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Abstract
Successive Difference Replication (SDR) is a variance estimation method originally used

for systematic samples, which is applied to complex surveys at the U.S. Census Bureau,
including the Current Population Survey. Often we are interested in estimates for domains
or subpopulations. In practice, replicate factors are assigned to the full sample. For SDR
variance estimation of an estimated domain total, we use a subset of the full replicate
factors. The subsetting of the domain on the sorted full data translates to a skip pattern.
The effects of different skip patterns on the SDR variance error are examined in this paper
via ideal superpopulation models and a simulation study.
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1. Introduction

Successive Difference Replication (SDR) is used for variance estimation at the U.S.
Census Bureau for many surveys, including the Current Population Survey (CPS).
SDR is a replication method that assigns “replicate factors” (i.e., weight multipliers)
to sorted sample respondent data. In CPS practice for calculating total variance,
SDR factors are assigned to groups of four households in self-representing primary
sampling units (PSU), sorted by geographic information, prior to knowing household
eligibility and response status. These factors lead to replicate estimates, which are
in turn used to calculate the variance estimator.

SDR was inspired as a replicate version of a modified form of successive difference
estimator described in Wolter [1984]. For a full description of the SDR factor
assignment method, see Fay and Train [1995].

This paper examines a common situation where estimation is done on a large
domain1, UD, UD ⊂ U . Let S be the sample from U and denote the sampled units
from the domain, SD, SD = UD∩S. Commonly, SDR replicate weights are released
for a whole sample for use in analysis. We examine the effect of using these replicate
weights when analyzing totals on UD.

When we estimated March 2018 variances for estimated total counts of respond-
ing and nonresponding households, we unexpectedly found them to be very different.
If X is our response total, N our total population of households, then N −X would
be the nonresponse total. Calculating variance of X and N −X should give a simi-
lar result if the variance of N is small. In this case, the estimated variances should
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1Our interest in domain estimation arose from the need to produce household response and

nonresponse total variance estimates. The domain we are considering is a time “slice” of one month
from the larger annual sample which covers many months. We can view this annual sample as
sampling from a product space of time-specific universes, Ul at month l, so that the notational

yearly-sample universe is U =
∏l′

l=1 Ul, where l′ is the last month considered by the sample.
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be reasonably similar. This prompted investigation into the effects on variance
estimation of domain subsetting patterns within the sorted sample.

1.1 Simulation Scenarios and Actions

In this paper we focus on two scenarios for the relation between domain and whole-
sample indexing and two actions on replicate factors. Here “action” refers to a
strategy of SDR replicate factor assignment.

Our goals are to provide evidence that the mechanism of replicate factor assign-
ment explored in these scenarios explains the observed discrepancy in the estimated
variances of the estimated counts of household responders and nonresponders, de-
tailed in section 2, as well to draw attention to the broader issue of biases in SDR
variance estimators for subdomains.

These two scenarios and two actions form the basis for the simulations. Let
i = 1, . . . , n index the sample, S. Let |SD| = k. Let a be the starting index for
SD. In the first scenario, SD is of the form {a + l : l = 0, 1, 2, . . . , k − 1}. In the
second scenario, SD is of the form {a + 2l : l = 0, 1, . . . , k − 1}. In both scenarios,
a is restricted so that SD will always be of size k. For each scenario, we can choose
from two actions: retain the original factors or reassign the SDR factors separately
within the domain and its complement.

This paper is organized around some basic mathematical observations, using the
mathematical equivalence demonstrated in Fay and Train [1995] then following up
with simulations on internal CPS replicates and pure data simulations to provide a
mechanism to explain the discrepancy in variance estimates for estimated responders
and nonresponders.

2. Background

The motivation for this work was an investigation into the variance of the CPS
household response total. Our work was specifically restricted to self-representing
PSUs where systematic sampling was the only stage of sampling. For a random vari-
able X and constants a and b, we know that the variance of X, V (a+bX) = b2V (X).
Letting b = −1 and a = N , we expect that V (X) = V (N −X), where N is the to-
tal households, and the corresponding variance estimates should be approximately
equal.

We ran a Bernoulli simulation on the March 2018 data, varying p across the
interval (0, 1). Figure 1 shows the variance estimates for March 2018 household re-
sponse and nonresponse total, variance estimates from Bernoulli simulation data us-
ing March 2018 SDR replication factors (CPS Bernoulli simulation), and the model
variance from the Bernoulli simulation. The red squares are the actual household
response and nonresponse total variance estimates for March 2018. The green plus
signs are individual simulation runs for a given probability, p. For each value of p,
the simulation was run 100 times.

