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Abstract

We study some inference problems under two-fold nested subarea models with random effects,
which generalize the celebrated Fay-Herriot area model. We develop the theory of empirical best
prediction for a subarea parameter under unmatched two-fold subarea models. In addition, we
propose an effective variable selection method under matched two-fold subarea models based on
transformation. Simulation results are provided to illustrate the strengths of the proposed methods.
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1. Introduction

Small area estimation (SAE) aims to provide reliable estimates of some parameters of inter-
est, such as means or totals, of subpopulations (areas). Sample surveys are usually carried
out in some or all areas to collect unit-level data and design-based “direct” estimators of the
parameters are obtained. A common issue in SAE is that the sample sizes of some sampled
areas are small, which yield unreliable direct estimates for those areas. A more pertinent
issue is that direct estimators are not available for areas where no samples are collected
(non-sampled areas).

When an area-level auxiliary variable is available for all areas, it could be used to
improve the accuracy of direct estimators and to provide useful estimates for non-sampled
areas. The Fay-Herriot (FH) area model (Fay and Herriot, 1979) implements this idea. Let
θi denote the parameter of interest of a sampled area i = 1, · · · ,m, yi be a direct estimator
of θi, and xi be a covariate vector. The FH model assumes that

yi = θi + ei, (1)

θi = x
ᵀ
iβ + ui, (2)

where β is a parameter vector, ui
i.i.d.∼ N(0, σ2

u) with unknown σu, ei
i.n.d.∼ N(0,Ψi) with

known sampling variance Ψi, and ui is independent of ei. In practice, Ψi is obtained by
smoothing the direct estimates of the sampling variances, based on the unit level data, and
then treating the smoothed estimates as the true sampling variances. Model (1) is called
the “sampling model” and model (2) is referred to as the “linking model”. The empirical
best linear unbiased prediction (EBLUP) estimator of θi for a sampled area is given by
θ̂i = γ̂iyi +(1− γ̂i)xᵀ

i β̂, where γi = σ̂2
u/(Ψi + σ̂2

u), β̂ is the best linear unbiased estimator
ofβ, and σ̂2

u is the maximum likelihood estimator (MLE) or a method of moments estimator
of σ2

u (Rao and Molina, 2015, Chapter 6). The EBLUP estimator is a weighted sum of the
direct estimator yi and the so-called “synthetic estimator” xᵀ

i β̂. For a non-sampled area l,
the estimator of θl is taken as the synthetic estimator θ̂l = x

ᵀ
l β̂.
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An extension of the FH model is composed of the sampling model (1) and a linking
model of the form

h(θi) = x
ᵀ
iβ + ui,

where h(·) is a specified monotonic function. When h(·) is a nonlinear function, this link-
ing model, along with (1), is referred to as an unmatched one-fold area-level model. You
and Rao (2002) used a hierarchical Bayes (HB) approach for the estimation of small area
parameters θi under the unmatched one-fold area-level model. Sugasawa et al. (2018) stud-
ied empirical best prediction (EBP) estimators of small area means under the unmatched
one-fold model. Unlike the EBLUP estimator under the FH model, in general, the EBP es-
timator of θi under the unmatched model does not have a closed-form expression because
the presence of the nonlinear linking function h(·). The EBP estimator for a sampled area
i is given by

θ̂
(EBP )
i = E(θi|yi; β̂, σ̂u) =

Ez
[
θ∗

i exp{−(2Ψi)−1(yi − θ∗
i )2}

]
Ez
[
exp{−(2Ψi)−1(yi − θ∗

i )2}
] ,

where β̂ and σ̂u are the MLEs of β and σu, respectively, θ∗
i = h−1(σ̂uz + x

ᵀ
i β̂) and z ∼

N(0, 1). When an analytical expression is not available, the expectations in the expression
for θ̂(EBP )

i need to be evaluated using numerical integration, for example, Monte Carlo
(MC) integration or Laplace approximation.

In many applications, some areas, e.g. states, are sampled; in each sampled area, a
sample of subareas, e.g. counties, is further selected. Unit-level data then are collected
from the sampled subareas. The goal is to estimate a subarea parameter θij where i denotes
an area and j denotes a subarea. An example of this nested two-fold setup is given in Mo-
hadjer et al. (2012). In this case, subareas within an area are likely to share some common
characteristics and hence the variables of interest are correlated among those subareas. This
correlation may be used to improve estimation accuracy of non-sampled subareas within
a sampled area over simple synthetic estimators. Naively applying the FH model to the
subarea-level data will not capture the correlation.

