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Abstract 
In surveys, errors such as selection bias, nonresponse, or noncoverage are all potential 
causes of biased estimates. This paper focuses on selection bias, which could be self-
inflicted due to erroneous sample selection or could occur as not missing at random 
(NMAR) nonresponse. As examples, tobacco use surveys may be subject to selection bias 
since young males who are more prone to tobacco use are also less likely to participate; 
and surveys of domestic violence with an unbalanced sample of older females could induce 
biased results since the prevalence is highly correlated with age and gender. The common 
approach of mitigating bias using weighting adjustments justified by models for response 
propensity may increase the variance of weighted estimates. This paper examines 
empirically the bias and variance of estimators incorporating weighting adjustments that 
take into account the correlation between survey outcomes and response propensity using 
gradient boosting, a popular statistical learning method. Simulations are used to study the 
behavior of the estimators in three settings: 1) missing at random; 2) NMAR with partial 
model specified, and 3) NMAR with selection bias and partial model specified. 
 
Key Words: selection bias, not missing at random, statistical learning, gradient boosting 
method 
 

1. Introduction 

It is common practice in survey research to attempt to mitigate bias due to unit nonresponse 
by making weighting adjustments to the base weights that account for the sampled units’ 
unequal selection probabilities. This approach, however, is built upon the assumption that 
an individual’s probability of responding does not depend on the unobserved data. This 
assumption is not always met in practice. For example, in a tobacco use survey, young 
males who are more prone to tobacco use may also be less likely to participate in the study. 
Following the terminology proposed by Rubin (1976) and Little and Rubin (2002), there 
are three assumptions of nonresponse: missing completely at random (MCAR), missing at 
random (MAR), and not missing at random (NMAR). The simplest and strongest 
assumption is MCAR, where it is assumed that nonresponse is unrelated to any variables 
in the data. MCAR implies that respondents can be viewed as simple random sampling of 
the original sample; it is the most restrictive assumption and is rarely satisfied in practice. 
The more common assumption, in which most of the survey statistics are built upon, is the 
MAR. MAR assumes that if covariates are observed for all sampled units, respondents and 
nonrespondents, and if missingness occurs only in the outcome variable, the probability to 
respond depends only on the covariates. The final assumption, NMAR, has been gaining 
attention in recent years due to the decline in response rates. Under this assumption, the 
probability to respond depends on unobserved data after conditioning on observed data. 
Since the data necessary for adjusting for nonresponse is not available, a natural concern 
for estimates under this assumption would be bias. 
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Morral, Gore, and Schell (2014), inspired by Little and Vartivarian (2005), developed a 
novel nonresponse approach for a specific survey featuring statistical learning tools to 
compensate for nonresponse bias under a NMAR setting. Their approach consisted of two 
steps. The first step used data from respondents to create predictions of key outcome 
variables given all of the data available for respondents and nonrespondents. The second 
step took advantage of the predicted key outcome variables in utilizing them in response 
propensity modeling to create final survey weights. Morral, Gore, and Schell (2016) 
reported evidence in favor of their nonresponse approach as reducing bias with an 
acceptable increase in variance. 
 
Fay and Riddles (2017) studied the feasibility of applying this two-step approach to broader 
use through simulation. Although their study ended without a general answer to the 
question of bias reduction with acceptable increases in variance, they reported a somewhat 
promising result of the two-step approach. Lin and Flores Cervantes (2018) compared the 
two-step approach to alternative methods that incorporated survey outcomes in 
nonresponse weighting adjustments to study the effect on variance using data from a survey 
with a complex sample design; however, the results were inconclusive. 
 
Since the Lin and Flores Cervantes (2018) study used survey data, the true population 
parameter is unknown and, therefore, the bias of the estimators could not be evaluated. The 
purpose of this paper is to address this shortcoming with a simulation study. The survey 
outcome and response propensity assumptions in the simulation are entirely synthetic, 
allowing for the measurement of bias and variance of the estimators from different 
approaches. 
 
The rest of this paper is organized as follows. In Section 2, we describe our simulation 
setup. Section 3 gives a more detailed illustration of the two-step or modeling approach 
and describes the estimates calculated in the simulations. Section 4 presents the results. We 
conclude in Section 5 with a discussion of our results. 
 
