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Abstract 

A classical challenge faced by survey statisticians is how to reduce the impact of certain 
collected values on the survey estimates. Traditionally, outlier detection methods will focus 
on the values, or the weighted values, of the variable of interest. However, such approaches 
ignore the possibility that a typical value may still adversely impact the estimates as a result 
of the sample design employed, the nature of the parameter to be estimated or the estimator 
used. Conversely, outlier values may not be influential for a given sample design and 
estimation method. A more all-encompassing approach was sought, one that would reveal 
which units have the greatest influence over a given estimate and how exactly it exerts that 
influence.  
 
To meet the challenge of producing robust estimates, the Survey of Household Spending 
(SHS) has looked into the notion of conditional bias which has just recently been proposed 
as a means of gauging a unit's overall influence on estimates. In this paper we describe this 
innovative approach as well as our results, along with the practical issues one may be facing 
when implementing this method in a complex survey. 
 

Key Words: Conditional bias, Influential detection, Influential correction, Robust 
estimators, Tuning constant  
 
 

1. Context 

 

1.1 The Survey of Household Spending 

The Survey of Household Spending (SHS) is an annual and voluntary survey that collects 
household expenditure data using a personal interview as well as an expenditure diary.  The 
SHS uses a two-stage design and the sample of selected households is spread over 12 
monthly collection cycles so that data collection is continuous from January through 
December. The interview collects regular expenditures (such as rent and electricity) and 
less frequent expenditures (such as furniture and dwelling repairs) for a reference period 
that varies in length depending on the type of expenditure. The two-week expenditure diary 
is used to collect frequent or smaller expenditures, which are difficult for respondents to 
recall during a retrospective interview. After edits and imputation, all the survey 
expenditure variables are annualized i.e. they are multiplied by an appropriate factor based 
on the reference period so that annual expenditure estimates can be produced. The 
annualization process can inflate expenditure values that are already large and amplify the 
impact of influential units on the estimates. It is desirable to identify these units and 
potentially reduce their impact on the estimates. Such corrections will reduce the variance 
and better allow year-to-year comparisons. This paper addresses the detection and 
correction of influential units at the estimation step. In other words, it is assumed that the 
edits and imputation steps are completed and that erroneous values have been corrected. 
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Therefore, the goal is to evaluate a method to detect and correct influential units that will 
reduce the variance of the estimates without introducing a large bias. The method described 
in this paper relies on the concept of conditional bias (Beaumont, Haziza and Ruiz-Gazen, 
2013) and it can be used to define robust estimators which have lower variance in the 
presence of influential units. In this paper, we will apply this new method to the SHS and 
see how it compares to the usual method that is used in production. We will show how the 
conditional bias approach reduces manual intervention and is time-efficient compared to 
the current method. In the first section of this paper, we give some notation and describe 
the current method that is used to detect and correct the influential values for the SHS. In 
Section 2, we give an overview of the conditional bias approach for the treatment of 
influential values, as described in Beaumont et al. (2013). In Section 3, we apply this new 
method to the context of the SHS and give results related to the bias. Finally, the conclusion 
gives an overview of the results and describes future work. 
 
1.2 Notation and Current Method to Detect and Correct Influential Values 

Let 𝑈  denote the population of interest and 𝑠  a sample selected according to a sample 
design 𝐷 . Let 𝐼𝑖 = 1 if 𝑖 𝜖 𝑠, and 𝐼𝑖 = 0 otherwise, and let 𝜋𝑖  denote the probability of 
selection of unit 𝑖. Suppose we want to estimate a population parameter 𝜃, which is a 
function of a variable of interest  𝑦 , using the estimator 𝜃̂ . A unit will be defined as 
influential if its exclusion from the population (and therefore from the sample) has a large 
impact on the sampling error 𝜃̂ − 𝜃. Further, we define the configuration as the following 
quadruplet: 
 

1. The variable of interest 𝑦 and its distribution in the population. 
2. The population parameter 𝜃 that we wish to estimate (and that is a function of the 

𝑦-values). 
3. The sample design and the estimator 𝜃̂. 
4. Whether or not unit 𝑖 is in the sample 𝑠. 