The two-fold subarea model generalizes the FH model and is tailored for the above two-
fold setup. Suppose thatm areas, labelled as i = 1, · · · ,m, are sampled fromM areas, and
for ith sampled area, ni subareas, labelled as j = 1, · · · , ni, are further sampled from Ni

subareas. Let yij , i = 1, · · · ,m and j = 1, · · · , ni, be design-unbiased director estimators
of θij , and xij be associated covariate vectors. We assume the following sampling model:

yij = θij + eij , (3)

where eij
i.i.d.∼ N(0,Ψij) with known sampling variances Ψij . We further connect θij to

xij with linking model

h(θij) = x
ᵀ
ijβ + vi + uij , (4)

where h(·) is a specified monotonic function, β is a regression parameter vector, vi
i.i.d.∼

fv(ηv) is a zero-mean area-level random effect having a parametric density fv and param-
eter ηv , and uij

i.i.d.∼ fu(ηu) is a zero-mean subarea-level random effect with parametric
density fu and parameter ηu. Sampling model (3) and liking model (4) constitute the two-
fold subarea model. When h(·) is the identity function, the model is called a matched two-
fold model; when h(·) is a nonlinear function, the two-fold model is said to be unmatched.
For modelling of certain variables of interest, an unmatched two-fold model is more ap-
propriate than a matched one. For example, when estimating a subarea proportion, a logit

 
752



transformation on the mean would be suitable, and for income data a log transformation on
small area mean is apt.

Research on two-fold subarea models has been scarce. In this paper, we present the
theory of EBP estimators under unmatched two-fold models (Section 2) and a simple and
effective method for variable selection under matched two-fold models (Section 3). Rele-
vant literature reviews are provided in the respective sections. An outline of some future
work is given in Section 4.

2. EBP estimators under unmatched two-fold subarea models

Different from a FH model at subarea level where all the direct estimators yij are inde-
pendent, in the two-fold subarea model they are correlated across subareas within a given
area because of the presence of vi in (3). Moreover, when h(·) is a nonlinear link func-
tion, yij are not normally distributed even if vi and uij are normally distributed. Mohadjer
et al. (2012) used a hierarchical Bayes approach to estimate subarea parameters θij under
an unmatched two-fold model with logit link assuming normal random effects for adult
literacy data. Torabi and Rao (2014) developed the theory of EBLUP estimators under a
matched two-fold model. In this section, we present the theory of EBP estimators under
the unmatched two-fold subarea model defined by (3) and (4).

For the given model parameter vector η = (βᵀ
,η

ᵀ
v,η

ᵀ
u)

ᵀ
, the best prediction (BP)

estimator of the subarea parameter θij is θ̃ij(η) = E(θij |y;η), where y = (yᵀ1, · · · ,y
ᵀ
m)ᵀ

and yi = (yi1, · · · , yini). Let η̂ be a sensible estimator, e.g. the MLE, of η. Then the EBP
estimator of θij is given by

θ̂ij = θ̃ij(η̂) = E(θij |y; η̂) (5)

for all areas i = 1, · · · ,M and all subareas j = 1, · · · , Ni. Although conceptually simple,
the EBP estimator θ̂ij does not have analytical solution in general unless h(·) is a linear
function and vi and uij are normally distributed. The computation of E(θij |y; η̂) requires
a computationally intensive method. In the following subsections, we propose an efficient
method for computing θ̂ij based on importance sampling. Section 2.1 presents the proposed
method for computing BP estimators; section 2.2 describes the computation of the MLE of
model parameters and EBP estimators; section 2.3 reports the results of a simulation study.

2.1 Computing BP estimators

2.1.1 BP estimators for sampled areas

We first consider the BP estimator of θij for a sampled subarea j = 1, · · · , ni, where
i = 1, · · · ,m. Note that θij = h−1(xᵀ

ijβ+ vi + uij), which is a function of vi and uij . By
independence of yi across i = 1, · · · ,m, the BP estimator of θij is given by

θ̃ij(η) =
∫
θijf(vi, uij |yi;η)dviduij , (6)

where f denotes generally a probability density function throughout the paper. In general,
f(vi, uij |yi;η) has a complicated expression because the components of yi are correlated,
which can result in inefficient computation of θ̃ij(η).

To avoid evaluating f(vi, uij |yi;η) , we propose to use an alternative expression

θ̃ij(η) =
∫
θijf(vi,ui|yi;η)dvidui, (7)
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where ui = (ui1, · · · , uini)
ᵀ
. Although (7) involves integration of a higher dimension than

(6), f(vi,ui|yi;η) has a relatively simple expression, hence (7) is easier to evaluate. By
(7),

θ̃ij(η) =
∫
θijf(vi,ui,yi;η)dvidui∫
f(vi,ui,yi;η)dvidui

.

Both the numerator and denominator of the above expression are integrals of the following
general form:

G(η) ··=
∫
g(vi,ui)f(vi,ui,yi;η)dvidui (8)

for some specified measurable function g(·, ·). To evaluate G(η), we may take the advan-
tage of the fact that vi andui are independent and use importance sampling with importance
density function f(vi,ui;η). Rewrite G(η) as

G(η) =
∫
g(vi,ui)

f(vi,ui,yi;η)
f(vi,ui;η) f(vi,ui;η)dvidui

=
∫ {

g(vi,ui)f(yi|vi,ui, ;η)
}
f(vi,ui;η)dvidui.