The CPS Bernoulli simulation shows that there is something unexpected in the
CPS SDR replicate factors, hereafter referred to as the variance anomaly. The
March 2018 SDR variance estimates for household response and nonresponse total
lie within the range of Bernoulli simulation values. We note the lack of symmetry
expected from the SDR variance estimator as p varies from 0 to 1 with the CPS
Bernoulli simulation diverging from the model variance.

 
1647



Figure 1: March 2018 CPS Bernoulli Simulation SDR Variance, Actual Household
Response and Nonresponse Estimates, and Model Variance

Actual Variance Estimates (red squares): (left square) estimated variance of household
nonresponse total (right square) estimated variance of household response total.
CPS Bernoulli simulation (Green Pluses): single Bernoulli simulations from CPS March
2018 replicate factors, 100 for each p.
Model variances (black circles): Bernoulli variances from the simulation.

3. Methods

3.1 Definitions

Let n be our sample size. Let i index our sample, i = 1, . . . , n. Let yi be the value
of the ith observation. Following similar population assumptions in Huang and
Bell [2009], we assume that yi values are generated independently and identically
distributed from density f(y), with common mean, µ, and common variance, σ2.
Let wi be a final survey weight for observation i. In this paper, we assume wi = w
for all i, assuming our sample size, n, is fixed. Let our estimate be θ̂0 =

∑n
i=1wiyi =

w
∑n

i=1 yi. Let fir be the rth replicate factor for the ith observation, to be defined

later. Then our replicate estimate θ̂r is defined as
∑n

i=1wifiryi = w
∑n

i=1 firyi.

Finally, let our replicate variance estimate, V̂ , be

V̂ =
1

2γ2R

R∑
r=1

[
θ̂r − θ̂0

]2
,

where γ is a parameter such that 0 < γ <∞. In Fay and Train [1995], γ was chosen
to be 1

2
√
2

which is the value we adopt in this paper.
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As above, let SD denote the set of indices of sampled units within our domain
of interest. Let zi = yiI{i∈UD}.

We will examine the effect of different index patterns for the set SD and the
effect on the estimator, V̂ D,

V̂ D :=
1

2γ2R

R∑
r=1

[
θ̂Dr − θ̂D0

]2
,

where θ̂D0 =
∑

i∈SD
wiyi =

∑n
i=1wizi and θ̂Dr =

∑
i∈SD

wifiryi =
∑n

i=1wifirzi.
Let hir be the ith row and rth column element of a Hadamard matrix of order

R, R > n + 2. A Hadamard matrix, H, is a square matrix of order 4l for some
integer l, with entries either −1 or 1. The defining property is that HHT = 4lI4l,
where I4l is the identity matrix of order 4l and HT is the transpose of H. Finally,
define fir as

fir := 1 + γ(hi+1,r − hi+2,r)

and for i = n,
fnr := 1 + γ(hn+1,r − h2,r),

where γ is a constant such that 0 < γ <∞. This definition is the same as in Fay and
Train [1995], but in practice n > R. In surveys such as CPS, we recycle rows from
a smaller Hadamard matrix to assign factors to the whole sample. One reference
for insight into this row recycling is Ash [2014]. Unless otherwise specified, we will
use a Hadamard matrix of dimension R > n+ 2.

3.2 Some Algebraic Results

With the setup described in section 3.1, we now define two different structures for
SD and then evaluate their expected values under the described superpopulation
model.

Block Scenario: SD = {a+ l | l = 0, 1, . . . , k− 1} for some a = 1, 2, . . . , n− k+ 1.

Alternating Scenario: SD = {a + 2 · l | l = 0, 1, . . . , k − 1} for some a =
1, 2, . . . , n− 2k + 2.

For these two scenarios, we can calculate the expected relative error of the SDR
variance estimator versus the superpopulation variance. Expected relative error in
this paper is defined as follows2:

E(V̂SDR)− V (θ̂D)

V (θ̂D)

where expectations are done under the superpopulation model. Let V̂ D
SDR denote the

SDR variance estimate for the sample domain conditioned on a finite population.
The variance of the estimator is the expected superpopulation variance, V (θ̂D) =
kw2σ2. The expectation is taken with respect to the superpopulation density. For
details, see Appendix A.

