
Alternative Optimization Techniques for Sample Allocation in
Surveys with National and Sub-National Precision Requirements∗∗

John Chesnut† and Shawn Baker ‡

Abstract
Optimal sample allocation can improve the precision of estimates for surveys with fixed

budgets. Demographic surveys at the Census Bureau often have precision requirements for
estimates at both the national- and sub-national-level. This results in a hierarchical rela-
tionship between the national- and sub-national precision requirements. For example, for
a fixed budget, sample is allocated such that the sub-national requirements are met then
the balance of the remaining sample is allocated such that the national-level requirement
is satisfied. The focus of this paper is to explore optimization techniques that satisfy this
hierarchical sample allocation problem. Using the Current Population Survey, this research
compares four methods for allocating sample units that simultaneously meet the state- and
national-level precision requirements. The four methods considered are non-linear optimiza-
tion, a linear programming algorithm, a maximum sampling interval step reduction, and
a greedy heuristic. The results show that all of the methods are capable of satisfying the
design requirements with the greedy heuristic resulting in the most efficient allocation for
meeting the national-level precision requirement. However, the nonlinear optimization can
provide a less greedy sample allocation across states.
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1. Introduction

Determining a sample allocation for multi-purpose surveys that minimizes sampling
error across multiple characteristics and domains of interest for a fixed budget or
vice versa has been a point of discussion as early as the 1930’s (cf. Neyman, 1934).
Neyman allocation is specific to the univariate case however researchers have at-
tempted to adapt this method to the multi-variate case with less than favorable
results (Huddleston, Claypool, & Hocking, 1970). In addition, relying on Neyman
allocation to provide estimates for multiple domains of interest can produce insuf-
ficient precision for small domains (Särndal, Swensson, & Wretman, 1992).

More recently, the literature converges on two general approaches for addressing
the problem of optimal sample allocation for multi-purpose surveys. One approach
is to define an objective function that is a weighted average of the variances of the
characteristics and domains of interest. For example, Valliant and Gentle (1997) de-
veloped a flexible approach for two-stage sample allocation that uses a constrained,
multi-criteria optimization programming. The objective function is an importance
weighted function of the relvariances and cost. A criticism of this approach is that
the solution may not be optimal due to the arbitrary choice of importance weights.
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Alternatively, a survey may establish precision constraints for each of the char-
acteristics and domains of interest. A convex objective function is used in con-
junction with the precision constraints. For example, Bethel (1985) developed an
algorithm or heuristic for determining the sample allocation for the multi-variate
case that minimizes an objective function while satisfying precision constraints for
the variables of interest. In this same vein, Srikantan (1963) utilizes nonlinear pro-
gramming to determine an optimal allocation for the problem of satisfying precision
level requirements for multiple domains of interest. Srikantan’s method addresses
the multi-domain problem which is a focus of our research, however our allocation
problem also involves precision requirements for multiple estimate types, e.g. totals
and ratio estimates. Additionally, these methods can provide an optimal allocation
satisfying the precision constraints but may result in complex analytical solutions
requiring numerical methods.

2. Background

2.1 Sample Redesign

This research falls under the umbrella of the Sample Redesign Research Program
at Census where the goal of this program is to develop innovative cross-cutting
improvements to the sample designs for the following major demographic surveys.

� Current Population Survey (CPS) - labor force characteristics of the U.S.
population

� Survey of Income and Program Participation (SIPP) - income and government
program participation of individuals and households in the U.S.

� National Crime Victimization Survey (NCVS) - characteristics and conse-
quences of criminal victimization in the U.S.

� Consumer Expenditure Surveys (CES) - two surveys that characterize the
buying habits of American consumers

� American Housing Survey (AHS) - collects data on the Nation’s housing stock,
household characteristics, housing and neighborhood quality, housing costs,
and recent movers

These surveys focus on various characteristics of the population and domains of in-
terest, however they face similar challenges in designing samples that meet the goals
of the survey. A critical design choice common across the surveys is determining
an optimal sample allocation that provides support for desired precision levels. To
address this common goal, this research attempts to answer the question of whether
the household surveys with multiple objectives are meeting their objectives in an
optimal manner. As a first step, we consider the sample allocation problem for the
CPS with multiple domain precision requirements at the national- and state-level.
We want to compare alternative allocation methods that satisfy the CPS design
requirements.

2.2 Current Population Survey - Sample Design Requirements

To address the allocation problem for the CPS, we first examine its design require-
ments as stated in Technical Paper 66 (2006) and attempt to frame the problem

 
363



using methods in the literature. The main function of the CPS design is to produce
national- and state-level estimates of the labor force characteristics - specifically
unemployment. The official precision requirements require that the sample enable
detection of a 0.2 percent month-to-month change in the unemployment rate and
that the state-level coefficients of variation (cv) for the annual average monthly
unemployment level should not exceed 8 percent. So, this is a multi-domain allo-
cation problem, with global and domain-level precision requirements for a global
ratio estimate and domain totals. Because of the mixed use of ratios and totals
in the precision requirement, writing the national-level precision requirement as a
function of the state level precision requirements is not straight forward. Additional
soft constraints require an approximately self-weighted design, reliability for other
labor-force characteristics, and a budget constraint of 60,000 sample units.