 
Traditionally, outlier detection methods will focus on the 𝑦-values, on the survey weights 
or the weighted values of the variable of interest. However, such approaches do not fully 
consider all the elements of the configuration. This will be illustrated with examples in 
Section 2.1. In fact, we will show that a unit can be influential according to a given 
configuration and yet not influential for another. This will illustrate the importance of using 
a detection and correction method that fully accounts for all characteristics of the 
configuration. As mentioned earlier, it is assumed that the edits and imputation steps are 
completed and that erroneous values have been corrected. The focus is therefore on true 
reported 𝑦-values that have a large impact on the sampling error.  
 
The current production method that is used to detect influential values for the SHS relies 
on the contribution of a unit, which is defined as the product of the final calibrated weight 
and the expenditure (𝑦-variable). More precisely, we first compute the contribution 𝑤𝑖𝑦𝑖 
for all 𝑖 𝜖 𝑠𝑟 , where  𝑠𝑟 is the set of respondent households, then all the contribution values 
are ordered and the ratio between each consecutive contribution is computed. If a given 
unit has a ratio exceeding a certain threshold 𝛿, then the unit will be considered influential. 
Once a unit is influential, all other units with higher contributions will also be considered 
influential, regardless of the value of their ratios. As the weights are considered final at this 
stage, a unit 𝑖 that is identified as being influential will have its 𝑦-value reduced so that it 
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is no longer influential. To do this, the ratio of the closest non-influential unit, let’s say unit 
𝑗, is used to correct 𝑦𝑖. In particular, the new 𝑦-value for unit 𝑖 is defined as follows: 
 

𝑦𝑖 =
𝑟𝑎𝑡𝑖𝑜𝑗𝑤𝑗𝑦𝑗

𝑤𝑖𝑦𝑖
 ∗ 𝑦𝑖 

 
After correction, the new contribution of unit 𝑖 is therefore 
 

𝑤𝑖 𝑦̃𝑖 = 𝑟𝑎𝑡𝑖𝑜𝑗𝑤𝑗𝑦𝑗 
 
The new ratio of unit 𝑖 will be equal to 𝑟𝑎𝑡𝑖𝑜𝑗, which by choice of unit 𝑗 is smaller than the 
threshold 𝛿. This method relies on parameters that must be specified for every year of the 
survey. Typically, we have 𝛿 = 1.85,  and only the top 4% of units (in terms of 
contribution) are eligible to be corrected. Furthermore, if fewer than 25 households 
reported an expenditure for the variable 𝑦, no correction is applied. The idea behind this 
last constraint is that the method needs a sufficient sample size to be reliable. Each year, 
these parameters must be confirmed by ensuring that the method is correcting appropriate 
values. This type of verification is time consuming, and as mentioned above, such a method 
does not fully consider all aspects of the configuration. For these reasons, an alternative 
method was considered, one that relies on the concept of conditional bias and that will be 
described in the next section. 
 

2. The Conditional Bias as a Measure of Influence 

 
2.1 Definition of the Conditional Bias and Examples 

In this section, we give an overview of the conditional bias approach for the treatment of 
influential values, as described in Beaumont et al. (2013). The conditional bias of a sampled 
unit 𝑖 with respect to the estimator 𝜃̂ is defined as: 
 

𝐵1𝑖 = 𝐸𝐷[ 𝜃̂ − 𝜃| 𝐼𝑖 = 1 ] 
 
It can be seen as the average of the sampling error over all samples containing 𝑖. The idea 
is to go through all possible samples containing 𝑖 and taking the average of all the estimates 
produced by each sample. If this average is far away from the true population value, then 
unit 𝑖 will have a large conditional bias. In practice, we only have access to one sample 
which implies that the conditional bias is unknown and must be estimated.  From the 
definition of the conditional bias, one can see that all the features of the configuration come 
into play. 
 