To implement importance sampling, we generate a large number, K, of random vector
values, (v∗

i,k,u
∗
i,k), k = 1, · · · ,K, from f(vi,ui;η), then use Monte Carlo integration to

approximate G(η) by

Ĝ(η) = 1
K

K∑
k=1

g(v∗
i,k,u

∗
i,k)f(yi|v∗

i,k,u
∗
i,k;η).

Since vi and all components of ui are independent, generating random numbers from
the joint distribution f(vi,ui;η) is equivalent to independently generating random num-
bers from the marginal distributions f(vi;η) and f(uij ;η), j = 1, · · · , ni. In addition,
f(yi|v∗

i,k,u
∗
i,k;η) is simply the normal density with mean h−1(Xiβ+ v∗

i,k +u∗
i,k), where

Xi = (xi1 · · · xini)
ᵀ, and covariance matrix diag(Ψi1, · · · ,Ψini). Because of the sim-

plicity of evaluating Ĝ(η), computationally we can afford to use a very large K to attain a
high accuracy for the MC approximation.

2.1.2 BP estimators for non-sampled subareas of sampled areas

We now turn to the BP estimator of θil for a non-sampled subarea l = ni + 1, · · · , Ni of a
sampled area i = 1, · · · ,m. The BP estimator of θil is given by θ̃il(η) =

∫
θilf(vi, uil|yi;η)dviduil.

Similar to the case for sampled subareas, the density function f(vi, uil|yi;η) has a complex
expression due to the dependence among the components of yi. Following the same idea
as used in (7), the BP estimator of θil can also be obtained by introducing an augmented
variable ui in the integration,

θ̃il(η) =
∫
θilf(vi,ui, uil|yi;η)dviduiduil,

=
∫
θilf(vi,ui,yi;η)f(uil;η)dviduiduil∫

f(vi,ui,yi;η)dvidui
, (9)

where the second equality holds because uil is independent of vi, ui, and yi. Observing
that∫
θilf(vi,ui,yi;η)f(uil;η)dviduiduil =

∫ {
θilf(yi|vi,ui;η)

}
f(vi,ui, uil;η)dviduiduil,
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we can use importance sampling to compute the numerator in (9). Generate a large num-
ber of random values v∗

i,k, u∗
i,k and u∗

il,k for k = 1, · · · ,K from f(vi;η), f(ui;η) and
f(uil;η), respectively. Then above integral can be approximated by

1
K

K∑
k=1

h−1(xᵀ
ijβ + v∗

i,k + u∗
il,k)f(yi|v∗

i,k,u
∗
i,k;η)

Although there is no direct estimator for a non-sampled subarea l in a sampled area i,
in the presence of the area-level random effect vi, the direct estimators yi of the sampled
subareas still carry information about θil. Clearly, the BP estimator given in (9) uses this
information to aid the estimation of θil. Presumably, θ̂il(η) will be more efficient than the
BP estimator under the FH model at subarea level which does not borrow strength from yi

using an area-level random effect vi.

2.1.3 BP estimators for non-sampled subareas of non-sampled areas

For subarea l = 1, · · · , Nk of a non-sampled area k = m+ 1, · · · ,M , both random effects
vk and ukl are independent of the data y. The BP estimator of θkl hence is given by

θ̃kl(η) =
∫
θklf(vk;η)f(ukl;η)dvkdukl,

which is straightforward to compute using MC integration. The BP estimator θ̃kl(η) is a
synthetic-type estimator which only uses the available covariate information but not yi.

When h(·) = log(·) and the random effects vk and ukl are normally distributed, θkl

follows a log-normal distribution and the analytical solution of θ̃kl(η) is available:

θ̃kl(η) = exp
{
x
ᵀ
ijβ + 0.5(σ2

v + σ2
u)
}
.

2.2 Parameter estimation and EBP estimators

The EBP estimator θ̂ij for i = 1, · · · ,M and j = 1, · · · , Ni, as given by (5), is obtained
by plugging the MLE, η̂, of η into the expression for the BP estimator. The likelihood
function for the two-fold model is given by L(η) =

∏m
i=1 f(yi;η), where f(yi;η) does

not have a closed-form expression in general. Observing that

f(yi;η) =
∫
f(vi,ui,yi;η)dvidui,

which is in the integral form (8) with g(·, ·) ≡ 1, we can use the important sampling
method discussed in Section 2.1.1 to compute f(yi;η) for a given value of η. That is,
generate random values (v∗

i,k,u
∗
i,k), k = 1, · · · ,K, from f(vi,ui;η), then approximate

f(yi;η) by K−1∑K
k=1 f(yi|v∗

i,k,u
∗
i,k;η).

Numerical maximization of L(η) is computationally intensive since each evaluation
of L(η) requires MC integration. A Newton or quasi-Newton type optimization method
can be used to maximize L(η). However, such methods require numerical evaluations of
the gradient of L(η) which itself needs multiple evaluations of L(η) for each given η. To
avoid evaluating the gradient function, we use the “BOBYQA” method by Powell (2009),
a derivative-free bound-constrained optimization method using an iteratively constructed
quadratic approximation, to maximize L(η) in our simulation study. This method is imple-
mented in the R package nloptr.