2The expressions E(V̂SDR) and V (θ̂D) are with respect to the superpopulation model, not
design. The expectation is approximately equal to the anticipated variance of Isaki and Fuller
[1982] where we assume that our estimator θ̂ is design unbiased and that V̂SDR is approximately
equal to the design variance.
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The expected relative error for the block scenario is (also found in Huang and
Bell [2009]):

E

(
V̂ D
SDR − kw2σ2

kw2σ2

)
=

µ2

kσ2
(1)

For the alternating scenario it is:

E

(
V̂ D
SDR − kw2σ2

kw2σ2

)
=
µ2

σ2
(2)

The major difference is that in the block scenario we have the expected relative
error, for fixed superpopulation parameters, of the order 1

k while for the alternating
scenario we have no such improvement with increasing size, as the error is constant.

3.3 Simulation

In CPS, SDR factors are assigned to a whole annual sample. When a particular
month’s data is estimated, the appropriate factors are subsetted from the annual
sample, then run through the weighting process and variance estimation. We can
think of one month’s data as approximately 1/12 of the annual sample. Simulation 1
explores the skipping mechanism and influence of our actions on the SDR replicates.
Simulation 2 seeks to explain the CPS Bernoulli simulation as function of the skip
pattern. Both simulations do not involve CPS data.

For the action of retaining the original SDR factors, we can use equations 1 and
2 with Binomial(m,p) parameters to get for the block scenario:

E

(
V̂ D
SDR − kw2σ2

kw2σ2

)
=

mp

k(1− p)

and

E

(
V̂ D
SDR − kw2σ2

kw2σ2

)
=

mp

1− p

for the alternating scenario. Thus we expect our relative errors for both scenarios
to grow to infinity as p approaches 1.

3.3.1 Simulation 1

The simulation explores the combination of two scenarios and two actions described
in section 1.1 for a total of four situations. We will compare and contrast the four
combinations of scenarios and actions with respect to the expected relative error
defined earlier.

For each set of superpopulation parameters, we simulate a sample of size 12,000
with a Bernoulli response. The SDR factors are then assigned to the sample of
12,000. Then we subset 1,000 indices as our domain for the block and alternating
scenarios with independent random start points for each. Each set of 1,000 rows for
the block and alternating scenarios are independent. After subsetting, SD, we choose
our action: either retain the original SDR factors or create new SDR factors within
the ordered sample of domain units. We then take averages across the simulations
for each of the scenarios and then compute the relative error of the SDR variance
estimate.
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3.3.2 Simulation 2

The second simulation refines simulation 1 in order to better mimic CPS SDR
factor assignment in order to explain the behavior of the CPS Bernoulli simulation,
observed in Section 2. We first group households into groups of four and then assign
factors to groups, rather than to each individual household. The other potential
change is in the Hadamard matrix dimension and algorithm for row assignment.
For one version of simulation 2, we retain the original Fay-Train algorithm that
requires a Hadamard matrix of order R > n+ 2, where n = 12, 000. In the second
version, we use a Hadamard matrix of order 160 (following CPS practice), and
recycle the rows mimicking the CPS production algorithm for row assignment. We
then compare these simulations with the CPS Bernoulli simulation to see how well
this mechanism can explain the observed behavior.

4. Results

4.1 Simulation 1

Figure 2 shows the results of simulation 1, plotting relative error (in percent) on a log
scale versus our superpopulation parameter, p. The Monte Carlo simulation error
was on the order of 10−2 so some of the “signal” in the two reassigned factors plots
is merely simulation noise. The scenario that performs the worst is the alternating
scenario with the original factors. Here, even when we have p around 50%, we have
an expected relative error of around 100% which continues to grow as p approaches
1, matching results from section 3.2 in equation 2. For the block scenario with
original factors, the situation is better, with 1% relative error around p = 0.9. This
is because the size of the domain improves the error. If you have this skip pattern
and a domain sample size of roughly 1,000, the relative error is not bad unless p is
close to 1. That is expected due to the result in equation 1 in section 3.2. Finally,
if we choose to reassign SDR factors, the relative error becomes very small for each
scenario, across all values of p.
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Figure 2: Comparison of two scenarios and two actions: Relative Error of Variance
Estimate (log scale) versus Probability P