As an example, we can apply the conditional bias formula to the case where the Horvitz-
Thompson estimator 𝜃̂𝐻𝑇 = ∑ 1

𝜋𝑗
𝑗∈𝑠 𝑦𝑗  is used to estimate the population total 𝜃 =

∑ 𝑦𝑗𝑗∈𝑈 . 
 

𝐵1𝑖
𝐻𝑇 = 𝐸𝐷[ 𝜃̂

𝐻𝑇−𝜃| 𝐼𝑖 = 1 ] = 𝐸𝐷 [∑
1

𝜋𝑗
𝑗∈𝑠

𝑦𝑗 −∑𝑦𝑗
𝑗∈𝑈

|𝐼𝑖 = 1] 
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= 𝐸𝐷 [∑
1

𝜋𝑗
𝑦𝑗𝐼𝑗

𝑗∈𝑈

−∑𝑦𝑗|𝐼𝑖 = 1
𝑗∈𝑈

] 

= 𝐸𝐷 [∑(
1

𝜋𝑗
𝐼𝑗 −1)𝑦𝑗

𝑗∈𝑈

|𝐼𝑖 = 1] 

=∑(
1

𝜋𝑗
𝐸𝐷[𝐼𝑗|𝐼𝑖 = 1] − 1)𝑦𝑗

𝑗∈𝑈

 

=∑(
𝜋𝑖𝑗

𝜋𝑖𝜋𝑗
−1)𝑦𝑗

𝑗∈𝑈

 

 
 
where 𝜋𝑖𝑗 is the second-order inclusion probability of units 𝑖 and 𝑗. From this example, we 
see that the sum is taken over all units in the population, and therefore the conditional bias 
is unknown in practice. A conditionally unbiased estimator for 𝐵1𝑖𝐻𝑇 can be given by  
 

𝐵̂1𝑖
𝐻𝑇 =∑

𝜋𝑖𝑗 − 𝜋𝑖𝜋𝑗

𝜋𝑗𝜋𝑖𝑗
𝑗∈𝑠

𝑦𝑗 

 
In other words, we have that 𝐸𝐷[𝐵̂1𝑖𝐻𝑇|𝐼𝑖 = 1] = 𝐵1𝑖𝐻𝑇 . The expressions of 𝐵1𝑖𝐻𝑇  and 
𝐵̂1𝑖
𝐻𝑇 also illustrate the fact that probabilities of inclusion of order one and two are needed; 

this can become a complicated exercise for complex survey designs, such as the SHS. 
However, for simpler designs, the expression of the conditional bias can easily be found. 
For instance, here is the expression of the conditional bias of unit 𝑖 for the estimator 𝜃̂𝐻𝑇 
in the cases of a simple random sample without replacement (SRSWOR) and Poisson 
sampling, respectively: 
 
SRSWOR: 𝐵1𝑖𝐻𝑇 =

𝑁

𝑁−1
(
𝑁

𝑛
− 1)(𝑦𝑖 − 𝑌̅)   

 
Poisson: 𝐵1𝑖𝐻𝑇 = (𝑤𝑖 −1)𝑦𝑖 
 
Notice that the two expressions differ slightly, a fact highlighting the importance of 
considering the sample design when detecting influential values. Under a SRSWOR 
design, a unit will have a large conditional bias if its 𝑦-value is far away from the 
population average. Under a Poisson design, a unit will have a large conditional bias if its 
𝑦-value is large or if its survey weight is large. Favre-Martinoz, Haziza and Beaumont 
(2016) extended the concept of conditional bias to calibration estimators. Calibration 
estimators can be seen as complex functions of estimated totals, and the authors used first-
order Taylor expansions to approximate the conditional bias. This leads to an expression 
of the conditional bias that is very similar to 𝐵1𝑖𝐻𝑇 except that the 𝑦-values are replaced by 
calibration residuals. We will come back to this later, in Section 3.1, when we derive the 
expression of the conditional bias for the SHS. 
 