 
755



2.3 Simulation study

We now present the results of a simulation study for assessing the performance of the
proposed EBP estimators under unmatched two-fold models. In the simulation, the total
number of areas is set toM = 50. The number of subareas is set to 20 for the first 15 areas,
30 for the next 20 areas, and 15 for the last 15 areas. Without loss of generality, the first
m = 30 areas are taken to be sampled areas, and within each sampled area i, the first ni

subareas are taken to be sampled subareas. The number of sampled subareas, ni, is set to 8
for the first 10 sampled areas, 5 for the next 15 sampled areas, and 10 for the last 5 sampled
areas. The number of simulation replications is set to 5000. The number of random draws
in Monte Carlo integration is set to 30000 for computing EBP estimators and 15000 for
computing the MLE of the model parameter η.

We generate subarea data yij , i = 1, · · · ,m and j = 1, · · · , ni, according to the
unmatched two-fold model defined by (3) and (4), and assess the EBP estimators of subarea
means for three different classes of subareas separately: sampled subareas in sampled areas
(S-S), non-sampled subareas in sampled areas (N-S), and non-sampled subareas in non-
sampled areas (N-N). For each class of subareas, we consider two performance measures,
average absolute bias (AABIAS) and average root mean-squared error (ARMSE), defined
by

AABIAS = 1
n

∑
i

∑
j

∣∣∣ 1
L

L∑
l=1

(
θ̂

(l)
ij − θ

(l)
ij

)∣∣∣,
ARMSE = 1

n

∑
i

∑
j

{ 1
L

L∑
l=1

(
θ̂

(l)
ij − θ

(l)
ij

)2}1/2
,

where L is the number of simulation replications, θ(l)
ij and θ̂(l)

ij are the subarea mean and
its EBP estimator, respectively, for the lth simulation replication. The summation indices i
and j range over all the areas and subareas, respectively, in the class under consideration,
for example, S-S, and n is the total number of subareas in the class.

2.3.1 Unmatched two-fold model with normal random effects versus one-fold model

We first evaluate the performance of EBP estimators under two-fold models with normally
distributed random effects vi and uij . In the simulation, we adopt a linking model with an
intercept and a covariate,

h(θij) = β0 + β1xij + vi + uij , (10)

where vi
i.i.d∼ N(0, σ2

v) and uij
i.i.d∼ N(0, σ2

u). We consider two link functions, h(t) =
logit(t) = log{t/(1 − t)} and h(t) = log t. To generate data, under each setting of the
link function, we fix the model parameters η = (β0, β1, σv, σu), the covariate xij and the
sampling variances Ψij . Then, for each simulation replication, we generate vi, uij and eij

from their respective distributions, and obtain yij using (3) and (10).
For the logit-link case, η is set to (1, 1.2, 2, 1), xij are generated from centered Gamma(4, 3),

where Gamma(α, β) denotes a gamma distribution with shape parameter α and rate pa-
rameter β, and Ψij are generated from Unif(0.2, 0.25), where Unif(a, b) represents a uni-
form distribution on the interval (a, b). For the log-link case, η is set to (−4.5, 1.5, 1.8, 0.8),
xij are generated from centered Gamma(4, 3), and Ψij are generated from Unif(1.5, 2.5).

We compare the proposed EBP estimator under the unmatched two-fold model to the
EBP estimator under an unmatched one-fold model (Sugasawa et al., 2018) at subarea
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level. The unmatched one-fold subarea model assumes the same sampling model (3) as
the two-fold subarea model, but with linking model h(θij) = x

ᵀ
ijβ + uij , where there

is no area-level random effect. The simulation results are reported in Table 1. Under

Table 1: Performance of EBP estimators under unmatched two-fold model and unmatched
one-fold subarea model with normal random effects

Link Model
S-S N-S N-N

AABIAS ARMSE AABIAS ARMSE AABIAS ARMSE

logit
two-fold 0.00176 0.133 0.00245 0.181 0.00625 0.312
one-fold 0.00219 0.169 0.00469 0.306 0.00442 0.313

log
two-fold 0.0128 0.305 0.0205 0.885 0.1485 1.696
one-fold 0.0150 0.308 0.0988 1.380 0.1196 1.462

both settings of link function, the EBP estimators of subarea means under the two-fold
model significantly outperform those under the one-fold model in N-S case, with 36%–
41% reduction in ARMSE and 48%–80% reduction in AABIAS. This is because under the
two-fold model, the direct estimators yi provide information about non-sampled subareas
in a sampled area i through the area-level random effect vi, while under the one-fold model
yi is not used in the estimation of a non-sampled subarea. In the S-S and N-N cases,
the EBP estimators under the two-fold model perform closely to those under the one-fold
model. This is likely because both models use y for estimation in the S-S case, and both
do not directly use y for computing EBP in the N-N case.