 

2. Simulation Study Population and Design 

Data from the 2012 National Health Interview Survey (NHIS) were treated as the 
population for the simulation study, and repeated samples were drawn with three response-
generating mechanisms for this population. Table 1 lists the variables used from the 2012 
NHIS to generate a synthetic survey outcome as well as the response mechanisms for 
different nonresponse assumptions. 
 

Table 1: Variables Used from NHIS for Outcome and Response Models 

Variable name Variable description 
EDUC1 Education 
INCGRP3 Income 
OCCUPN2 Work class 
FM_KIDS #kids in HH  
AGE_P Age 
RACERPI2 Race/Ethnicity 
ALCSTAT Alcohol drinking status 
CANEV  Ever told by a doctor you had cancer 
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Table 1: Variables Used from NHIS for Outcome and Response Models (continued) 

CNKIND8 Esophagus cancer 
CNKIND17 Mouth, tongue, lip cancer 
CNKIND14 Lung cancer 
CNKIND27 Throat cancer 
CNKIND13 Liver cancer 
CNKIND10 Kidney cancer 
HRTEV Ever had heart condition/disease 
CHDEV Ever had coronary heart disease 
MIEV Ever had heart attack 
STREV Ever had a stroke 
AASMEV Ever had asthma  
RESPALYR Had respiratory allergies, past 12 months 
AOVRWTYR Had problems being overweight, past 12 months 
COPDEV Ever had COPD 
SEX Sex 
FM_TYPE Family type 
FWKLIMYN Work limitation due to health problem  

(family member) 
FSRUNOUT Worried food would run out before got money to buy 

more 
PLAWKNOW Unable to work now due to health problem 

(individual) 
LA1AR  Any limitation – all conditions 
REGION Region 

 
For this study, only households with number of members less or equal to 12 were retained 
in the population. Households with 5 or more members were repeated to match the number 
of large households in the population. Missing values for variables listed in Table 1 were 
recoded to 0 and no records were dropped. After these changes, the population used for 
simulation consisted of 57,356 adults ages 18 and older. 
 
The survey outcome variable used in the simulation was a synthetic variable created as a 
function of several variables listed in Table 1. This model allowed us to evaluate models 
fitted to predict survey outcome. The survey outcome variable (Y) was generated based on 
the following equation: 
 

𝑌𝑌 =

(2.2− 0.1 ∙ (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)) ∙ (𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒 < $35𝑘𝑘) ∙ (𝑤𝑤𝑖𝑖𝑤𝑤𝑘𝑘 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
−0.04 ∙ (#𝑘𝑘𝑖𝑖𝑒𝑒𝑐𝑐 𝑖𝑖𝑖𝑖 ℎ𝑖𝑖𝑒𝑒𝑐𝑐𝑒𝑒ℎ𝑖𝑖𝑐𝑐𝑒𝑒)

+0.0045 ∙ �
𝑐𝑐𝑎𝑎𝑒𝑒 ≥ 46

10
� + 0.06 ∙ (𝑐𝑐𝑎𝑎𝑒𝑒 ≤ 30)

+0.3 ∙ (𝑏𝑏𝑐𝑐𝑐𝑐𝑒𝑒𝑘𝑘 𝑖𝑖𝑐𝑐𝑐𝑐𝑒𝑒 𝑐𝑐𝑎𝑎𝑒𝑒 ≤ 30) + 0.065 ∙ (𝑖𝑖𝑐𝑐𝑐𝑐𝑒𝑒) − 0.12 ∙ (𝑓𝑓𝑒𝑒𝑖𝑖𝑐𝑐𝑐𝑐𝑒𝑒)
+0.03 ∙ (𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑒𝑒) + 0.045 ∙ (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑓𝑓𝑒𝑒𝑖𝑖𝑐𝑐𝑐𝑐𝑒𝑒)