2.2 Using the Conditional Bias as a Measure of Influence  and to Define a Robust 
Estimator 

Beaumont et al. (2013) demonstrated that under certain conditions, the sampling error of 
the Horvitz-Thompson estimator can be written as a sum of conditional biases: 
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𝜃̂𝐻𝑇−𝜃 ≅ ∑𝐵1𝑖

𝐻𝑇

𝑖∈𝑠

+ ∑ 𝐵0𝑖
𝐻𝑇

𝑖∈𝑈−𝑠

 

 
where 𝐵0𝑖 = 𝐸𝐷[ 𝜃̂− 𝜃| 𝐼𝑖 = 0 ] is simply the conditional bias when unit 𝑖  is excluded 
from the sample. This relationship can be extended to most estimators using linearization. 
Moreover, this relationship illustrates how the conditional bias is a natural measure of 
influence; indeed, the conditional bias of a unit can be seen as its contribution to the 
sampling error. It is therefore intuitive to want to reduce the conditional bias of a unit, in 
order to reduce the sampling error.  
 
Furthermore, the sampling variance of  𝜃̂𝐻𝑇 can be written as a weighted sum of the 
conditional bias of all units in the population. According to Beaumont et al. (2013), we 
have the following result: 
 

𝑉𝐷(𝜃̂
𝐻𝑇) = ∑𝑦𝑖𝐵1𝑖

𝐻𝑇

𝑖∈𝑈

 

 
It is interesting to notice that there is a direct link between the concept of conditional bias 
(i.e. influence) and the variance. A sampled unit with a large conditional bias will 
contribute to inflate the variance of the estimator, and consequently will make 𝜃̂𝐻𝑇 
unstable.  
 
Moreover, the conditional bias can be used to define a robust estimator, as described in 
Beaumont et al. (2013). The authors show that a robust estimator, denoted  𝜃̂𝑅 , can be 
defined as 𝜃̂𝑅(𝑐) =  𝜃̂ + ∆𝑐 , where 𝜃̂ is the non-robust estimator (e.g. Horvitz-Thompson 
or a calibration estimator) and ∆𝑐   is a term that will depend on a tuning constant 𝑐 and that 
will reduce the conditional bias of the most influential units for the estimator 𝜃̂. More 
specifically, ∆𝑐= ∑ {ψ𝑐(𝐵̂1𝑖)− 𝐵̂1𝑖}𝑖∈𝑠  where 𝐵̂1𝑖 is the estimated conditional bias of unit 
𝑖  based on the estimator 𝜃̂ , and ψ𝑐  is the Huber function of parameter 𝑐  defined as  
ψ𝑐(𝑥) = 𝑠𝑖𝑔𝑛(𝑥) ∗ min(|𝑥|, 𝑐). The function ψ𝑐(𝑥) is equal to 𝑥 unless |𝑥| exceeds the 
threshold 𝑐. For instance, here is a graphic for ψ4(𝑥) : 
 

 
Figure 1: Huber function ψ4(𝑥) = 𝑠𝑖𝑔𝑛(𝑥) ∗ min(|𝑥|, 4). 
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The constant 𝑐 will be the tuning parameter on which the robust estimator will depend. The 
value of this parameter will be chosen as to minimise the maximum value of the conditional 
bias of the robust estimator. Formally, we choose 𝑐 so as to minimize 𝑚𝑎𝑥{|𝐵̂1𝑖𝑅 (𝑐)|; 𝑖 ∈ 𝑠} 
which ensures that the robust estimator 𝜃̂ 𝑅(𝑐) is less sensitive to influential values than 
𝜃̂. Beaumont et al. (2013) showed that the optimal value of 𝑐 which satisfies this constraint 
is such that ∆𝐶𝑜𝑝𝑡= −

1

2
(𝐵̂𝑚𝑖𝑛 + 𝐵̂𝑚𝑎𝑥), where 𝐵̂𝑚𝑖𝑛  and 𝐵̂𝑚𝑎𝑥  are the minimum and 

maximum values of the conditional bias of 𝜃̂, respectively, over all units in the sample. 
 