2.3.2 Unmatched two-fold model with skewed random effects

When the random effects vi and uij are symmetrically distributed, assuming normally is
usually a good practice. However, it is difficult to check symmetry assumption on the
underlying distributions of the random effects. To increase the flexibility of the two-fold
model, one idea is to assume a more flexible parametric family, which can capture possible
skewness, for the random effects. To achieve this, we propose to use the skew-normal (SN)
distribution family (Azzalini, 1985) with density function

f(t; ξ, τ, γ) = 2
τ
φ

(
t− ξ
τ

)
Φ
(
γ
t− ξ
τ

)
, t ∈ (−∞,∞),

where φ(·) and Φ(·) are the probability density function and cumulative distribution func-
tion of the standard normal distribution, respectively, and ξ ∈ (−∞,∞), τ ∈ (0,∞) and
γ ∈ (−∞,∞) are the location parameter, scale parameter and shape parameter of the
distribution, respectively. The SN family, denoted SN(ξ, τ, γ), encompasses the normal
family as a special case; when γ = 0, the SN distribution reduces to N(ξ, τ2). It is more
flexible than the normal family by allowing for moderate skewness in distribution: when
γ > 0, the SN distribution is right skewed, and when γ < 0, it is left skewed. The skew-
ness of a SN distribution takes value in the range of (−c0, c0) with c0 ≈ 0.995. The mean
of SN(ξ, τ, γ) is ξ +

√
2/πτγ/

√
1 + γ2, so a centered SN distribution can be obtained

by setting ξ = −
√

2/πτγ/
√

1 + γ2, which will be denoted as CSN(τ, γ). Diallo and
Rao (2018) used SN random effects under the unit-level nested-error regression model for
estimating complex parameters of small areas.

We now use simulation to compare the EBP estimators under an unmatched two-fold
model assuming SN random effects vi and uij (skew-normal model fit) to those assuming
normal random effects (normal model fit). For the skew-normal model fit, we use the
linking model (10) with vi

i.i.d∼ CSN(τv, γv) and uij
i.i.d∼ CSN(τu, γu).
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We first compute the EBP estimators under a skew-normal model fit based on the data
generated from unmatched two-fold models with normal random effects as described in
Section 2.3.1. The results are shown in Table 2. Clearly, these estimators have equally good
performance in terms of both AABIAS and ARMSE compared to the EBP estimators under
the two-fold normal model fit reported in Table 1. This shows that using a skew-normal fit
on data from a normal model does not result in notable loss of estimation efficiency.

Table 2: Performance of EBP estimators under a skew-normal model fit based on data from
unmatched two-fold models with normal random effects

link
S-S N-S N-N

AABIAS ARMSE AABIAS ARMSE AABIAS ARMSE
logit 0.00168 0.133 0.00262 0.181 0.00493 0.312
log 0.0136 0.309 0.0251 0.931 0.1225 1.607

We then compare the EBP estimators under the skew-normal model fit and the normal
model fit when data are generated from an unmatched model with skew-normal random
effects. When generating data, we use the linking model (10) with h(·) = log(·), β0 =
−1.5, β1 = 1, vi

i.i.d∼ CSN(3.2,−10) and uij
i.i.d∼ CSN(2,−15). Both random effects are

left skewed. Covariate values xij are generated from centered Gamma(3, 6), and sampling
variances Ψij are generated from Unif(2, 3). The simulation results are given in Table 3.
The skew-normal model fit clearly produces substantially smaller AABIAS and ARMSE
than the normal model fit for the N-S and N-N cases. The particular poor performance of
the normal model fit for the N-N case is likely due to the failure of taking into account the
skewness in the random effects.

Table 3: Skew-normal model fit versus normal model fit for data from unmatched two-fold
models with skewed random effects

Model fit
S-S N-S N-N

AABIAS ARMSE AABIAS ARMSE AABIAS ARMSE
Skew-normal 0.0164 1.141 0.0264 1.873 0.2752 4.700

Normal 0.1194 1.199 0.0924 2.675 3.4272 39.767

Unreported results show that, when h(·) is a logit link, the skew-normal model fit and
the normal model fit have similar performances even if data are generated from a model
with skewed random effects.

3. Variable selection under two-fold subarea model

In small area estimation, it is common that data have large noise and the area or subarea
sample size is small. In this context, selecting a parsimonious model that fits data well is
especially important for attaining high estimation accuracy for area or subarea parameters.
Meza and Lahiri (2005) proposed a variable selection method based on a transformation
of the unit-level nested-error regression model. Han (2013) used a conditional Akaike
information criterion (cAIC) for selecting variables under the FH model. Lahiri and Sun-
tornchost (2015) proposed a variable selection method for the FH model by estimating
information criteria under the linking model (2). Lombardía et al. (2017) introduced gen-
eralized Akaike information criteria (GAIC) for selecting small area models that follow a
linear-mixed-model structure. In principle, since many small area models are variants of
linear mixed models, a model selection method for linear mixed models may be adapted
for use with small area models.
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Here we propose a variable selection method especially tailored for the matched two-
fold subarea model with normal random effects. Our goal is to provide a method that is
simple, effective and easy to implement. The matched two-fold subarea model with normal
random effects can be written in vector form as

yi = θi + ei, (11)

