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Abstract

USDA’s National Agricultural Statistics Service (NASS) publishes hundreds of reports every
year. Such publications include monthly and annual yield forecasts and estimates for major crops.
To produce the forecasts, several surveys are conducted during the growing season. In recent years,
NASS has been applying Bayesian hierarchical models to combine summaries from multiple sur-
veys, administrative data and several covariates to produce a single estimate for a state or a region
that comprises major crop producing states; the model estimates supplement NASS’s yield fore-
casting program. The influences of covariates on forecasted yield generally decrease through the
growing season, but model covariates play an important role in early season forecasting. Currently,
covariates being considered in the models are selected based on expert knowledge of crop devel-
opment and growth dynamics. In this paper, formal variable-selection approaches are considered
for the identification of optimal covariates. The best sets of covariates are then compared using
differences between model-based early-season forecasts and final official annual yield estimates.

Key Words: Variable selection;Yield forecasting; Composite estimation; Survey sampling; Bayesian
hierarchical model

1. Introduction

To fulfill its mission of providing timely, accurate and useful statistics in service of U.S.
agriculture, USDA’s National Agricultural Statistics Service publishes hundreds of reports
every year. Such publications include the Crop Production Report, which is a monthly
report released to the public in accordance with federal law. The report contains within-
season forecasts of final production, harvested acreage totals, and yield per acre for major
crops during the growing season. Another official report, the Crop Production Annual
Summary, is published at the end of the growing season, and contains preliminary final es-
timates. The official statistics in the Crop Production Report and the Crop Production An-
nual Summary are consensus estimates of the Agricultural Statistics Board (ASB), which
is a panel of statisticians and commodity experts within NASS. Before the reports are pub-
lished, members of the ASB meet in a secure location at the NASS headquarters and syn-
thesize market-sensitive data from multiple surveys and auxiliary data to produce official
estimates for relevant quantities at state, regional, and national levels. Thus, NASS has a
vested interest in combining multiple sources of survey and non-survey data that become
available as the events of the growing season are realized.

NASS researchers have developed Bayesian hierarchical models for crop yield fore-
casting in order to provide ASB decision makers with objective crop yield forecasts with
associated measures of uncertainty. These models refine the pioneering works of Wang
et al. (2012) and Nandram et al. (2014) for use in ASB processes in support of yield fore-
casts as described by Adrian (2012) (for corn and soybeans), Cruze (2015, 2016) (winter
wheat), and Cruze and Benecha (2017) and Benecha et al. (2018) (upland cotton). The
yield forecasting models combine current and historical predictions of yield obtained from
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multiple surveys, relavant auxiliary data and covariates to produce consistent one-number
yield forecasts and measures of uncertainty for regions and member states.

Currently, covariates included in the models are selected based on expert knowledge
of crop development and growth dynamics. This paper is focused on applying variable
selection approaches to identify optimal covariate sets for the models. Because the NASS
yield models for the different crops are similar, we focus our discussions on the upland cot-
ton yield forecasting model. In Section 2, the upland cotton speculative region, its member
states and available sources of data for forecasting yield in the context of the NASS publica-
tion timeline are described. Section 3 describes the Bayesian hierarchical model for upland
cotton. In Section 4, model covariates, pool of potential covariates, dimension reduction,
covariate selection, and forecasting performances of several covariate sets are discussed.
Concluding remarks are given in Section 5.

2. The speculative region and data sources

2.1 The speculative region and its member states

NASS publishes estimates and forecasts of upland cotton yield, production, harvested
acreage and related statistics every month from August through January for the nation and
the 17 southern states shown in the map in Figure 1. The four states with the darker col-
oration constitute the speculative region as of the 2019 crop season. These are the top
upland cotton producing states in the nation, accounting for at least 65% of total produc-
tion in the nation over the last five years. Membership of the upland cotton speculative
region has changed over the years; from 2008-2018 there were six states in the region and
starting from this year four states (Arkansas, Georgia, Mississippi and Texas) make up the
region. Currently, the scope of the model-based approach aims at producing benchmarked
and reproducible monthly yield forecasts and associated measures of uncertainty for these
four states and the speculative region as a whole.