Beaumont et al. (2013) showed that the robust estimator can be written as the weighted 
sum of the modified 𝑦-values. More precisely, we have that 𝜃̂𝑅(𝑐) = ∑ 𝑤𝑖 𝑦̃𝑖𝑖∈𝑠   where  
𝑦𝑖 = 𝑦𝑖− 𝜙𝑖

𝐵̂1𝑖

𝑤𝑖
  and  𝜙𝑖 = 1 −

ψ𝑐(𝐵̂1𝑖)

𝐵̂1𝑖
. Since 0 ≤ 𝜙𝑖 ≤ 1 , we have that when the 

conditional bias of unit 𝑖 is small (for a given value of 𝑐), then ψ𝑐(𝐵̂1𝑖) = 𝐵̂1𝑖 and so 𝜙𝑖 =
0 , which implies that 𝑦𝑖 = 𝑦𝑖.  
 
Favre-Martinoz, Haziza and Beaumont (2015) showed through simulations that the 
efficiency of the robust estimator 𝜃̂𝑅  as defined above is equal or superior to that of 
winzorisation estimators of orders 1, 2 and 3. It was therefore considered an interesting 
option for the SHS. In order to apply this theory to the SHS context, the conditional bias 
definition had to be applied to the complex two-stage design and the calibration estimator 
of the SHS. This will be described in the following section. 
 
 

3. Applying the Conditional Bias to the Survey of Household Spending 

 
3.1 Conditional Bias for a Two-stage Design followed by Unit Nonresponse 
The goal of this paper is to show how the conditional bias approach was used to detect and 
correct influential values in the context of the SHS. In this section, we expand the 
conditional bias formula in the case of a two-stage design followed by unit nonresponse, 
which is the design of the SHS. The nonresponse must be considered as it is an additional 
phase of sampling. To start, we use the Horvitz-Thompson estimator of a total as an 
example, and later we will extend this to a calibration estimator. 
 
First, if we assume 100% response rates, then we have that 𝜃̂𝐻𝑇 =

∑ ∑
1

𝜋𝑙𝜋𝑗|𝑙
𝑗∈𝑠𝑙𝑙∈𝑠 𝑦𝑙𝑗, where the first sum goes through all the selected primary sampling 

units (PSUs) and the second sum goes over all the second stage units (SSUs). In the case 
of the SHS, the PSUs are geographical areas, and SSUs are dwellings within the selected 
PSUs. For SSU 𝑖 belonging to PSU 𝑔, we have that  
 

𝐵1𝑖|𝑔 
𝐻𝑇 =∑(

𝜋𝑔𝑙

𝜋𝑔𝜋𝑙
− 1)

𝑙 ∈𝑈

𝑌𝑙   +   
1

𝜋𝑔
∑ (

𝜋𝑖𝑗|𝑔

𝜋𝑖|𝑔𝜋𝑗|𝑔
−1)

𝑗∈𝑈𝑔

𝑦𝑔𝑗 

 
where 𝜋𝑙  is the inclusion probability of PSU 𝑙  , 𝜋𝑔𝑙  is the second order inclusion 
probability of PSUs 𝑔 and 𝑙, 𝑌𝑙 is the total in PSU 𝑙 (i.e. 𝑌𝑙 = ∑ 𝑦𝑙𝑗),𝑗∈𝑈𝑙

 and 𝑦𝑙𝑗 is the 𝑦-
value of SSU 𝑗 in PSU 𝑙. The term 𝜋𝑗|𝑔 is the first order inclusion probability of SSU 𝑗 
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conditional on PSU 𝑔  being in the sample and 𝜋𝑖𝑗|𝑔  is the second order inclusion 
probability of SSUs 𝑖 and 𝑗 given that PSU 𝑔 is selected in the first stage of the sample. 
 