+0.065 ∙ �0.1 ∙ (𝑐𝑐𝑐𝑐𝑒𝑒𝑖𝑖ℎ𝑖𝑖𝑐𝑐 𝑒𝑒𝑤𝑤𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝑎𝑎 𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑒𝑒𝑐𝑐 − 2.5)�
+0.005 ∙ (ℎ𝑐𝑐𝑐𝑐 𝑒𝑒𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒𝑤𝑤) + 0.03 ∙ (ℎ𝑐𝑐𝑐𝑐 𝑒𝑒𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖𝑐𝑐𝑤𝑤𝑐𝑐 ℎ𝑒𝑒𝑐𝑐𝑤𝑤𝑖𝑖 𝑒𝑒𝑖𝑖𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒) + 0.03 ∙ (𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤 ℎ𝑐𝑐𝑒𝑒 ℎ𝑒𝑒𝑐𝑐𝑤𝑤𝑖𝑖 𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑒𝑒𝑘𝑘)

+0.03 ∙ (ℎ𝑐𝑐𝑐𝑐 𝑐𝑐 ℎ𝑒𝑒𝑐𝑐𝑤𝑤𝑖𝑖 𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑒𝑒𝑖𝑖𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒) + 0.03 ∙ (𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤 ℎ𝑐𝑐𝑒𝑒 𝑐𝑐 𝑐𝑐𝑖𝑖𝑤𝑤𝑖𝑖𝑘𝑘𝑒𝑒) + 0.03 ∙ (ℎ𝑐𝑐𝑐𝑐 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)
+0.08 ∙ (𝑐𝑐𝑒𝑒𝑖𝑖𝑎𝑎 𝑒𝑒𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒𝑤𝑤) + 0.07 ∙ (𝑒𝑒𝑐𝑐𝑖𝑖𝑒𝑒ℎ𝑐𝑐𝑎𝑎𝑒𝑒𝑐𝑐 𝑒𝑒𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒𝑤𝑤) + 0.06 ∙ (𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖ℎ, 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑒𝑒𝑒𝑒, 𝑐𝑐𝑖𝑖𝑒𝑒 𝑒𝑒𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒𝑤𝑤)

+0.06 ∙ (𝑖𝑖ℎ𝑤𝑤𝑖𝑖𝑐𝑐𝑖𝑖 𝑒𝑒𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒𝑤𝑤) + 0.05 ∙ (𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒𝑤𝑤 𝑒𝑒𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒𝑤𝑤) + 0.04 ∙ (𝑘𝑘𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑐𝑐 𝑒𝑒𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒𝑤𝑤)
+0.045 ∙ (ℎ𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑖𝑖ℎ𝑖𝑖𝑐𝑐) + 0.015 ∙ (ℎ𝑐𝑐𝑒𝑒 𝑤𝑤𝑒𝑒𝑐𝑐𝑒𝑒𝑖𝑖𝑤𝑤𝑐𝑐𝑖𝑖𝑖𝑖𝑤𝑤𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑤𝑤𝑎𝑎𝑐𝑐) + 0.01 ∙ (ℎ𝑐𝑐𝑒𝑒 𝑒𝑒𝑤𝑤𝑖𝑖𝑏𝑏𝑐𝑐𝑒𝑒𝑖𝑖𝑐𝑐 𝑏𝑏𝑒𝑒𝑖𝑖𝑖𝑖𝑎𝑎 𝑖𝑖𝑒𝑒𝑒𝑒𝑤𝑤𝑤𝑤𝑒𝑒𝑖𝑖𝑎𝑎ℎ𝑖𝑖)
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In the simulation, repeated one-stage samples of households were drawn from this fixed 
population depending on three scenarios depending on the nonresponse assumption. The 
samples were drawn using a Bernoulli sample design with a probability of selection of 0.7 
for MCAR. For MAR and NMAR, the sample was drawn using Poisson sample design, 
where the selection probability was proportional to the measure of size, which was the 
household size with a differential error by region. 
 