Figure 1: USDA NASS Upland Cotton Estimation Program States and Speculative Region

2.2 Sources of data for yield forecasting and NASS publication timelines

The upland cotton yield forecasting and estimation program is supported by a biweekly
census of cotton gins in all cotton producing states, and by three probability-based surveys:

 
464



the Objective Yield Survey (OYS), the Agricultural Yield Survey (AYS) and the December
Quarterly Acreage, Production, and Stocks (APS) survey. Approximate data collection
windows for each of these sources and the associated publication deadlines are shown in
Figure 2. The OYS is based on field measurements collected at sampled field plots. It is
conducted monthly from September through January. The OYS covers only the four states
in the speculative region, and it gives rise to monthly point predictions of regional and
state yield with associated standard errors. The AYS is a monthly farmer interview survey
conducted from August to November. Like the OYS, the AYS provides point predictions
of state and regional level yield and standard error estimates. The third NASS survey, the
December APS survey is a farmer interview survey conducted near the end of the growing
season in December. The APS survey is conducted after much of the crop is harvested and
involves larger sample sizes than the OYS and the AYS. As a result, the APS survey gives
rise to more accurate estimates of yield and with lower sampling variation.

Figure 2: Survey and report production timeline for NASS upland cotton yield forecasts

A fourth source of data for producing upland cotton statistics is derived from a bi-
weekly census of cotton processing gins in cotton producing states. In this exhaustive
census, cotton processors (note, not farmers) are requested to report:

1. the number of bales of cotton already processed in the season as of a specified refer-
ence date, and

2. the number of bales of cotton expected to be processed during the time interval from
the reference date to the end of the crop year.

Based on these records, total production for states and the nation is projected. Although
some states begin reporting ginnings data in earlier months, projected cotton ginnings pro-
duction data are available for all producing states starting from October of each year. As a
result, the ASB starts considering ginnings data in support of October forecasts, and con-
tinues to consider such data every month until the Crop Production Annual Summary report
is released in January. By law, NASS must publish its official upland cotton yield and other
statistics on or before the twelfth day of each month during the growing season.

While preliminary annual crop statistics for upland cotton are produced and reported
in the Crop Production Annual Summary in January of the next calendar year, the census
of cotton gins continues until May, as cotton processing in some states can evolve some
months beyond January. Cotton growers are paid by the cotton gins for their cotton, thus,
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the total ginnings production in May represents a near-complete accounting of all upland
cotton grown in the U.S. Thus, May cotton ginnings is thought of as a gold standard at
state, regional, and national levels. Unlike the OYS, AYS and APS survey estimates, how-
ever, yield predictions (on the ratio scale) and corresponding sampling variances cannot be
directly obtained from these biweekly censuses of cotton gins.

3. Bayesian Hierarchical Model for Yield Forecasting

3.1 Models for the speculative region

The Bayesian hierarchical crop yield forecasting models refine the works of Wang et al.
(2012) and Nandram et al. (2014) for use in the ASB process in support of yield forecasts
for corn and soybeans (Adrian, 2012), winter wheat (Cruze, 2015; Cruze, 2016), and upland
cotton (Cruze and Benecha, 2017; Benecha et al., 2018).

The upland cotton models for the speculative region and its member states specify con-
ditional and marginal distributions for the data and the parameters in three parts. The be-
havior of observed data given an underlying process for yield is described in a data model,
the parameter of interest (i.e., yield, denoted by µt for the speculative region) is related
to covariates of interest through a process model, and prior distributions are specified for
model parameters.

Let yktm denote observed yield estimates from data source k ∈ {O,A,Q,G,M} (for
OYS, AYS, APS, Ginnings yield (October-January), and May final yield, respectively), in
year t ∈ {1, 2, ..., T} and month m ∈ {8, 9, 10, 11, 12, 13}, where m = 13 represents
January. Let s2ktm denote the variance of the yield estimate from source k ∈ {O,A,Q} in
year t and month m. For the speculative region, conditional on the latent regional yield, µt,
data models for forecast month m are described by

yktm|µt
ind∼ N

(
µt + bkm, s2ktm + σ2

km

)
, k = A, m = 8, (1)

yktm|µt
ind∼ N

(
µt + bkm, s2ktm + σ2

km

)
, k = O,A, 8 < m ≤ 13, (2)

yQtm|µt
ind∼ N

(
µt + bQm, s2Qtm + σ2

Qm

)
,m = 13, (3)

yGtm|µt
ind∼ N

(
µt + bGm, σ2

Gtm

)
,m = 10, 11, 12, 13, (4)

yM |µt
ind∼ N

(
µt, σ

2
M

)
. (5)

In this specification, observed survey yields and ginnings yield estimates are modeled with
potential month-specific biases, whereas the May final yield estimates are used as a proxy
for the gold-standard May ginnings. Although the last AYS survey of the season is con-
ducted in November, estimates from the November survey may be included in the analyses
for making the December and January forecasts. Note also that estimates from the Decem-
ber Quarterly APS survey are used in the January final model; data collection for the APS
is onoing when December forecasts are due for publication.