3. Methodology and Results

3.1 Defining the Sample Allocation Problem

Framing the CPS allocation problem as an optimization problem presents a number
of complexities due to the survey design and precision requirements. For exam-
ple, the national- and state-level precision requirements are defined using different
estimate types - the monthly rate of unemployment at the national level and the
average monthly unemployment total at the state level. In addition, since the CPS
is a longitudinal survey, we need to account for the correlation structure that exists
due to repeated measures of sample units.

3.1.1 Objective Function

To define an objective function for allocation, we look to previous work by Rottach
and Erkens (2012) where they develop a model that relates the national and state-
level design requirements. Both requirements are converted into cv requirements
for monthly unemployment totals. The first step in formulating the model is to ap-
proximate the cv of the monthly unemployment total Ŷt for a given month t using

the linearization of the the cv of the unemployment rate ˆ̄Yt. Generically speaking,
for a given ratio A/B, we can write the linearization cv2(A/B) ∼= cv2(A)− cv2(B).
Applying this to the unemployment rate and assuming the coefficient of variation

of the civilian labor force (CLF ) is negligible, we can write cv( ˆ̄Yt) = cv(Ŷt).

Then, by assuming the estimates for the monthly state employment totals {Ŷt,s}s∈States
are independent and that the unemployment rates are equal, we can write that the
cv2 of the national unemployment level is equal to the weighted average of the cv2

values of the state unemployment levels.

cv2(
∑
S

Ŷt,s) =
∑
S

p2scv
2(Ŷt,s) where ps = CLFs/CLF .

Furthermore, given direct estimates of the current cv values and leveraging the
inversely proportional relationship cv2 ∝ 1

n , we can equate the new cv to the ratio
adjusted observed cv using the current and new sampling intervals (SI) in the ratio
adjustment, i.e.,

cv2new(Ŷt,s) =
SInew,s

SIcurrent,s
cv2(Ŷt,s)
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Substituting this into our previous function, cv2 of the national unemployment
level equals the weighted average of the SI ratio adjusted state cv2 values.

cv2(
∑
S

Ŷt,s) =
∑
S

(
CLFnew,s

nnew,s

)(
1

SIcurrent,s

)
p2scv

2(Ŷt,s)

Expanding the sampling interval under the new design, the decision variables in
our objective function are the set of new state sample allocations {nnew,s}S .

3.1.2 Official Constraints

Using the previous model, Rottach and Erkins (2012) translate the official design
requirements into precision requirements for national- and state-level monthly un-
employment totals. Deriving the national-level constraint first, the CPS uses a
repeated measures design, so the correlations between estimates of unemployment
for subsequent months need to be determined. To do this, Rottach and Erkins were
able to use a modelling approach to determine the average correlation between un-
employment rates for subsequent months. Using the correlation value of 0.41 and
assuming a 6 percent unemployment rate and assuming a significance level of 10
percent, they compute that the cv required for the national monthly unemployment
total is 1.87 percent.

Next, given the official precision requirement - a state cv for the annual average
monthly unemployment totals can not exceed 8 percent - Rottach and Erkins trans-
form this into maximum cv constraints for the state monthly unemployment totals.
Utilizing direct estimates of the state between and within PSU variances and model-
based estimates of the between and within-month correlation factors over a 12 month
period (ρb = 0.71 and ρw = 0.20), they derive the following equation for computing
the individual state upper bounds for the cv of monthly unemployment.

cv2(Ŷs) =
.082

0.71αs + 0.20(1− αs)
where αs =

Vb,s(Ŷ )

Vs(Ŷ )

3.1.3 Soft Constraints

In addition to its official constraints, the CPS sample design also includes soft con-
straints in attempt to satisfy the needs of achieving reliability for other characteris-
tics of interest, producing an approximately self-weighting sample, and satisfying an
approximate fixed budget of 60,000 sample cases. To meet the reliability constraint,
a minimum sample size is established across the states. In addition, to attempt to
come closer to a self-weighting sample design, a ceiling is established for state sam-
pling intervals to limit the range of values for the state sampling intervals.

The surface plot in Figure 1 illustrates the nonlinear relationship of our soft con-
straints (maximum sampling interval, minimum sample size, and budget) with the
national-level cv. The color gradient represents the change in budget or overall
sample size. Clearly, this plot demonstrates that a region of values for the soft
constraints exist such that the national level cv requirement is satisfied. Therefore,
our choice of soft constraints that meet the desired national precision level is not
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unique, thus allowing the allocation methods we discuss later to relax or tighten
these constraints to enable feasible solutions.