Within each sampled household, all adults were selected. Nonresponse was introduced at 
the person level, with three different response-generating mechanisms based on the three 
nonresponse assumption. For MCAR, the response propensity rmcar is independent from the 
covariates in the population, and it can be treated as an additional stage where respondents 
are a simple random sample of all persons in sampled households. In contrast, the response 
propensities for the rmar model were generated based on the following equation: 
 

𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 =

0.432− 𝟎𝟎.𝟒𝟒𝟒𝟒 ∙ (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < 𝐻𝐻𝐻𝐻) ∙ (𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒 < $35𝑘𝑘)
−𝟎𝟎.𝟏𝟏 ∙ (#𝑘𝑘𝑖𝑖𝑒𝑒𝑐𝑐 𝑖𝑖𝑖𝑖 ℎ𝑖𝑖𝑒𝑒𝑐𝑐𝑒𝑒ℎ𝑖𝑖𝑐𝑐𝑒𝑒) ∙ (𝑓𝑓𝑒𝑒𝑖𝑖𝑐𝑐𝑐𝑐𝑒𝑒)

−0.0005 ∙ (𝑐𝑐𝑎𝑎𝑒𝑒) + 0.3 ∙ (𝑐𝑐𝑎𝑎𝑒𝑒/50)
−0.15 ∙ (𝐵𝐵𝐵𝐵𝐵𝐵 𝑖𝑖𝑐𝑐𝑐𝑐𝑒𝑒 𝑐𝑐𝑎𝑎𝑒𝑒 ≤ 30) − 0.1 ∙ (𝑖𝑖𝑐𝑐𝑐𝑐𝑒𝑒 ≤ 30) + 0.1 ∙ (𝑓𝑓𝑒𝑒𝑖𝑖𝑐𝑐𝑐𝑐𝑒𝑒)

+0.08 ∙ (𝑓𝑓𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐 𝑖𝑖𝑐𝑐𝑒𝑒𝑒𝑒 − 3)
+0.05 ∙ (𝑒𝑒𝑒𝑒𝑒𝑒𝑤𝑤 ℎ𝑐𝑐𝑒𝑒 𝑒𝑒𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒𝑤𝑤)

+1.5 ∙ (𝑐𝑐𝑒𝑒𝑖𝑖𝑎𝑎 𝑒𝑒𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒𝑤𝑤) + 1.45 ∙ (𝑒𝑒𝑐𝑐𝑖𝑖𝑒𝑒ℎ𝑐𝑐𝑎𝑎𝑒𝑒𝑐𝑐 𝑒𝑒𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒𝑤𝑤) + 1.4 ∙ (𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖ℎ, 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑒𝑒𝑒𝑒, 𝑐𝑐𝑖𝑖𝑒𝑒 𝑒𝑒𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒𝑤𝑤)
+1.35 ∙ (𝑖𝑖ℎ𝑤𝑤𝑖𝑖𝑐𝑐𝑖𝑖 𝑒𝑒𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒𝑤𝑤) + 1.3 ∙ (𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒𝑤𝑤 𝑒𝑒𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒𝑤𝑤) + 1.25 ∙ (𝑘𝑘𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑐𝑐 𝑒𝑒𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒𝑤𝑤)
−0.1 ∙ (𝑓𝑓𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐 𝑖𝑖𝑒𝑒𝑖𝑖𝑏𝑏𝑒𝑒𝑤𝑤 ℎ𝑐𝑐𝑐𝑐 𝑤𝑤𝑖𝑖𝑤𝑤𝑘𝑘 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 ℎ𝑒𝑒𝑐𝑐𝑐𝑐𝑖𝑖ℎ 𝑖𝑖𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐)

+0.01 ∙ (𝑤𝑤𝑖𝑖𝑤𝑤𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒 𝑓𝑓𝑖𝑖𝑖𝑖𝑒𝑒 𝑤𝑤𝑖𝑖𝑒𝑒𝑐𝑐𝑒𝑒 𝑤𝑤𝑒𝑒𝑖𝑖 𝑖𝑖𝑒𝑒𝑖𝑖 𝑏𝑏𝑒𝑒𝑓𝑓𝑖𝑖𝑤𝑤𝑒𝑒 𝑎𝑎𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐 𝑖𝑖𝑖𝑖 𝑏𝑏𝑒𝑒𝑐𝑐 𝑖𝑖𝑖𝑖𝑤𝑤𝑒𝑒)
+0.065 ∙ (𝑒𝑒𝑖𝑖𝑐𝑐𝑏𝑏𝑐𝑐𝑒𝑒 𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖𝑤𝑤𝑘𝑘 𝑖𝑖𝑖𝑖𝑤𝑤 𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 ℎ𝑒𝑒𝑐𝑐𝑐𝑐𝑖𝑖ℎ 𝑖𝑖𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐)
−0.02 ∙ (𝑐𝑐𝑖𝑖𝑐𝑐 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐, 𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑒𝑒𝑖𝑖𝑏𝑏𝑒𝑒𝑤𝑤, 𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐)