The region-level process model varies around a mean based on a regression of historic
end-of-season yield and observable covariates:

µt
ind∼ N

(
z′
tβ, σ

2
η

)
. (6)

Finally, vague, proper prior distributions complete the specification of model; for bkm and
β

ind∼ N(0, 106), and σ2
km, σ2

η , and σ2
Gtm

ind∼ IG(.001, .001). A prior for σ2
M is specified

as σ2
M

ind∼ Uniform(.0005, .001). The collection of data and process model parameters are
denoted Θd ≡

(
bkm, σ2

km, γ2Gm, σ2
M

)
and Θp ≡

(
β, σ2

η

)
, respectively.
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Under the assumption of conditional independence, the likelihood function has the mul-
tiplicative form

[yO, yA, yQ, yG, yM |µt,Θd] =
∏

k∈{O,A,Q,G,M}

[yk|µt,Θd] (7)

and based on Bayes’ Rule, the posterior distribution of model parameters given observable
yield estimates is:

[µt,Θd,Θp|yO, yA, yQ, yG, yM ] ∝
∏

k∈{O,A,Q,G,M}

[yk|µt,Θd][µ|Θp][Θd][Θp]. (8)

A Gibbs sampling algorithm is employed to obtain estimates of all model parameters.
(See, e.g., Gelman et al. (2003)) For brevity, only the full conditional distribution for re-
gional yield µt is shown:

[µt|yO, yA, yQ, yG, yM ,Θd,Θp] ∼ N

(
∆2

∆1
,
1

∆1

)
(9)

where,

∆1 =
∑

k=O,A

1

σ2
km + s2ktm

+
Im∈{10,...,13}

σ2
Gtm

+
I{m=13}

σ2
Q,13 + s2Qt,13

+
1

σ2
η

(10)

∆2 =
∑

k=O,A

yktm − bkm
σ2
km + s2ktm

+ Im∈{10,...,13}
yGtm − bGtm

σ2
Gm

+

+
I{m=13}(yQt,13 − bQ,13)

σ2
Q,13 + s2Qt,13

+
z′
tβ

σ2
η

. (11)

Equation 10 describes the sum of the precisions of each information source. Dividing
Equation 11 by Equation 10, the mean of the full conditional distribution Equation 9 is
shown to be a weighted average of available sources of information: the bias-corrected
AYS and OYS indications, the bias corrected quarterly APS indication (when it is avail-
able), bias corrected ginnings, and covariates information. Since NASS does not publish
the individual inputs, this relationship serves as a useful interpretation for the one num-
ber yield forecast as a meaningful composite of the available information based on poste-
rior variance; the most precise information sources receive a proportionally larger share of
weight in determining the overall yield forecast.

3.2 Models for states

Data and process models for the states resemble those of the speculative region, with the
model for state j ∈ {AR, GA, MS, TX} given by:

yktmj |µtj
ind∼ N

(
µtj + bkmj , s

2
ktmj + σ2

kmj

)
, k = A, m = 8 (12)

yktmj |µtj
ind∼ N

(
µtj + bkmj , s

2
ktmj + σ2

kmj

)
, k = O,A, 8 < m ≤ 13 (13)

yQtmj |µtj
ind∼ N

(
µtj + bQmj , s

2
Qtmj + σ2

Qmj

)
,m = 13 (14)

yGtmj |µtj
ind∼ N

(
µtj + bGmj , σ

2
Gtmj

)
,m = 10, 11, 12, 13 (15)

yMj |µtj
ind∼ N

(
µtj , σ

2
Mj

)
. (16)

Prior distributions on the data and process model parameters of each state are speci-
fied as before. The full conditional distribution of yield in the jth state, µtj , resembles
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Equation 9. Assuming independence, the collection of state-level crop yields follows a
multivariate normal distribution.