If we further assume that we are in the presence of unit nonresponse, we can use the 
following unbiased estimator of the total 𝜃̂𝑁𝑅 = ∑ ∑ 1

𝜋𝑙𝜋𝑗|𝑙𝑝𝑗|𝑙
 𝑦𝑙𝑗𝑗∈𝑠𝑙𝑟𝑙∈𝑠  where 𝑝𝑗|𝑙  is the 

probability of response of SSU 𝑗 in PSU 𝑙 and 𝑠𝑙𝑟 is the set of responding SSUs from PSU 
𝑙. Then the conditional bias of responding SSU 𝑖 belonging to PSU 𝑔  is given by: 
 

𝐵1𝑖|𝑔 
𝑁𝑅 =∑(

𝜋𝑔𝑙

𝜋𝑔𝜋𝑙
−1)

𝑙∈𝑈

𝑌𝑙   +  
1

𝜋𝑔
∑ (

𝜋𝑖𝑗|𝑔

𝜋𝑖|𝑔𝜋𝑗|𝑔
− 1)

𝑗∈𝑈𝑔

𝑦𝑔𝑗  +  
1

𝜋𝑔

1

𝜋𝑖|𝑔
(
1

𝑝𝑖|𝑔
− 1)𝑦𝑔𝑖   

 
We notice that the expression of 𝐵1𝑖|𝑔 𝑁𝑅   can be obtained from 𝐵1𝑖|𝑔 𝐻𝑇 by adding to it a third 
term which takes into account the nonresponse as an additional sampling phase. If instead 
of the Horvitz-Thompson estimator, we had used a calibration estimator, the expression of 
the conditional bias would change, just as it was mentioned in Section 2.1. In particular, if 
we calibrate the survey weights adjusted for nonresponse, we obtain the calibration 
estimator 𝜃̂𝐶𝑎𝑙 = 𝜃̂𝑁𝑅 + (𝑋 − 𝑋̂𝑁𝑅)

𝑇
𝐵̂, where 𝑋 is the matrix of calibration variables. 

Using this calibration estimator, the conditional bias will now depend on the calibration 
residuals instead of the 𝑦 -values. 
 

𝐵1𝑖|𝑔 
𝐶𝑎𝑙 =∑(

𝜋𝑔𝑙

𝜋𝑔𝜋𝑙
−1)

𝑙∈𝑈

𝐸𝑙   +   
1

𝜋𝑔
∑ (

𝜋𝑖𝑗|𝑔

𝜋𝑖|𝑔𝜋𝑗|𝑔
− 1)

𝑗∈𝑈𝑔

𝑒𝑔𝑗  +   
1

𝜋𝑔

1

𝜋𝑖|𝑔
(
1

𝑝𝑖|𝑔
− 1)𝑒𝑔𝑖   

 
where  𝑒𝑔𝑖 = 𝑦𝑔𝑖 −𝑥𝑔𝑖𝑇 𝐵  , 𝐸𝑙 = ∑ 𝑒𝑙𝑗𝑗∈𝑈𝑙

 , and 𝐵 is the population parameter estimated by 
𝐵̂. An unbiased estimator for the conditional bias is given by: 
 

𝐵̂1𝑖|𝑔
𝐶𝑎𝑙 = ∑

𝜋𝑔𝑙 −𝜋𝑔𝜋𝑙

𝜋𝑔𝑙𝜋𝑙
∑

1

𝜋𝑗|𝑙𝑝𝑗|𝑙
𝑗∈𝑠𝑙𝑟𝑙∈𝑠

𝑒̂𝑙𝑗  +  ∑
1

𝑝𝑗|𝑔
𝑗∈𝑠𝑔𝑟

𝜋𝑖𝑗|𝑔 −𝜋𝑖|𝑔𝜋𝑗|𝑔

𝜋𝑖𝑗|𝑔𝜋𝑗|𝑔
 𝑒̂𝑔𝑗 

+  (
1

𝑝𝑖|𝑔
−1) 𝑒̂𝑔𝑖 

 
where  𝑒̂𝑔𝑖 = 𝑦𝑔𝑖 −𝑥𝑔𝑖𝑇 𝐵̂. 
 