−0.05 ∙ (𝑖𝑖𝑖𝑖𝑒𝑒𝑤𝑤𝑒𝑒𝑐𝑐𝑖𝑖)− 0.045 ∙ (𝑐𝑐𝑖𝑖𝑒𝑒𝑖𝑖ℎ)

 

 
The NMAR response propensities rnmar were essentially the same as the MAR propensities 
rmar with two differences: 1) a selection bias was added to the coefficient of two important 
predictors, namely (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < 𝐻𝐻𝐻𝐻) ∙ (𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒 > $35𝑘𝑘) (i.e., coefficient was set to 0.84) and 
(#𝑘𝑘𝑖𝑖𝑒𝑒𝑐𝑐 𝑖𝑖𝑖𝑖 ℎ𝑖𝑖𝑒𝑒𝑐𝑐𝑒𝑒ℎ𝑖𝑖𝑐𝑐𝑒𝑒) ∙ (𝑓𝑓𝑒𝑒𝑖𝑖𝑐𝑐𝑐𝑐𝑒𝑒) (i.e., coefficient was set to 0.6). This generated two 
selection bias patterns: low-income people with less education tended to have high 
estimates and were less likely to respond; and female with kids tended to have lower 
estimates and were less likely to response. 2) several variables used to generate rmar were 
removed from the data used to simulate rnmar; that is, these variables were not available for 
fitting the response models creating a scenario of unobserved data. The variables removed 
were education, income, number of kids in household, and family type. 
 
For each response scenario, the sample selection was repeated 10,000 times and empirical 
estimates of bias and mean squared errors were used to evaluate the estimators. Note that 
unlike most simulation studies, the survey outcome (Y) was not built directly into the 
nonresponse mechanisms but was linked through covariates that appeared in both models. 
 
 

3. Modeling Approach Using Statistical Learning Tools 

Statistical learning theory is a framework for machine learning drawing from the fields of 
statistics and functional analysis (Hastie, Tibshirani, and Friedman, 2009). It deals with the 
problem of finding a predictive function based on data. Under this framework, Morral, 
Gore, and Schell (2014) and Fay and Riddles (2017) developed and implemented a 
two-step modeling approach with the goal to balance bias and variance, on a specific study 
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that featured a stratified simple random sample design. In the first step of this approach, 
separate models are fitted for each survey outcome using all data available for the 
respondents. The fitted models are then applied to both respondents and nonrespondents to 
generate predicted values for the survey outcomes of interest. In the second step, a response 
propensity model is fitted using the gradient boosting method using the predicted survey 
outcome(s) from the first step as independent variables. The fitted response propensity 
model is then used to compute a nonresponse adjustment factors to adjust the survey base 
weights. The statistical learning algorithm used by Morral, Gore, and Schell (2014) and 
Fay and Riddles (2017) to fit and predict for survey outcome(s) is the gradient boosting 
machine (Hastie, Tibshirani, and Friedman, 2009). Gradient boosting is a machine learning 
technique for regression and classification problems that produces a prediction model in 
the form of an ensemble of weak prediction models based on classification trees. The 
algorithm creates the trees sequentially, each one using information from the previously 
grown trees, allowing more and different shaped trees to slowly attach remaining residuals 
(James, Witten, Hastie, and Tibshirani, 2013). 
 
In this simulation study, we follow the two-step modeling approach by fitting a model to a 
synthetic outcome Y (or y for the samples) and to predict for 𝑐𝑐� using the gradient boosting 
method. We implement this with the R package xgboost (Chen, et al., 2018). The second 
step of the two-step approach is implemented in two different manners. The first method 
models our artificial response propensities (i.e., rmcar, rmar, rnmar) with a standard weighting 
class method (Lessler and Kalsbeek, 1992). Unlike the approach used by Morral, Gore, and 
Schell (2014) and Fay and Riddles (2017) that only uses 𝑐𝑐�(s) to model response propensity, 
the simulation uses all data available for respondents and nonrespondents in addition to the 
𝑐𝑐�(s).1 This is implemented with the R package rpms (Toth, 2018). For the remainder of 
this paper, we will refer to this procedure as the modeling approach with classification tree 
method, or “xgb + rpms”. The second option predicts the response propensities with the 
gradient boosting method using all data available for respondents and nonrespondents in 
addition to the𝑐𝑐� (s). This is, again, implemented with the R package xgboost. This 
procedure will be referred to as the repeated modeling method, or “xgb + xgb” for the 
remainder of this paper. 
 