[µt·|y,Θd,Θp]
ind∼ MVN

(
vec

(
∆2tj

∆1tj

)
, diag

(
1

∆1tj

))
, (17)

where µt· is the vector of state-level yield parameters. While yield parameters for the region
µt and states µtj must respect the balance identity µt =

∑
j wtjµtj , estimates of parameters

µ̂tj derived under Equation 17 may not, where wtj is weight for state j proportional to
harvested acreage. Therefore, it is desirable to enforce the balance constraint between the
speculative region and member states. Iterates of the speculative region MCMC simulation
are fed into the MCMC simulation for a ‘constrained’ state-level model. By conditioning
the vector of state-level yields in Equation 17 on the restriction that their weighted sum is
equal to forecasted speculative region yield µt, the yield vector for the first J−1 states will
follow a multivariate normal distribution(

µt1, µt2, . . . , µt(J−1)

)
∼ MVN(µ̄, Σ̄). (18)

At each time t, the yield for the J th state is:

µtJ = µt −
1

wtJ

J−1∑
j=1

wtjµtj , (19)

which resembles the top-down procedure used during the ASB’s own decision making
process. Posterior means obtained from the Monte Carlo samples under Equation 9, Equa-
tion 18, and Equation 19 represent a collection of point estimates for the speculative region
and all its constituent states that honor the physical balance constraint. Standard errors of
these estimates are derived as the square root of posterior variances, giving rise to defensi-
ble measures of uncertainty at both spatial scales.

4. Covariate selection

4.1 Covariates in the existing model

In the existing upland cotton model in Section 3, the means of the conditional distributions
of parameters µt and µtj are specified as linear combinations of four covariates. These
covariates are average July precipitation (pcp 7), average July cooling degree days (cdd 7),
crop condition ratings (condGE 30) as of Week 30 and a drought severity index (drght 7).
Covariate values for the speculative region are estimated as weighted averages of state-level
covariates, where the weights are proportional to harvested acreages.

Covariates in the current model are selected mainly based on expert suggestions on the
growth and development processes of crops. Our interest is in determining whether more
objectively selected sets of covariates would provide more accurate yield forecasts than
covariates in the existing model. In an attempt to select an optimal set of covariates for
the upland cotton yield model, we begin with a large pool of potential covariates and apply
exploratory analyses, dimension reduction and variable selection techniques to identify an
optimal set. Initially, simple exploratory analyses are carried out to eliminate redundant
columns from the covariate matrix. The variables are then grouped into similar clusters
by using a hierarchical clustering algorithm in the SAS procedure VARCLUS and an opti-
mal variable is selected from each cluster. Spike-and-slab priors (Kuo and Mallick, 1998;
George and McCullough, 1993) are specified to the cotton model to identify the most rel-
evant of the covariates selected from clustering analysis. Predictive performances of the

 
468



selected set of covariates, the covariates in the existing model and several other covariate
sets chosen based on expert suggestions and results from exploratory analysis are com-
pared by using relative differences of the August and September yield forecasts from the
May final yield.

4.2 Pool of potential covariates and dimension reduction

Data on several potential covariates are obtained from within NASS, from the National
Oceanic and Atmospheric Administration (NOAA) and from the University of Nebraska
Lincoln (UNL).

Table 1: Pool of potential covariates

Variable September
cdd Cooling degree days
hdd Heating degree days
tmax Maximum temperature
tmin Minimum temperature
tmp Average temperature
pcp Average precipitation
sp01 1-month Standardized Precipitation Index
sp02 2-month Standardized Precipitation Index
sp03 3-month Standardized Precipitation Index
zndx Palmer Z index
pdsi Palmer Drought Severity Index
phdi Palmer Hydrological Drought Index
pmdi Modified Palmer Drought Severity Index
drght Drought (% Extreme + % Exceptional)
exc Crop condition: Excellent
condGE Crop condition: Good+ Excellent
condVP Crop condition: Poor + Very poor
vp Crop condition: Very poor
ndvgl Normalized difference vegetation index

Summaries of crop condition ratings and normalized difference vegetative indices (NDVI)
are obtained from NASS sources and data on several weather related variables are extracted
from the NOAA and UNL websites. The weekly records of variables on crop condition rat-
ings and average monthly summaries of the weather and NDVI related variables shown in
Table 1 are considered as potential covariate values. In the remaining material, the monthly
or weekly value of a variable is denoted by adding an underscore and the month or week
number to the variable name shown in Table 1. For example, cdd 7 represents average
cooling degree days for month 7 for a state or the speculative region.