3.2 Necessary Assumptions to Evaluate the Conditional Bias for SHS 

In the previous section, we developed the expression of the estimator of the conditional 
bias in the case of a two-stage design, followed by nonresponse, and for which a calibration 
estimator is used to estimate the total. As can be seen from this expression, inclusion 
probabilities of order one and two are required for both stages, as well as the probabilities 
of responding to the survey and the calibration residuals. In order to obtain these quantities 
in the context of the SHS, some assumptions were necessary.  
 
For the first stage, geographical areas (PSUs) are selected according to the Rao-Hartley-
Cochran proportional to size sample design (Rao, Hartley and Cochran, 1962). This design 
consists in randomly allocating each PSU of a given stratum into groups. As the SHS 
design is coordinated with the Labour Force Survey design, the same random groups are 
used for both surveys and six groups are used per stratum. Once the PSUs are allocated 
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into such groups, one PSU is selected within each group according to a proportional to size 
design where the number of dwellings is the size measure.  
 
For the Rao-Hartley-Cochran scheme hereby defined, it can be very difficult to compute 
the inclusion probability of order two. For simplicity, we assumed that a Poisson design 
had been used instead to select the PSUs. In particular, we assumed that the PSUs within 
the same stratum were selected independently from one another. This is not quite accurate 
because of the random allocation into groups, but conditional on the group allocation, it is 
accurate to consider the selection of PSUs as independent. Therefore, for PSUs 𝑔 and 𝑙 
belonging to the same stratum, we assumed that 𝜋𝑔𝑙 = 𝜋𝑔𝜋𝑙  (if 𝑔 ≠ 𝑙) and 𝜋𝑔𝑙 = 𝜋𝑔  (if 
𝑔 = 𝑙). 
 
In the second stage, a systematic sample of dwellings (SSUs) is selected within each of the 
selected PSU. Since it is possible for two dwellings 𝑖 and 𝑗 belonging to the same PSU to 
have second-order selection probability equal to zero, we had to assume that a simple 
random sample without replacement had been used instead of a systematic sample. 
Therefore, for SSUs 𝑖 and 𝑗 belonging to the same PSU 𝑔, we assumed that  
 

𝜋𝑖𝑗|𝑔 =

{
 
 

 
 

𝑛𝑔

𝑁𝑔
             𝑖𝑓   𝑖 = 𝑗

𝑛𝑔

𝑁𝑔

𝑛𝑔 − 1

𝑁𝑔 −1
        𝑖𝑓 𝑖 ≠ 𝑗            

 

 
where 𝑛𝑔  is the number of dwellings selected in PSU 𝑔  and 𝑁𝑔  is the total number of 
dwellings in PSU 𝑔. 
 
Finally, the nonresponse phase must be considered as a subsampling step, and hence 
selection probabilities (i.e. response probabilities) appear in the conditional bias 
expression. In the weighting process of the SHS, nonresponse adjustments are computed 
using a logistic regression. Auxiliary variables are used in the logistic regression model to 
predict the response probability of a given household. Then, households of similar response 
probabilities are grouped together and a nonresponse adjustment is computed within each 
nonresponse adjustment group. For simplicity, we assumed that the inverse of these 
nonresponse adjustments corresponded to the true probability of response. Alternatively,  
we could have considered using the estimated response probabilities, which would have 
required a linearization exercise to obtain the expression of the conditional bias (as shown 
in Favre-Martinoz et al. (2016)). Furthermore, we assumed that the nonresponse 
mechanism was independent across households (i.e. 𝑝𝑖𝑗 = 𝑝𝑖𝑝𝑗 , 𝑖 ≠ 𝑗). 
 
