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Abstract
Calibration is a technique which improves the precision of the estimates of popu-

lation parameters by using the auxiliary information. In the current investigation, the
problem of estimation of population mean in stratified random sampling has been de-
veloped by a new calibration technique. It has been shown through simulation studies,
the proposed resultant estimators are more efficient than the combined ratio estimator
as well as the combined regression estimator.
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1 Introduction

In survey sampling, the main purpose is to estimate the unknown population parameters
such as mean, variance, total, correlation coefficient etc. It is observed that when the aux-
iliary information is available then the calibration methodology works better in estimating
such parameters. Deville and Särndal (1992) were the pioneers of this technique and many
other authors such as Arnab and Singh (2005), Farrell and Singh (2005) and Singh and
Arnab (2011) also contributed their efforts in this technique. Many authors such as Kim
et al. (2007), Koyuncu and Kadilar (2013) and Tracy et al. (2003) also developed calibra-
tion estimators in stratified random sampling. In the current investigation, we developed
calibration estimators of finite population mean by using a new distance function.
Let P = 1, 2, ..., N be a finite population of size N units that is divided into L homo-
geneous strata, such that the hth stratum consists of Nh units, where h = 1, 2, ..., L

and
L∑
h=1

Nh = N . A sample of size nh is drawn from the hth stratum by using sim-

ple random sampling with replacement(SRSWR) such that
L∑
h=1

nh = n. Let yhi and xhi,

i = 1, 2, ..., Nh be the values of the study variable Y and the auxiliary variable X for the
ith unit in the hth stratum, respectively. In order to estimate the finite population mean say
Ȳ , we assume that the complete information on the auxiliary variable X is known. The
classical stratified unbiased estimator of the population mean Ȳ is given by,

ˆ̄Yst =

L∑
h=1

whȳh, (1)
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where wh = Nh
N is the known stratum weight.

2 Proposed calibration estimator of mean in stratified sampling
design

The proposed calibrated estimator of finite population mean is defined as,

ˆ̄Yc1 =

L∑
h=1

w
(1)
h ȳh, (2)

where w(1)
h are the new calibrated weights obtained by minimizing a new distance function,

1

2

L∑
h=1

(
w

(1)
h − wh

)2

whqh
+

L∑
h=1

L∑
h6=h′=1

(
w

(1)
h − wh

)(
w

(1)

h′
− wh′

)
, (3)

where wh′ is the h
′th stratum weight. The new calibrated weights are obtained by minimiz-

ing (3) with respect to the following restriction:

L∑
h=1

w
(1)
h x̄h = X̄ (4)

The Lagrange’s function labeled as,

L11 =
1

2

L∑
h=1

(
w

(1)
h − wh

)2

whqh
+

L∑
h=1

L∑
h6=h′=1

(
w

(1)
h − wh

)(
w

(1)

h′
− wh′

)
−λ11

(
L∑
h=1

w
(1)
h x̄h − X̄

)
,

(5)
where qh are suitably chosen weights. Taking partial derivative of L11 with respect to wh(1)

and equating to zero, results,

w
(1)
h = wh + λ11

(
whqhx̄h

1 − whqh

)
(6)

The value of multiplier λ11 can be obtained by substituting the value of (6) in (4) as:

λ11 =
X̄ −

∑L
h=1w

(1)
h x̄h∑L

h=1

(
whqhx̄

2
h

1−whqh

) (7)

Replacing back (7) in (6), we get the optimum calibrated weights such as,

w
(1)
h =wh +

X̄ −
∑L

h=1w
(1)
h x̄h∑L

h=1

(
whqhx̄

2
h

1−whqh

)
( whqhx̄h

1 − whqh

)
(8)

Substituting the optimum calibrated weights w(1)
h in (2) results the first proposed calibrated

estimator of the form:

ˆ̄Yc1 =

L∑
h=1

whȳh + β̂11

(
X̄ −

L∑
h=1

whx̄h

)
, (9)
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where

β̂11 =

∑L
h=1

(
whqhx̄hȳh
1−whqh

)
∑L

h=1

(
whqhx̄

2
h

1−whqh

) (10)

Similarly, the second proposed calibrated estimator of population mean is defined as,

ˆ̄Yc2 =

L∑
h=1

w
(2)
h ȳh, (11)

where w(2)
h are the new weights obtained by using the same distance function ,

1

2

L∑
h=1

(
w

(2)
h − wh

)2

whqh
+

L∑
h=1

L∑
h6=h′=1

(
w

(2)
h − wh

)(
w

(2)

h′
− wh′

)
(12)