An important task in selecting predictors from the pool is determining the week or
month in which each covariate has the highest impact on yield. Previous research on the
Bayesian hierarchical model (Cruze, 2015, 2016; Cruze & Benecha, 2017, Benecha et
al., 2018) as well as exploratory analyses show that covariates have more impact on yield
forecasts during the first few months of the crop season and that the impacts of covariates on
yield forecasts decrease through the season. Based on these considerations and exploratory
analyses, the pool of covariates was reduced to include only the May, June and July values
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of the variables shown in Table 1. In addition, some of the variables shown in the table are
dropped completely based on correlation analysis.

To reduce the dimension of the covariate matrix, we apply a variable clustering ap-
proach that uses a binary and divisive algorithm in the SAS software procedure VARCLUS.
In this method, covariates are grouped into similar clusters and a representative covariate is
selected from each cluster. As a results, a total of eight potential covariates are selected for
further consideration: tmp (average temperature), pcp (average precipitation), zndx (Palmer
Z index), pmdi (Modified Palmer drought index), exc (Crop condition rating: Excellent),
condGE (Crop condition rating: Good+ Excellent), drght (Drought) and ndvgl (Normalized
difference vegetation index). Further reduction in the dimension of the resulting covariate
matrix is obtained by including spike-and-slab priors into the Bayesian model as discussed
in the next section.

4.3 Applying spike-and-slab priors

Monthly or weekly values of the eight variables picked in Section 4.2 are considered for
further filtering by including spike-and-slab priors to the model (Kuo and Mallick, 1998;
George and McCulloch, 1993). To implement this approach, parameters related to the
regression coefficients are modified, but all other parameters and the structure of the cotton
model remain the same. In both the state and regional models, we replace the prior for the
regression coefficient associated with covariate j by the priors and hyperpriors (Kou and
Mallick, 1998) shown in Equation 20.

βj ∼ γj × N(0, 1/τ) (20)

γj ∼ Bernoulli(p)

p ∼ Uniform(0, 1)

τ ∼ Gamma(0.001, 0.001)

Two variables are selected based on this approach: condGE 30 (July crop condition rat-
ing: Good+ Excellent) and ndvgl 7 (July average NDVI). Model-based forecasts are shown
in Figures 3 and 4 respectively for the covariate set {condGE 30, ndvgl 7} and the existing
set of covariates with the ASB and the May final yield estimates. Notice that the two covari-
ate sets provide similar estimates during the last few months of the forecasting season and
that the differences in the two sets are mostly in the August and the September forecasts.
To further compare the forecasting performances of the existing and the selected sets of
covariates, sums of absolute relative differences of the August and September model-based
forecasts from the May final yield are calculated as shown in Equation 21.

abs.rel.difm =
T∑

t=S

|YieldForscasttm − MayYieldt|
MayYieldt

(21)

m = Aug., Sep., T = 2018, S= 2001 & S = 2014
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Figure 3: Published and model forecasts based on covariate set {condGE 30,ndvgl 7} for
2018

Figure 4: Published and model forecasts based on covariate set {condGE 30, cdd 7,
pcp 7,drght 7 } for 2018

In Table 2, the sums of absolute relative differences of model based forecasts are shown
for the speculative region for the years from 2001 to 2018, computed using leave-one-out
cross validation (CV), and the the formal model-based yield forecasts for the years from
2014 to 2018. In the latter approach, data from 2001 to the year of interest are used to make
forecasts for that year.
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Table 2: Sums of absolute relative differences of model estimates

Model August September
Leave-one-out CV 2001-2018
Selected covariates 1.374 1.110
Existing covariates 1.489 1.154
Forecasts for years 2014-2018
Selected covariates 0.244 0.215
Existing covariates 0.281 0.219

Table 2 shows that the selected covariates provide uniformly smaller absolute relative
differences than the existing set of covariates, although the differences are very small.