Simulation Setup Each point represents the average relative error across 1,000 simulations from
a full sample of size 12,000 and a domain sample size of 1,000, for the given value p. Lines simply
connect simulation point estimates to aid the viewer.
Alternating Scenario - Original Factors High relative error that grows quickly as p increases.
Alternating Scenario - Reassigned Factors Low relative error (within simulation error) for
all p.
Block Scenario - Original Factors Low relative error when p is small but grows larger as p,
accelerating towards infinity. Sample domain size = 1,000 reduces relative error.
Block Scenario - Reassigned Factors Low relative error (within simulation error) for all p.
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The most conservative practice would be to always reassign SDR factors to
whatever analytical subset you considered. If you knew your data had the block
skip pattern and had some tolerance for variance estimation error and a reasonable
sample size, you could accept the original factors. A typical domain sample will not
generate a skip pattern resembling blocks, but will be more similar to the alternating
pattern. Here our recommendation is to reassign SDR factors rather than use the
original ones. This is really only feasible if the number of domains for analysis is
relatively small or the computational cost for each domain is small.

4.2 Simulation 2

We have explored the consequences of our actions under the two skip pattern sce-
narios. We need to examine how well this mechanism explains the variance anomaly
found in Figure 1. Figure 3 plots the relative error in variance estimates for the
CPS Bernoulli simulation with the two versions of Simulation 2. Both versions of
simulation 2 assume the alternating skip pattern scenario and the retain SDR factor
action. We denote the version using the Fay-Train assignment with the Hadamard
matrix with order R > n + 2 as the Large Hadamard Matrix version. The version
that uses the 160 order Hadamard matrix mimicking CPS SDR factor assignment
is denoted as 160 Hadamard Matrix.

With the two versions of Simulation 2, because their plotted relative errors in
Figure 3 are very close, we come close to predicting the variance anomaly, except
when p < 0.2, when there is an effect not yet explained. The alternating scenario
skip pattern accounts for much of the variation in the data. The effect of using the
160 order Hadamard matrix with row recycling versus the full Hadamard matrix
is a much smaller effect, shown by the differences between the two Simulation 2
versions.
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Figure 3: CPS Bernoulli Simulation versus Alternating Skip Pattern - Relative
Error (log scale) versus p

Simulation Setup Each point represents the average relative error across 1,000 simulations from
a full sample of size 12,000 and a domain sample size of 1,000, for the given value p. Lines simply
connect simulation point estimates.
CPS Bernoulli Simulation The variance anomaly we wish to explain with the SDR factor
assignment mechanism via simulation 2.
Large Hadamard Matrix version Using Alternating skip pattern scenario, original factors.
Simulation 2 using a large (order greater than 12,000) Hadamard matrix, each SDR factor is
assigned to groups of four households to mimic CPS.
160 Hadamard Matrix version Using Alternating skip pattern scenario, original factors.
Simulation 2 using a small (160 by 160 Hadamard matrix, using row assignment algorithm similar
to CPS production row assignment algorithm.
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We see that the alternating skip pattern scenario with the superpopulation model
gives a reasonable approximation of the variance anomaly seen with the skip pattern
observed in the March 2018 CPS data. To measure the similarity between the actual
CPS skip pattern and the one in the simulated alternating scenario, we created a
flag variable for every row skipped in the CPS SDR factor file. Figure 4 shows
a cumulative sum of these flag variables for the actual CPS SDR factor file and
the alternating scenario. The alternating scenario is the straight line, with the
cumulative sum increasing by 1 every two rows. We can see that in the actual data,
we are skipping more frequently than the alternating scenario with some variation
in the number of successive rows skipped.

Figure 4: Cumulative Sum of Skip Flag for March 2018 SDR Replicate Factors
Versus Idealized Alternating Scenario

Because the relative error of pure simulation models from Simulation 2 closely
tracks the CPS Bernoulli simulation from Figure 1, the effect of the alternating
scenario plausibly explains the variance anomaly seen in Figure ??, despite the
many simplifying assumptions made in the simulations versus the actual data.

5. Conclusions and Future Work

Based on the expected relative error metric, reassigning SDR factors to the domain
sample is preferred regardless of skip pattern. When we assign new SDR factors for
our sample domain, SD, we remove any artificial error caused by subsetting from
preassigned SDR factors.