In addition to the two modeling approaches described above, the traditional estimator based 
on the weighting class method that adjusts for nonresponse by response propensity alone 
using all data available to respondents and nonrespondents is included in the simulation. 
The weighting class estimator is implemented with the R package rpms and is referred to 
as such. This calculation allows the comparison of the traditional (weighting class) vs. 
innovative (modeling) approaches. Finally, two baseline estimates are computed in the 
simulation: the Horvitz-Thompson (HT) estimate calculated using the full sample and the 
base-weighted estimate. The HT is useful as a benchmark since it is unbiased by 
construction. The second uses only respondents and assumes that respondents are a simple 
random subsample of the original sample, and the estimator is adjusted by the overall 
response propensity, which cancels out when computing the mean. This “naïve 
benchmark” is expected to yield the most biased estimate. The two baseline estimates along 
with estimates from the three adjustment methods (i.e., rpms, xgb + rpms, xgb + xgb) were 

                                                      
1 The reason for including all the variables in the estimation process is that the gradient boosting is 

designed to handle many variables in contrast to a single variable as in Morral, Gore, and Schell 
(2014) and Fay and Riddles (2017). 

 
831



computed in each of the 10,000 simulation runs, for the three different nonresponse 
assumptions, amounting to a total of 50,000 estimates for each nonresponse mechanism. 
 
 

4. Results 

In this section, we compare the estimates from each adjustment method for each 
nonresponse assumptions in terms of bias and mean square error. 
 
Ultimately, any nonresponse adjustment is a balancing act between bias and variance. The 
evaluation tools used in this section are relative bias and relative root mean squared error, 
with relative bias defined as 
 
 𝑅𝑅𝑒𝑒𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 𝐵𝐵𝑖𝑖𝑐𝑐𝑐𝑐:𝑅𝑅𝐵𝐵�𝑌𝑌�𝐸𝐸�% = 100 × 𝐵𝐵−1 ∑ 𝑌𝑌�𝐸𝐸,𝑏𝑏−𝑌𝑌

𝑌𝑌
𝐵𝐵
𝑏𝑏=1 , 

and relative root mean squared error (RRMSE) defined as 
 

 𝑅𝑅𝑒𝑒𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 𝑀𝑀𝑒𝑒𝑐𝑐𝑖𝑖 𝐻𝐻𝑆𝑆𝑒𝑒𝑐𝑐𝑤𝑤𝑒𝑒𝑒𝑒 𝐸𝐸𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤:𝑅𝑅𝑅𝑅𝑀𝑀𝐻𝐻𝐸𝐸 = �𝑀𝑀𝑀𝑀𝐸𝐸(𝑌𝑌�𝐸𝐸)
𝑌𝑌2

 , 

where 𝑀𝑀𝐻𝐻𝐸𝐸�𝑌𝑌�𝐸𝐸� = ∑ (𝑌𝑌�𝐸𝐸,𝑏𝑏−𝑌𝑌)2𝐵𝐵
𝑏𝑏=1

𝐵𝐵
. 

 
Table 2 shows the relative bias and RRMSE for the baseline estimates and for the 
nonresponse adjusted estimates for each of the three nonresponse mechanism assumptions. 
As expected, the empirical relative bias of the HT estimates is very small (less than ±0.4%). 
The RRMSE of the HT estimates represents the variance, and we will use it as the baseline 
of comparison for the nonresponse adjusted estimates. 
 
The empirical relative bias for the base-weighted estimate and the three nonresponse 
adjusted estimates under MCAR are less than ±0.2% as expected since these estimates, like 
the HT estimate, should be unbiased. The RRMSE values are slightly elevated from that of 
the HT estimate (i.e., 9.96 vs. 12.15), suggesting that nonresponse adjustments would 
slightly increase variance. However, the increase is minimal. 
 