Figure 1: Soft Constraints and National Precision

3.2 Sample Allocation Methods

Having framed the CPS sample allocation problem as an optimization problem with
an objective function and constraints, we are now able to apply various optimization
methods and compare the performance of these methods in meeting our design
constraints. The following list provides a brief description of each method.

� Nonlinear Optimization - constrained optimization using the Augmented La-
grangian algorithm along with the Method of Moving Asymptotes sourced
from the NLopt library (Johnson, 2019)

� Maximum Sampling Interval (Max SI) - iteratively decreases a ‘ceiling’ for
the state sampling intervals to prioritize reducing the range of sample weights
across states

� Linear Programming (LP) algorithm - sampling intervals defined as the de-
cision variables - iterative algorithm, nonlinear budget constraint requiring
computation/checking at each step

� Greedy Heuristic - iteratively adds an additional sample to the stratum with
the largest reduction in variance

3.3 Comparison of Methods

Table 1 shows for each allocation method, the range of state sample intervals, the
national precision or cv result for a fixed budget of 60,000 sample units, and the
minimal sample size necessary to attain a fixed cv equal to 1.9. As a benchmark,
we include the results where only the state-level cv requirements are satisfied, ig-
noring the national-level requirement. With the exception of our benchmark and
the NLOpt-I method, all methods meet the national-level precision requirement for
a fixed budget. The Heuristic method appears to perform the best at meeting the
national-level precision requirement with a slightly higher maximum SI. Note that
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for the NLOpt-I method, we relaxed the Maximum SI constraint. As a result, we
have a wider range in our state sampling intervals - which may indicate we achieved
better reliability for some states at the expense of a higher national cv.

Table 1 Sampling Interval, National Precision, and Budget Results by Sample
Allocation Method

Sampling Int.
Method Min Max cvnat ncv=1.9

Required cvs 473 25,255 3.752 –
NLOpt-I 369 3,394 1.937 60,000
Max SI 405 2,750 1.873 58,700
LP 400 2,752 1.873 58,800
NLOpt-II 405 2,750 1.872 60,000
Heuristic 405 2,945 1.866 58,500

Figure 2 shows the state-level cv values attained under each method. In addition, we
included our baseline of required state cv values. Note that the states were ordered
by the cv values attained via the Max SI method. Based on this plot, all of our
methods tend to perform greedy sample allocations to states with lower variances
to simultaneously meet the state and national-level cv requirements. However, we
see that the NLOpt-I does perform a somewhat less greedy allocation indicating
a more evenly distributed sample across the states. This results in lower state cv
values for the majority of states.
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*States are ordered by their cv values attained via the Max-SI method of allocation

Figure 2: State-Level cv Values by Sample Allocation Method

4. Conclusions

The model developed by Rottach and Erkins (2012) relating the state- and national-
level precision requirements works well for simultaneously optimizing on both official
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requirements for the CPS. Most important, the model allows us to represent the
national-level precision as a function of state-level precision values. In addition,
this model accounts for the correlational structure that is present in the composite
estimators for the national monthly unemployment rate and state annual average
monthly unemployment levels. Furthermore, this model proves to be a useful tool
for assessing the effectiveness of the current sample allocation.

We do highlight some of the model limitations. The model is complex and may
not generalize well to other surveys. For example, model- or empirical-based cor-
relation estimates are required as inputs which may be difficult to derive for other
surveys. However, depending on the sample design and estimators of interest, sur-
veys may be able derive a simpler model for determining an optimal allocation for
multiple domains. Additional limitations include assuming a fixed first stage sam-
ple and relying on direct estimates of variance derived from existing survey data.
In addition, the global and domain estimates used in the model derivation are as-
sumed to be equal which may not be the case, for example varying unemployment
levels across states. Furthermore, surveys may have multiple characteristics of in-
terest that they need to prioritize - this model solution only considers the univariate
case with global and domain precision requirements. Cost may vary across states,
whereas we assumed cost were equal across domains. Finally, the model did not
account for controls on interviewer workloads.

Comparing across allocation methods, all of the methods tend to converge to a
‘greedy’ allocation meeting desired precision levels while satisfying constraints on
budget, self-weighting design, and reliability. In our view, the choice of allocation
method depends on the priorities of the survey. If the national level precision is
paramount, the best choice here would be the Greedy Heuristic allocation method.
This method results in the lowest variance per unit cost at the national level. How-
ever, it does sacrifices some control over the self-weighting properties. If the pre-
cision levels for the state estimates are a priority, the Non-Linear Optimization
method allows more flexibility within the budget to relax the self-weighting con-
straint and perform less greedy allocations. As a result, this method provides lower
state-level variances per unit cost for the majority of states.
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