Subsetting domains for variance estimation after SDR factors have been assigned
can lead to large error in variance estimation, depending on the pattern of subset-
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ting. In general, the skip pattern will be closer to the alternating row scenario than
to the block scenario. For this reason, our simulations suggest potential errors in
variance estimation if SDR factors are assigned before domain subsetting.

Our recommendation would be to apply SDR factors only within the domain
of interest. This factor reassignment could be implemented in a software package.
Unless computational power is very cheap, this solution may not be feasible if a
large number of domains need to be analyzed quickly. The additional burden of
incorporating this approach could add maintenance overhead for the survey analysis
infrastructure.

For CPS3, specifically, we can reduce variance errors by altering the SDR row
assignment sort to ensure that a single month’s data follows the block scenario rather
than the alternating scenario. This modification still would not prevent variance
estimation biases from arising from analysis done with different types of domains.

The simulation differs from reality in a few ways. In CPS practice, SDR factors
are assigned to groups of four households prior to knowing eligibility and response
status. Both of these would result in the inclusion of extra nonrespondent cases be-
fore we even consider our domain, UD. This simulation also assumes no calibration
or non-response adjustments to weights and assumes a self weighting scheme like
CPS. Additionally, our data analysis only focuses on self-representing (SR) primary
sampling units (PSU). These comprise approximately three quarters of all house-
holds. Estimating the effect of this bias on the total CPS variance would be useful.
For our preliminary variance results using CPS base-weights which have small vari-
ation between states and zero within a state, this was a reasonable assumption. We
did some simulations for final weight replicates and still saw the effect described in
this paper, but further work is necessary to assess it properly.

We did explore other superpopulation models (normal, AR1, etc) but the con-
clusions there were similar to the Binomial case. In all cases, we assumed indepen-
dence in our yi’s in the superpopulation model. Relaxing that assumption would
be another avenue for future exploration.
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A. Derivation of Expected Relative Error for Block and Alternating
Scenarios

A.1 Block Scenario

Lemma A.1 Let i index the sample S, i = 1, . . . , n. Let yi be distributed iid for
some distribution function, f , and assume E(yi) = µ and V ar(yi) = σ2. Let
SD ⊂ S, where SD = {a+ l : l = 0, 1, . . . , k − 1}, a ∈ {1, . . . , n− k + 1}. Then the
expected relative error is

E

(
V̂SDR − kw2σ2

kw2σ2

)
=

µ2

kσ2
.

In the first scenario, all indices are contiguous while in the second scenario,
indices skip every other row. For the block scenario, after plugging in for θ̂Dr , etc
and expanding the square we get:

V̂ D =
w2

2γ2R

R∑
r=1

 n∑
i=1

(fir − 1)2z2i + 2

n−1∑
i=1

n∑
j=i+1

zizj(fir − 1)(fjr − 1)


Since zj = 0 when j 6∈ SD, we can simplify this expression:

V̂ D =
w2

2γ2R

R∑
r=1

a+k−1∑
i=a

(fir − 1)2y2i + 2

a+k−2∑
i=a

a+k−1∑
j=i+1

yiyj(fir − 1)(fjr − 1)


Rearranging the sums to bring the sum over r inside, we get

V̂ D =
w2

2γ2R

a+k−1∑
i=a

y2i

R∑
r=1

(fir − 1)2 + 2
a+k−2∑
i=a

a+k−1∑
j=i+1

yiyj

R∑
r=1

(fir − 1)(fjr − 1)


For the first sum, it reduces to 2γ2R. For the second term,

R∑
r=1

(fir − 1)(fjr − 1)

it depends on i and j. When j > i + 1, the sum is zero. When j = i + 1, the sum
becomes −γ2R. This leads to

V̂ D = w2

[
a+k−1∑
i=a

y2i −
a+k−2∑
i=a

yiyi+1

]

Using the superpopulation assumptions, we can now compute an expected relative
error for the variance estimator, since we know the variance under the superpop-
ulation model (common mean µ, variance σ2, and uncorrelated values). Taking
expectations over the superpopulation we get

EV̂ D = kw2(σ2 + µ2)− w2(k − 1)µ2 = kw2σ2 + w2µ2.

We can also calculate the expected variance given the superpopulation, which be-
comes V (θ̂) = kw2σ2. Putting this together our expected relative error in the block
scenario is:
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E

(
V̂SDR − kw2σ2

kw2σ2

)
=

µ2

kσ2
.

Thus as our domain size, k, grows larger, our expected relative error decreases
on the order of k−1 for a fixed superpopulation.

