 
stratified, pps (probability-proportional-to-size with replacement), or πps (π proportional 
to size without replacement) sample designs may be preferable. These designs make use 
use of an auxiliary variable 1

0
N×
>∈x ¡ , [ ]kx=x  that is known for all k U∈  that is related 

to the outcome; for example, k ky xγ∝  where 0γ ≠ . Sampling design that produces 
estimators with increased efficiency derive the first-order probabilities of inclusion π  
based on the auxiliary variable x . For example, we can have a very efficient designs when 

k ky x∝  if the probabilities of selection are be defined as 

 /n X=π x , 

where n  is the expected sample size Tn = 1 π  and X  is the population total of x  computed 
as TX = 1 x .  
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To study the properties of the HT estimator in designs with random sample sizes when y  
and π  are related, we use the general expression of the upper bound of the variance of the 
HT estimator in (8.3), without separating the product N Ny de  in the quadratic form as 

 ( ) ( ) ( )
22

, 2
1 diagHT NY

N
≤ y d Πee eV . (9.1) 

In the following designs, we assume that ( ),
N

N k N
k U

X x N
∈

= =∑ O  and /n X=π x ; that 

is, the auxiliary variables are of the same order as the population size.   
 
 
We examine first the case when 1γ =  and k ky cx= . In πps designs, designs with fixed 

sample sizes, the variance of the HT estimator ( ), 0HT NY =V . In designs with random 

sample sizes, the variance ( ),HT NYV  in terms of ky  after simplification is 

 ( ),
1 1

k
k U

HT N

Y
Y

n N n
∈  ≤ =  

 

∑
V O , (9.2) 

which converges to zero since, by definition, ( )1
k

k U
Y

N
∈ =
∑

O . The sufficient conditions in 

expression (9.2) are more general than those in Section 2. When π  is closely related to ,y  
the HT estimator is design consistent as to long as the first moment of the absolute values 
of y  is defined and not the second moment as in (2.1). 
 

We now examine the case where 1γ = −  and k
k

cy
x

= . The expression of the variance of 

the HT estimator after simplification is  

 ( )
3

,
1

k
k U

HT N

Y
Y

n N
∈≤
∑

V , (9.3) 

which converges to zero when ( )

3

1
k

k U
Y

N
∈ =
∑

O . The sufficient condition for the HT 

estimator, in this case, is more constrained than in expressions (9.2) and in (2.1) in 
Section 2. When π  is inversely related to y , the estimator is design-consistent if the third 
moment of the absolute values of y  is defined. 
 
The results in (9.2) and (9.3) show that the sufficiency conditions for  the HT estimator to 
be design consistent when y  and x  are related depend on both orders of the sequence of 
the outcome y  and auxiliary information x  when the latter is used to compute the  
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probabilities of inclusion π . These results are easier to derive using the proposed approach 
presented in this paper. 
 
 

10. The Variance Estimator of the Horvitz-Thompson Estimator 

In this section, we derive the variance estimator of the HT estimator. The variance estimator 
of the HT estimator of the mean Y  is derived from (8.7) after replacing Δ  by =Δ Δ Π% %  
as  

 ( ) ( ) ( )T
2

1ˆ
HTY

N
= y d S Δ y d S

(
e e e eV . (10.1) 

The matrix Δ%  is the sample expanded matrix Δ  which is the element-wise division of Δ  
by the probabilities of inclusion in Π  (i.e., a generalization of the HT estimator for 

matrices). We reparametrize ( )ˆ
HTYV  as a sum of the new variable k l

kl kl
k l

y y
ψ

π π
= ∆  

expanded by klπ , similar to an HT estimator with the variable klψ  as  

 ( ) 2
1ˆ kl

HT
klk U l U

Y
N

ψ
π∈ ∈

= ∑ ∑V . (10.2) 

We continue reparametrizing (10.2) using the following variables: 
 
• N N×∈ψ ¡ , where ( ) ( )T=ψ y π Δ y π% % , the matrix representation of klψ . 

• 2
N N×∈S ¡ , a matrix with the sample membership indicators of the 2-tuples ( ),k l , 

where ( )2 =S ΠE , the matrix with the second-order probability of inclusion klπ . 

• 
2 2

2
N N×∈SΔ ¡ , the covariance matrix of 2S , where [ ]2

= klmn kl mnπ π π−SΔ  and 

klmnπ  is the fourth-order inclusion probability of the 4-tuples ( ), , ,k l m n . 
• To avoid tensor notation (i.e., multidimensional matrices), we vectorize ψ  and Π  as 

( )
2

vec N∈ψ ¡ , ( ) 21vec N− ∈Πe ¡  (Magnus and Neudecker, 1999). The expression 

of ( )ˆ
HTYV  with the reparametrized variables is  

 ( ) ( ) ( )T 1
22

1ˆ vec vecHTY
N

−= ψ Πe eV S . (10.3) 

 
The expected value is 
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( )( ) ( ) ( )( )
( ) ( )( )
( ) ( )
( ) ( )2

T 1
22

T 1
22

T 1
2

T
2

1ˆ vec vec

1 vec vec

1 vec vec

1 vec

HT

HTN

Y
N

N

N

Y
N

−

−

−

=

=

=

= =

ψ Π S

ψ Π S

ψ Π Π

ψ 1

e

e

e

e

e

e

E V

V

E

E
. (10.4) 

Therefore, ( )ˆ
HTYV  is an unbiased estimator of ( )HTYV . 

 
To study the limiting distribution and bounds of the estimator ( )ˆ

HTYV  as ,N → ∞  we 

derive the expression of ( )( )ˆ
HTYV V  following the same procedures from the previous 

sections. 