3.3 Results 

Data from the SHS 2015 was used to test both methods; the current method used in 
production and the conditional bias method yielding robust estimators. To compare the 
performance of both methods, the absolute relative bias was computed for major 
expenditure categories; shelter and transportation expenditures, as well as total 
consumption. Both methods correct the 𝑦-value of influential units and create a corrected 
value 𝑦  to be used for weighted estimates. We consider the original total estimate 
∑ 𝑤𝑖𝑦𝑖𝑖𝜖𝑠𝑟  to be the unbiased benchmark, where 𝑤𝑖 is the weight after calibration. In other 
words, the absolute relative bias is given by the following formula: 
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|∑ 𝑦𝑖𝑤𝑖𝑖𝜖𝑠𝑟 −∑ 𝑦𝑖𝑤𝑖𝑖𝜖𝑠𝑟
|

|∑ 𝑦𝑖𝑤𝑖𝑖𝜖𝑠𝑟
|

× 100. 

 
Results are provided in table 1 below for estimates at the national level (10 provinces 
combined). 
 

Table 1. Absolute Relative Bias of Robust Method and Production Method for Three 
Major Expenditure Categories (all 10 provinces combined, SHS 2015) 

 
Expenditure Category Robust Method Production Method 

Shelter 1.16% 0.97% 
Transportation 1.20% 0.16% 
Total Consumption 1.62% 1.23% 

 
 
First, we note that the absolute relative bias for both methods is small (less than 2% for all 
three expenditure categories). This shows that both methods are not excessively correcting 
the 𝑦-values. Second, the results show that the production method yields smaller absolute 
relative bias than the robust method. Note, however, that the production method relies on 
subjective parameters which can change from year to year; therefore, one can imagine a 
scenario where different parameters would yield different values of absolute relative bias. 
Another important detail about the production method is that it is only applied when there 
is a sufficient number of reporting households (this threshold is normally set to 25 reporting 
households in the estimation domain, which is the province). This constraint was not 
applied to the robust method, and this might explain why the robust method is correcting 
the 𝑦-values to a greater extent.  
 
The impact of both methods on the variance of the expenditure estimates was not measured. 
This is because it is currently unknown how to estimate the variance of the robust estimator. 
Indeed, as mentioned in Beaumont et al. (2013), it is not obvious how to properly bootstrap 
𝐵̂𝑚𝑖𝑛  and 𝐵̂𝑚𝑎𝑥  which appear in the ∆𝐶𝑜𝑝𝑡  term of the robust estimator. More research will 
be necessary in order to estimate the mean squared error of the robust estimator.  A 
simplified approach could be to apply the correction to the 𝑦-values, as defined by the 
conditional bias approach, to all bootstrap replicates. The impact of this simplification on 
the variance estimates would need to be determined, perhaps through simulations.  
 

4. Conclusion 

 
In this paper, we described how the conditional bias approach can be used to define robust 
estimators (as shown in Beaumont et al. (2013)) and we derived the expression of the 
estimator of the conditional bias in the context of a two-stage design followed by 
nonresponse where calibration estimators are used. This corresponds to the sample design 
of the Survey of Household Spending, a survey in which the issue of influential values 
must be addressed. The current production method to detect and correct influential values 
was compared to the new method that relies on robust estimators. It was found that both 
methods yield small absolute relative biases. The advantage of the robust method is that it 
is transparent and it leads to a streamlined process; the parameter of the method (the tuning 
constant) is automatically determined, which improves the timeliness compared to the 
production method which relies on several manual adjustments and verifications. As 
described in this paper, the robust estimator can be difficult to compute in practice, 
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especially when the sample design is complex as is the case with the SHS. Assumptions 
were necessary to estimate the conditional bias for the SHS, and these assumptions may 
have prevented us from fully capitalizing on the benefits of this new method. Another 
drawback of using the robust estimator is that its variance is currently unknown. Future 
work could be done in this area of research in order to determine a way to estimate the 
variance of the robust estimator and hence enable the comparison of its efficiency to the 
estimator used in production.  
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