θi = Xiβ + τ i (12)

for i = 1, · · · ,m, whereXi = (xi1, · · · ,xini)
ᵀ
, θi = (θi1, · · · , θini)

ᵀ
, ei = (ei1, · · · , eini)

ᵀ
,

and τ i = vi1ni + ui with 1k denoting a k-vector of 1s. We have τ i ∼ N(0,Σi), where

Σi = σ2
v1ni1

ᵀ
ni

+ σ2
uIni (13)

and Ik denotes a k×k identity matrix. Note that, if θi are observed and Σi are diagonal ma-
trices with equal diagonal entries for all i = 1, · · · ,m, then the linking model (12) would
be a regular regression model and a information criterion (IC) such as Akaike information
criterion (AIC) or Bayesian information criterion (BIC) can be used to perform variable
selection. Our method is based on this simple observation and is outlined in two steps as
follows.

First, we linearly transform (12) into a model with independent and identically dis-
tributed (i.i.d.) random errors. Specifically, for each i = 1, . . . ,m, we find a matrix Ai

such that τ ∗
i
··= Aiτ i has a diagonal covariance matrix with constant diagonal entries for

all i, and then transform (12) into

θ∗
i = X∗

iβ + τ ∗
i , (14)

where θ∗
i = Aiθi and X∗

i = AiXi. Model (14) takes the form of a regular regression
model, but with unknown θ∗

i . Hence, an IC for (14), although conceptually simple, cannot
be obtained. Second, we use the observed yi to obtain an estimator of an IC for (14).
Variable selection is then carried out using the estimated IC.

In what follows, we present two transformation methods in section 3.1, and describe
the proposed method of estimating IC in section 3.2. The results of a simulation study are
given in section 3.3.

3.1 Transformation

3.1.1 Fuller-Battese transformation

The purpose of the linear transformation Ai is to make Var(τ ∗
i ) = AiΣiA

ᵀ
i a diagonal ma-

trix with constant diagonal entries. A straightforward idea is to take Ai = cΣ−1/2
i , where

Σ−1/2
i is the positive definite square-root matrix of Σ−1

i and c is an non-zero constant.
Choosing c = σ2

u and working out Σ−1/2
i , we get

Ai = Ini −
1
ni

(
1−

√
1− ρ

1 + (ni − 1)ρ

)
1ni1

ᵀ
ni
,

where ρ = σ2
v/(σ2

v +σ2
u). This is the same as the transformation used by Fuller and Battese

(1973). Under the transformation, Var(τ∗
i ) = σ2

uIni .
In practice, ρ has to be estimated. One can use the estimating equation method by

Torabi and Rao (2014) or the maximum likelihood (ML) method to estimate ρ.
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3.1.2 A parameter-free transformation

It is possible to avoid inclusion of an unknown parameter in the transformation matrix Ai.
By (13),

Var(τ ∗
i ) = AiΣiA

ᵀ
i = σ2

v(Ai1ni)(Ai1ni)
ᵀ + σ2

uAiA
ᵀ
i .

Hence, to make a diagonal structure for Var(τ ∗
i ), it suffices to find an Ai such that

(a) Ai1ni = 0,

(b) AiA
ᵀ
i is a diagonal matrix with constant diagonal entries.

Note that the rank of such an Ai is at most ni − 1 because of the linear constraint (a).
This transformation was proposed by Lahiri and Li (2009), and Li and Lahiri (2018)

used the transformation for variable selection under a unit-level nested-error regression
model. Particular examples of Ai that satisfy the conditions (a) and (b) were given therein
but no general method for finding Ai was suggested.

Here we give a general method to construct a desired Ai as follows.

Step 1: Fix a set of ni−1 linearly independent vectors of length ni, denoted b1, · · · , bni−1,
which satisfies bᵀk1ni = 0 for k = 1, · · · , ni − 1. For example, one can take bk to
be the vector with kth entry being 1, the last entry being −1 and all the other entries
being 0, or, the vector with kth entry being 1, the (k + 1)th entry being −1 and all
the other entries being 0.

Step 2: Apply the Gram-Schmidt process to b1, · · · , bni−1 to obtain a set of orthogonal
vectors a1, · · · , ani−1 with a1 = b1 and ak = bk −

∑k−1
l=1 Projal

(bk) for k =
2, · · · , ni − 1, where Projy(x) ··= xᵀy

yᵀy y is the projection of vector x on vector y.

Take Ai =
[
a1 · · · ani−1

]ᵀ
.