For the MAR assumption, there is a modest increase in empirical relative bias ranging from 
3.6 percent to 4.2 percent. The increase in empirical variance from the nonresponse 
adjustment is also marginal, averaging around 3 percent (i.e., the average of the RRMSE of 
the four estimates 13.20%-13.34% subtracted by the RRMSE of the HT estimate 9.94%). 
Overall, the simulation results under the MAR assumption are as expected since these 
estimators are unbiased. 
 
The results for NMAR tell a different story. The empirical relative bias of the estimators is 
around 20 percent. This indicates that the three nonresponse adjustment methods 
marginally reduce the nonresponse bias, but none was successful in reducing the empirical 
bias to a level similar to that of the HT estimator. Furthermore, the differences in empirical 
RMSE of the estimators in the simulation results suggest that the adjustment methods have 
a differential effect on the bias and variance reduction. The largest reduction is for the 
traditional weighting class method, which removes close to 2 percent of bias (i.e., 21.7%-
19.9%), followed by the modeling approach with classification tree removing close to 1 
percent of bias (i.e., 21.7%-20.9%). The repeated modeling method is the least effective, 
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removing a mere 0.3 percent of bias (i.e., 21.7%-21.4%). Similar observations can be 
drawn from the RRMSE with the traditional weighting class method showing the lowest 
value (i.e., 25.75%) and the repeated modeling method showing the highest value (i.e., 
26.62%). 
 

Table 2: Relative Bias and Relative Root Mean Square Error 

 Nonresponse assumption 
MCAR MAR NMAR 

Estimates Relative 
bias 
(%) 

Relative 
RMSE 
(%) 

Relative 
bias 
(%) 

Relative 
RMSE 
(%) 

Relative 
bias 
(%) 

Relative 
RMSE 
(%) 

Horvitz-
Thompson 0.0 9.96 -0.4 9.94 -0.1 9.88 
baseweighted 0.0 12.15 -4.0 13.20 21.7 26.82 
rpms 0.1 12.15 -4.2 13.34 19.9 25.75 
xgb + rpms 0.1 12.15 -4.0 13.24 20.9 26.39 
xgb +xgb -0.2 12.14 -3.6 13.29 21.4 26.62 

 
 

5. Discussion 

We started this research with the goal of extending our 2018 paper with a simulation 
experiment to study the effectiveness of bias reduction using a modeling approach for 
nonresponse adjustment. We also had hopes of confirming the results from the earlier 
works of Morral, Gore, and Schell (2016) and Fay and Riddles (2017), in which the 
modeling approach produced optimistic results in bias reduction. The simulation allowed 
us to detail the mitigation on nonresponse bias in different nonresponse assumptions, but 
the results lead us to different conclusions for the usefulness of a modeling approach under 
a not missing at random assumption. As shown in the previous section, all three 
nonresponse adjustment methods implemented in the simulation marginally reduced 
nonresponse bias, but none of methods could significantly reduce or remove the empirical 
nonresponse bias. Moreover, the method that yielded the most bias reduction and produced 
the lowest RRMSE was the traditional weighting class method, suggesting no real benefit 
in implementing a more sophisticated modeling approach when the response pattern is not 
missing at random. The result of the simulations are disappointing but not surprising since 
the existing literature reports that bias can only be removed when conditioning on 
correlated covariates. In the NMAR scenario, these variables are not available, and, 
therefore, bias cannot be removed. 
 
Despite the disappointing results for the not missing at random case, the research still 
provides some insights for the missing completely at random and missing at random 
assumptions. The simulation results for the missing completely at random assumption is in 
accordance with the literature, showing that estimates under this assumption are unbiased 
regardless of adjustment method. It also demonstrates that although unnecessary, 
complicated nonresponse adjustment methods do not have a strong negative impact on 
variance. Under the missing at random assumption, a conclusion drawn from the results is 
that while an elaborated nonresponse adjustment method (i.e., modeling approach) does 
not induce negative effect on estimates, it presents limited benefits over a traditional 
weighting class approach and bears little practical value.  
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