 

( )( ) ( ) ( )( )
( ) ( )( ) ( )

( ) ( )

( )( )

( )

2

2

2

T
24

T
24

T
4

4

2
max 2

3

1ˆ vec vec

1= vec vec vec

1= vec vec

1 vec

HTY
N

N

N

Q
N

NN

λ

= =

=

≤

S

S

S

ψ Π S

ψ Π S ψ Π

ψ Π Δ ψ Π

ψ Π

Σ y ye

V V V

=

=

V

%

% %

% %

%Δ

,  

where ( )2maxλ SΣ  is the largest eigenvalue of the matrix  

 2 2
2 2 2=S SΣ Δ Δ π Πe e ee % % ,  

with the element ( ) ( )
2

2

, 2 2 2
kl k l klmn kl mn

klmn
k l kl

π π π π π π

π π π

− −
=SΣ . 

An upper bound ( )2maxK λ≥ SΣ  is obtained using the vector induced matrix norms in 

2SΣ  as  
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( )

2 2

2 2

2 2 2

,1 1

,
1

1/2T
, ,

max 1- norm

max -norm

tr Frobenius norm

N

kl
l U k

N
kl

k U l

kl klF

K

∈ =

∞ ∈ =


=



= = ∞



  =   

∑

∑

S S

S S

S S S

Σ Σ

Σ Σ

Σ Σ Σ
.  

The main difficulty of identifying an upper bound for K  is that it requires examining the 
elements of 2SΣ . The third- and fourth-order klmπ klmnπ  of inclusion probabilities ( klmπ  

and )klmnπ  are not available or are difficult to compute for some complex designs. 
 
On the other hand, for random sample size designs, we can refine the value of K  since 

2SΣ  is a diagonal matrix, where ( ) ( )2

33 11 1k kd π −  = − = −     
SΣ . K  is the maximum 

sampling weight which is equivalent to the smallest kπ . Assuming that ( )
2
2 1 ,

N
=

y ye
O  

then, after using Slutsky's theorem, 

 ( )( ) ( )
2
2

3 3 3
1 1ˆ 1HT

KY
NN N N

   
≤ = =   

   

y ye
V V O O O . (10.5) 

( )ˆ
HTYV  is bounded in probability and ( ) ( ), ,

ˆlim lim 0HT N HT N
N N

Y Y
→∞ →∞

= =V V . The 

expression in (10.5) implicitly assumes that 
2
2

N
y ye

 is ( )1O . This ratio can be written as 

 
( )

( )

22 4222
1 12 2 1

N N

k k
k k

y y

N N N N
= == = = =

∑ ∑yy y
e

e
O , (10.6) 

which is the fourth population moment of y . 
 
Breidt and Opsomer (2017) do not provide an explicit expression for the upper bound of 

( )ˆ
HTYV  similar to (10.5). However, they list two sufficient conditions, D3 and D4, for 

design consistency of ( )ˆ
HTYV . The condition D3 is { } 2

,
arg min 0

N
kl

k l U
π λ

∈
≥ > , which has the 

parameter 2λ  as a lower bound so the smallest klπ  is not zero. This parameter is not needed 

because the sample designs in the sequence { } 1N N
∞

=S  are assumed to estimable; therefore 

0klπ >  for all ,k l U∈ . The condition D4 matches equation (10.6). 
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Unlike the previous section, where we analyzed the sufficient conditions for consistency 
by examining the relationship between y  and π , we illustrate how the speed of 

convergence varies and the situations where ( )ˆ
HTYV  does not become zero as .N → ∞  

We begin by substituting 2
kx  by 4

ky  in 2
2y ye , then an upper bound of ( ),

ˆ
HT NYV , in 

terms of the population mean NY , is ( ) 2 2 4
,

ˆ
HT N N N NY KX K N Y≤ =V . If we define 

{ } 1N N
∞

=y  as a sequence of real constants, N
N ∈y ¡  where ( )P

NY N= O , then the value 

of p  such as ( ),
ˆ

HT NYV  does not converge, e.g., ( ) ( ),
ˆ 1HT N pY ≥V >O , is 1

2
p ≥ − . If 

3 1
4 2

p− < < − , then ( ),HT NYV  converges at a slower rate than ( )1
p N −O ; if 3

4
p < − , 

( ),HT NYV  converges at a faster rate than ( )1
p N −O . 

 
 

11. Final Thoughts 

We have presented a systematic framework that facilitates the study of the large properties 
of the survey sampling estimators by focusing on the sample design as a multivariate 
random vector with the sample membership indicators with a well-defined pmf. The 
proposed approach not only provides a systematic method for determining the sufficient 
conditions for design consistency but also facilitates the derivation of new estimators, their 
variances, and variance estimators. In this framework, all survey estimators are functions 
(linear or nonlinear) of these elements of the random vector of the membership sample 
indicators, and standard statistical tools for functions of random variables can be used to 
study their properties. Furthermore, the proposed framework enables us to extend the 
sufficient conditions of the large sample properties of the HT estimator and its variance 
estimator not reported in the literature. We have shown that the sufficient conditions for 
HT estimators to be design consistent also depend on the relationship between the outcome 
and the probabilities of inclusion when the later are derived using auxiliary variables 
related to the outcome. This relationship has not been accounted for in the current literature. 
Analyses based on the presented approach of more complex estimators such as the Hájek, 
ratio, GREG (generalized regression), and poststratified estimators, among others, are 
presented in Flores Cervantes (2019). Future research will address the extension to sample 
designs with replacement and with multiple stages. Another research area is the extension 
of the framework to address nonresponse weighting adjustments. 
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