The Ai constructed this way satisfies the requirements (a) and (b).
In spite of being parameter free, this transformation has two drawbacks: (1) Since the

rank of Ai is ni − 1 instead of ni, each area i loses one observation after transformation,
which is undesirable when the number of sampled areas, m, is large. (2) After transfor-
mation, the intercept term, if included in the original model, will be removed because of
the requirement (a). Hence, if the intercept is to be selected, this transformation cannot be
used. Moreover, a transformation matrix that satisfies (a) and (b) is not unique, although
we do not find that using different parameter-free transformation matrices affects variable
selection results significantly.

3.2 Estimating information criteria of transformed linking model

The transformed linking model (12) is a regular regression model with unobserved re-
sponses θ∗

i . Define the mean sum of squares of errors (MSE) of (12) as

MSEθ∗ = 1
n∗ − p

θ∗ᵀ(In∗ − P ∗)θ∗,

where θ∗ =
(
θ∗

1
ᵀ
. . . θ∗

m
ᵀ)ᵀ andP ∗ = X∗(X∗ᵀX∗)−1

X∗ᵀ withX∗ =
(
X∗

1
ᵀ
. . . X∗

m
ᵀ)ᵀ,

n∗ is the length of θ∗, and p is the dimension of β.
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For a sub-model of (12) with ps covariates, the AIC, BIC and Mallow’s Cp are given,
respectively, as

AIC(s) = n∗ log
{(
n∗ − ps

)
MSE(s)

θ∗ /n∗}+ 2ps,

BIC(s) = n∗ log
{(
n∗ − ps

)
MSE(s)

θ∗ /n∗}+ ps log(n∗),

C(s)
p =

(
n∗ − ps

)
MSE(s)

θ∗ /MSEθ∗ +ps − 2n∗,

where MSE(s)
θ∗ is the MSE of the sub-model. If θ∗ is known, we can choose one of the above

information criteria and compute its value for a set of sub-models under consideration; the
sub-model with the smallest IC value then is selected as the final model.

Given that θ∗ is unknown, we aim to find an estimator, denoted M̂SEθ∗ , of MSEθ∗ .
Observing that each of the above IC is a function of MSEθ∗ , estimators of IC can be ob-
tained by plugging in M̂SEθ∗ . Variable selection then can be carried out using the estimated
IC. Lahiri and Suntornchost (2015) used this idea for variable selection under the one-fold
FH model.

Let y∗
i = Aiyi and y∗ =

(
y∗

1
ᵀ
. . . y∗

m
ᵀ)ᵀ. Define MSEy∗ = 1

n∗−py
∗ᵀ(In∗ − P ∗)y∗.

We propose to estimate MSEθ∗ by

M̂SEθ∗ = MSEy∗ − 1
n∗ − p

tr
{
(In∗ − P ∗)AVeA

ᵀ}
,

where A = diag(A1, . . . , Am) and Ve = diag(Ψ11, . . . ,Ψmnm). The second term on the
right hand side of the above equation can be viewed as a bias-correction term. It can be
shown that, if Ψij is bounded for all i and j and ni is bounded for all i, then as the number
of areas m→∞,

M̂SEθ∗ = MSEθ∗ +op(1).

Estimates of AIC, BIC and Mallow’s Cp are then obtained by plugging M̂SEθ∗ into their
corresponding expressions. By the continuous mapping theorem (van der Vaart, 1998,
Theorem 2.3), the errors of the estimated IC are also of op(1).

3.3 Simulation study

We conducted a small simulation study to assess the performance of the proposed variable
selection method. We consider a matched two-fold subarea model with normal random
effects vi

i.i.d∼ N(0, σ2
v) and uij

i.i.d∼ N(0, σ2
u). The number of sampled areas m is set to

30. The number of sampled subareas is set to 8 for the first 10 sampled areas, 5 for the next
15 sampled areas, and 10 for the last 5 sampled areas. The sampling standard deviation√

Ψij are generated from Unif(0.5, 1.5). We set σu = 2 and consider a few settings for
the standard deviation of the area-level random effect with σv = 2, 3.5, 5, 6.5 and 8. In the
linking model, we consider an intercept and five covariates with

xij,1 ∼ log-normal(0.3, 0.5), xij,2 ∼ gamma(1.5, 2), xij,3 ∼ N(0, 0.8),
xij,4 ∼ gamma(0.6, 10), xij,5 ∼ beta(0.5, 0.5),

where xij,k represents the value of the kth covariate for the ith area and jth subarea,
log-normal(µ, σ) denotes a log-normal distribution with mean µ and standard deviation
σ on log scale, and beta(κ, γ) stands for a beta distribution with shape parameter κ and
scale parameter γ. The regression parameter is set to β = (2, 0, 0, 4, 8, 0)ᵀ; the correspond-
ing true model is the sub-model with an intercept and covariates (xij,3,xij,4). The number
of simulation replications is set to 3000.
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In each simulation replication, data (yi,Xi), i = 1, . . . ,m, are generated from the
matched two-fold subarea model using the above setting. We use the proposed method to
select covariates by comparing all sub-models defined by the subsets of the five covariates.
We consider the proposed method using the Fuller-Battese transformation with the true ρ
value (TWOF1(ρ0)), that with the MLE of ρ (TWOF1(ρ̂mle)), and that with the estimated
ρ based on the estimating equation of Torabi and Rao (2014) (TWOF1(ρ̂ee)). We also
apply the proposed method with the parameter-free transformation (TWOF2). For com-
parison, we consider two naive competitors, the method of Lahiri and Suntornchost (2015)
for FH model (Naive 1) and information criterion approach for regular linear regression
model fitted naively to the data (Naive 2).