4.4 Consideration of other potential covariates

On average, the selected set of covariates produce improved forecasts relative to the exist-
ing set of covariates. However, it may not necessarily be true that these covariates provide
overall optimal forecasts compared to other possible covariate sets. To determine whether
there are other sets of covariates that can give more accurate forecasts than the covariate
set {condGE 30, ndvgl 7}, a total of 71 covariate combinations are assembled and model-
based forecasting is performed for the years from 2001-2018 for each of the covariate sets.

Table 3: Sums of absolute relative differences from 10 top covariate sets

Sum abs.rel.dif
Covariates August September
{ndvgl 7} 1.368 1.100
{condGE 30, drght 7, ndvgl 7} 1.372 1.098
{condGE 30, ndvgl 7} 1.374 1.110
{condpv 29, ndvgl 7} 1.387 1.112
{zndx 7} 1.395 1.102
{condGE 30, tmp 7, ndvgl 7} 1.396 1.122
{condGE 30} 1.403 1.107
{condGE 30, pcp 7, ndvgl 7} 1.404 1.120
{condGE 30, zndx 7, ndvgl 7} 1.407 1.103
{condpv 29, tmp 7, ndvgl 7} 1.409 1.124

The 71 covariate sets are picked based on expert suggestions and from the results of
exploratory data analysis. Table 3 shows that covariate set {ndvgl 7} provides the smallest
average relative difference for August and covariate set {condGE 30, drght 7, ndvgl 7}
provides the smallest relative difference for September.
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Figure 5: Published and model forecasts based on covariate set {condGE 30, drght 7,
ndvgl 7} for 2018

Figure 6: Published and model forecasts based on covariate set {condGE 30, cdd 7,pcp 7,
drght 7} for 2018

To further compare the top two covariate sets, model-based forecasts are produced
based on the two sets for the months from October to January. Overall, the second set
of covariates (i.e., {condGE 30, drght 7, ndvgl 7}) provides more accurate forecasts. Fig-
ures 5 and 6 show that the covariate set {condGE 30, drght 7 ndvgl 7} and the covariates
in existing model (i.e., {condGE 30, cdd 7, pcp 7, drght 7}) provide very close forecasts
in October, November, December and January for all states and the speculative region. In
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general, the differences between forecasts from the two covariate sets decrease from Au-
gust to January. The same conclusions can be made about any two covariate sets as the
impacts of model covariates on yield decrease though the forecasting season. In particular,
covariates have little effects on yield forecasts in December and January mainly because of
the availability of data from more surveys that also provide more accurate yield estimates.
It can also be seen from Figures 3, 5 and 6 that model-based and ASB yield forecasts in
August, September and October are much higher than the forecasts during the remaining
months or the May final yield for state D. Such phenomena sometimes happens when a
natural disaster hits the crop after data are collected or monthly forecasts are made.

5. Discussion

NASS’s Bayesian hierarchical crop yield forecasting models input data from multiple sur-
veys, administrative data and covariates to produce a single forecast for a state or spec-
ulative region. The modeled state or regional level yield forecasts can be considered as
weighted sums of estimates from the different data sources, including covariates. Model
covariates have more impacts on yield forecasts in the first few forecasting months than
near the end of the season, mainly because of the availability of data from more surveys
that also provide more accurate yield estimates. Covariates in these models are selected
mainly based on consideration of the growth and development process of each of the crops.

In this paper, we discussed a more objective approach of selecting covariates for the
yield forecasting models with a focus on the upland cotton yield model. We began with a
large number of monthly and weekly potential covariates and applied exploratory analyses
and a variable clustering method to reduce the dimension of the covariate matrix. Spike-
and-slab priors were then included in the model to identify optimal predictors among co-
variates in the reduced pool. Performances of the selected covariates and those in the
existing model are compared for the speculative region using absolute differences of the
August and September forecasts relative to the May final yield. As the selected covariates
may not necessarily guarantee optimal yield forecasts, we considered several additional
covariate sets and compared their forecasting performances with the selected covariates as
well as covariates in the existing model. After this step, we selected three covariates for the
upland cotton model that provide small relative differences for August and September and
perform well for the months from October to January. Overall, our analyses showed that
two different covariate sets provide similar forecasts towards the end of the season, and that
much of the differences among covariate sets are observed in the first few months of the
season. Sometimes early season model based forecasts can be much higher than the May
final yield because of natural disasters that impact crop yield and production after forecasts
are made.
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