Minimizing (12) by using two constraints:

L∑
h=1

w
(2)
h =

L∑
h=1

wh (13)

L∑
h=1

w
(2)
h x̄h = X̄ (14)

Such constraints can be found in Singh (2003). The associated Lagrange function is written
as,

L21 =
1

2

L∑
h=1

(
w

(2)
h − wh

)2

whqh
+

L∑
h=1

L∑
h6=h′=1

(
w

(2)
h − wh

)(
w

(2)

h′
− wh′

)
− λ21

(
L∑
h=1

w
(2)
h −

L∑
h=1

wh

)

− λ22

(
L∑
h=1

w
(2)
h x̄h − X̄

)
, (15)

where λ21 and λ22 are the Lagrange multipliers.
Differentiating (15) with respect to w(2)

h and equating to zero, we get

w
(2)
h = wh + λ21

(
whqh

1 − whqh

)
+ λ22

(
whqhx̄h

1 − whqh

)
(16)

Substituting the value of equation (16) in equations (13) and (14) respectively, we get

λ21

L∑
h=1

(
whqh

1 − whqh

)
+ λ22

L∑
h=1

(
whqhx̄h

1 − whqh

)
= 0 (17)

λ21

L∑
h=1

(
whqhx̄h

1 − whqh

)
+ λ22

L∑
h=1

(
whqhx̄

2
h

1 − whqh

)
= X̄ −

L∑
h=1

whx̄h (18)
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The system of linear equations (17) and (18) can be written as,
∑L

h=1

(
whqh

1−whqh

) ∑L
h=1

(
whqhx̄h
1−whqh

)

∑L
h=1

(
whqhx̄h
1−whqh

) ∑L
h=1

(
whqhx̄

2
h

1−whqh

)


λ21

λ22

 =


0

X̄ −
∑L

h=1whx̄h

 (19)

Solving the system (19) for the unknown values of λ21 and λ22, we get

λ21 = −

(
X̄ −

∑L
h=1whx̄h

)∑L
h=1

(
whqhx̄h
1−whqh

)
∑L

h=1

(
whqh

1−whqh

)∑L
h=1

(
whqhx̄

2
h

1−whqh

)
−
(∑L

h=1

(
whqhx̄h
1−whqh

))2 (20)

λ22 =

(
X̄ −

∑L
h=1whx̄h

)∑L
h=1

(
whqh

1−whqh

)
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h=1

(
whqh

1−whqh

)∑L
h=1

(
whqhx̄

2
h

1−whqh

)
−
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h=1

(
whqhx̄h
1−whqh

))2 (21)

After substituting the above optimum values of λ21 and λ22 in (16), the optimum calibrated
weights are written as:

w
(2)
h = wh +

(
X̄ −

∑L
h=1whx̄h

)
∑L

h=1

(
whqh

1−whqh

)∑L
h=1

(
whqhx̄

2
h

1−whqh

)
−
(∑L

h=1

(
whqhx̄h
1−whqh

))2

[(
whqhx̄h

1 − whqh

) L∑
h=1

(
whqh

1 − whqh

)
−
(

whqh
1 − whqh

) L∑
h=1

(
whqhx̄h

1 − whqh

)]
(22)

Replacing the optimum value of w(2)
h in (11), the second calibrated estimator of finite pop-

ulation mean Ȳ takes the form as,

ˆ̄Yc2 =

L∑
h=1

whȳh + β̂21

(
X̄ −

L∑
h=1

whx̄h

)
, (23)

where

β̂21 =

∑L
h=1

(
whqhx̄hȳh
1−whqh

)∑L
h=1

(
whqh

1−whqh

)
−
∑L

h=1

(
whqhx̄h
1−whqh

)∑L
h=1

(
whqhȳh
1−whqh

)
∑L

h=1

(
whqh

1−whqh

)∑L
h=1

(
whqhx̄

2
h

1−whqh

)
−
(∑L

h=1

(
whqhx̄h
1−whqh

))2 (24)

3 Simulation study

The properties of the proposed estimators are investigated through simulation study. Both
proposed estimators are compared with the general stratified mean estimator, combined
ratio estimator and combined regression estimator for qh = 1. The percent absolute relative
bias and percent relative efficiency are the criterion used for comparing the estimators are
defined as:

PARB( ˆ̄Yυ) =

∣∣∣∣∣∣
1
K

∑K
r=1

(
ˆ̄Yυ

)
r
− Ȳ

Ȳ

∣∣∣∣∣∣× 100%, υ = st, crat, creg, c1, c2 (25)
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MSE( ˆ̄Yυ) =
1

K

K∑
r=1

((
ˆ̄Yυ

)
r
− Ȳ

)2
, r = 1, 2, ...,K (26)

and

PRE( ˆ̄Yl,
ˆ̄Ym) =

MSE( ˆ̄Yl)

MSE( ˆ̄Ym)
× 100%, l = st, crat, creg, m = c1, c2 (27)

where the symbols st, crat and creg stands for stratified, combined ratio and combined
regression estimators.
Based on artificial population, we generated N = 450 observations in three different strata
of sizes 130, 170 and 150, respectively in each stratum. The population correlation coeffi-
cient ρhxy is taken as 0.45, 0.65 and 0.85 respectively in the hth stratum where h = 1, 2, 3.
Let K = 1000, simple random samples with replacement are drawn by using normal,
gamma and beta distribution respectively, from sample of sizes n = 10 to n = 50 with
an increment of 10, where n = 20 is rounded to 21 by using proportional allocation. We
consider the following transformation,

yhi = µ∗yh + ρhxy
σ∗yh
σ∗xh

(x∗h − µ∗xh) + (yh
∗ − µ∗yh)

√(
1 − ρ2

hxy

)
(28)

and

xhi = µ∗xh + (xh
∗ − µ∗xh), h = 1, 2, 3, i = 1, 2, ..., Nh (29)

Let,
x∗1 ∼ N (55, 10), y∗1 ∼ N (45, 13),
x∗2 ∼ G (2.5, 3), y∗2 ∼ G (14.5, 3.2),
x∗3 ∼ B (1.5, 1.7), y∗3 ∼ B (3, 1.5),
where µ∗xh , µ

∗
yh
, σ∗xh and σ∗yh are the respective means and standard deviations of x∗h and y∗h.

The results are given in the Table 1 and 2.

Table 1: Percent absolute relative biases based on simulated data in case of stratified random
sampling

n PARB( ˆ̄Yst) PARB( ˆ̄Ycrat) PARB( ˆ̄Ycreg) PARB( ˆ̄Yc1) PARB( ˆ̄Yc2)

10 0.62391 0.29642 0.18785 0.25678 0.23530
21 0.22936 0.15070 0.41744 0.08637 0.05503
30 0.15780 0.07021 0.06025 0.02881 0.00868
40 0.03475 0.07383 0.20783 0.04795 0.03545
50 0.33462 0.23395 0.32667 0.22566 0.22107

4 Conclusion

Table 1, gives the percent absolute relative biases of the usual mean estimators and of
the proposed estimators. The proposed estimators ˆ̄Yc1 and ˆ̄Yc2 have minimum relative bi-
ases such as 0.08637% and 0.00868% as compared to the other usual mean estimators for
n = 21 and n = 30, respectively. All the relative biases are negligible.
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Table 2: Percent relative efficiencies based on simulated data in case of stratified random
sampling
n PRE( ˆ̄Yst,

ˆ̄Yc1) PRE( ˆ̄Ycrat,
ˆ̄Yc1) PRE( ˆ̄Ycreg,

ˆ̄Yc1) PRE( ˆ̄Yst,
ˆ̄Yc2) PRE( ˆ̄Ycrat,

ˆ̄Yc2) PRE( ˆ̄Ycreg,
ˆ̄Yc2)

10 141.57 102.05 227.77 142.48 102.71 229.22
21 148.19 102.20 117.31 149.20 102.89 118.11
30 144.53 102.05 107.44 145.46 102.71 108.13
40 145.29 102.32 102.46 146.39 103.09 103.24
50 154.32 102.23 106.09 155.41 102.95 106.83

Table 2, shows the percent relative efficiencies of usual stratified mean estimator, combined
ratio estimator, combined regression estimator and both proposed estimators. Both pro-
posed estimators are more efficient than the usual stratified mean estimator with maximum
gain of 54.32% and 55.41% respectively for n = 50. Similarly, both proposed estimators
gain, approximately more than 2% as compared to combined ratio estimator. Comparing
with combined regression estimator, the maximum at PRE of ˆ̄Yc1 is 227.77% and ˆ̄Yc2 is
229.22%. Finally, both proposed estimators are efficient than the usual estimators of mean.
Hence new calibration methodology works better than the usual stratified mean estimator
and combined regression estimator.
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