The simulation results using BIC for variable selection are reported in Table 4. The pro-

Table 4: Percentage (%) of selecting the true model β = (2, 0, 0, 4, 8, 0)ᵀ using BIC

Method
σv

2 3.5 5 6.5 8
TWOF1(ρ0) 86.63 85.90 86.47 86.20 85.63

TWOF1(ρ̂mle) 86.43 85.50 86.43 86.43 85.60
TWOF1(ρ̂ee) 86.47 85.53 86.43 86.50 85.47

TWOF2 85.77 85.10 85.87 85.67 84.97
Naive 1 76.67 47.37 25.53 13.63 7.73
Naive 2 76.40 45.40 24.40 12.70 7.40

posed methods have significantly higher percentage of selecting the true model in all cases.
When the standard deviation σv of the area-level random effect increases, the proposed
methods exhibit stable rate of selecting the true model at approximately 85% level, while
both naive methods show dramatic decay in performance to nearly 7% when σv = 8. This
suggests that when there is a strong area-level effect, as it commonly happens in practice,
the proposed methods are clear choices over the naive ones. The proposed methods based
on the Fuller-Battese transformation and that based on the parameter-free method perform
equally well. Moreover, using an estimated ρ instead of the true value of ρ in the Fuller-
Battese transformation does not adversely affect the performance of variable selection in
this case.

The simulation results using AIC for variable selection are given in Table 5. Compared

Table 5: Percentage (%) of selecting the true model using AIC

Method
σv

2 3.5 5 6.5 8
TWOF1(ρ0) 54.80 53.63 53.13 52.40 52.87

TWOF1(ρ̂mle) 53.87 53.37 52.63 52.33 52.87
TWOF1(ρ̂ee) 54.07 53.50 52.70 52.47 52.97

TWOF2 54.90 53.57 53.30 52.23 52.23
Naive 1 53.07 47.07 37.30 29.70 21.40
Naive 2 55.53 48.00 37.43 29.80 21.40

to BIC, AIC yields lower percentage of selecting the true model for all the methods. How-
ever, the comparison between the proposed methods and the naive methods are similar to
the case using BIC. The proposed methods perform similarly and give stable results for
different values of σv. The naive methods, on the other hand, have poorer performance,
and their performance drop considerably as σv increases.

 
762



The simulation results using Mallow’s Cp for variable selection are similar to those
using AIC, and hence are omitted for brevity.

4. Concluding remarks

Our immediate future work on EBP estimation under unmatched two-fold subarea models
includes using parametric bootstrap to estimate mean squared prediction error (MSPE) of
the EBP estimator of a subarea parameter and extending the EBP theory to an unmatched
three-fold sub-subarea model.

Additionally, we are working on extending the proposed variable selection method for
matched two-fold model and the cAIC method for FH model by Han (2013) to the un-
matched two-fold model case.

This work was supported by research grants to Song Cai and J. N. K. Rao from the
Natural Sciences and Engineering Research Council of Canada.
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Lombardía, M. J., López-Vizcaíno, E., and Rueda, C. (2017). Mixed generalized akaike
information criterion for small area models. Journal of the Royal Statistical Society,
Series A, 180(4):1229–1252.

Meza, J. L. and Lahiri, P. (2005). A note on theCp statistic under the nested error regression
model. Survey Methodology, 31(1):105–109.

Mohadjer, L., Rao, J.N.K., Liu, B., Krenzke, T., and Van de Kerckhove, W. (2012). Hi-
erarchical Bayes small area estimates of adult literacy using unmatched sampling and
linking models. Journal of the Indian Society of Agricultural Staististics, 66(1):55–63.

 
763



Powell, M.J.D. (2009). The BOBYQA algorithm for bounded constrained optimization
without derivatives. Technical report, University of Cambridge, Cambridge, UK.

Rao, J.N.K. and Molina, I. (2015). Small Area Estimation. Wiley, Hoboken, New Jersey,
second edition.

Sugasawa, S., Kubokawa, T., and Rao, J.N.K. (2018). Small area estiamtion via unmatched
sampling and linking models. TEST, 27(2):407–427.

Torabi, M. and Rao, J.N.K. (2014). One small area estimation under a sub-area level model.
Journal of Multivariate Analysis, 127:36–55.

van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press, Cam-
bridge, New York.

You, Y. and Rao, J.N.K.. (2002). Small area estimation using unmatched sampling and
linking models. The Canadian Journal of Statistics, 30(1):3–15.

 
764