A.2 Alternating Scenario

Lemma A.2 Let i index the sample S, i = 1, . . . , n. Let yi be distributed iid for
some distribution function, f , and assume E(yi) = µ and V ar(yi) = σ2. Let
SD ⊂ S, where SD = {a + 2l : l = 0, 1, . . . , k − 1}, a ∈ {1, . . . , n − 2k + 2}. Then
the expected relative error is

E

(
V̂SDR − kw2σ2

kw2σ2

)
=
µ2

σ2
.

In this scenario, the indexing set, SD, skips every other row after starting at a
particular index, a. For clarity, we assume a 6= 1 and a 6= n. Since the successive
difference estimator is invariant under a shift in labels, this can always be avoided.

SD = {a+ 2 · l | l = 0, 1, . . . , k − 1}

for some a = 1, 2, . . . , n− 2k + 2.
Borrowing notation from the previous section, we have

|V̂ D| = w2

2γ2R

[
k−1∑
l=0

y2a+2l

R∑
r=1

(f(a+2l)r − 1)2+

2
k−2∑
l=0

k−1∑
m=l+1

ya+2lya+2m

R∑
r=1

(f(a+2l)r − 1)(f(a+2m)r − 1)

]
.

The term
∑R

r=1(f(a+2l)r − 1)2 = 2γ2R as before. The cross term
∑R

r=1(f(a+2l)r −
1)(f(a+2m)r − 1), always vanishes due to the orthogonality of distinct rows of the
Hadamard matrix. Thus this becomes

V̂ D = w2
k−1∑
l=0

y2a+2l.

With the superpopulation assumptions, we can compute the expected value as:

EV̂ D = w2k(σ2 + µ2).

Again the variance is kw2σ2 and the relative variance is

µ2

σ2
.

Here we do not gain any reduction in error as our domain size, k, increases but are
entirely dependent on the superpopulation parameters.
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B. Derivation of Fay-Train Results

Assume we have sampled a systematic sample of size n. Let i, i = 1, . . . , n, index
the observations from the sample. Let yi be the observed measurement. Let wi be
a survey weight and denote the sum

∑n
i=1wi = W . Let θ̂0 =

∑n
i=1wiyi. We wish

to estimate the variance of θ̂0.
Let H be a Hadamard matrix of order R > n+ 2, for some integer R and let hij

represent the ith row and jth column from the matrix. Each hij ∈ {−1, 1} and for

i 6= j,
∑R

k=1 hikhjk equals zero. If i = j,
∑

k h
2
ik = R. In other words, HHT = RI

where I is the identity matrix.
Denote the Successive Difference Replication weighting factor as fir for the ith

row and rth replicate. For i < n, let

fir = 1 + γ(hi+1,r − hi+2,r)

and for i = n,

fnr = 1 + γ(hn+1,r − h2,r),

where γ is a constant such that 0 < γ < ∞. In Fay and Train [1995], γ is set to
1

2
√
2
. Let θ̂r =

∑n
i=1 firwiyi.

Finally, let our replicate variance estimate be

1

2γ2R

R∑
r=1

[
θ̂r − θ̂0

]2
.

Plugging in for θ̂r and θ̂0 and expanding the square, we get

1

2γ2R

R∑
r=1

 n∑
i=1

w2
i y

2
i (fir − 1)2 + 2

n−1∑
i=1

n∑
j=i+1

yiwiyjwj(fir − 1)(fjr − 1)


Since all sums are finite, we can exchange summations to sum over r first.

1

2γ2R

 n∑
i=1

w2
i y

2
i

R∑
r=1

(fir − 1)2 + 2
n−1∑
i=1

n∑
j=i+1

yiwiyjwj

R∑
r=1

(fir − 1)(fjr − 1)


Substituting for fir, taking care about the special definition of fnr, we get

1

2γ2R

[
n−1∑
i=1

w2
i y

2
i γ

2
R∑

r=1

(h2i+1,r + h2i+2,r − 2hi+1,rhi+2,r)

+w2
ny

2
nγ

2
R∑

r=1

(
h2n+1,r + h22,r − 2hn+1,rh2,r

)
+2

n−2∑
i=1

n−1∑
j=i+1

yiwiyjwjγ
2

R∑
r=1

(hi+1,rhj+1,r − hi+1,rhj+2,r − hi+2,rhj+1,r + hi+2,rhj+2,r)

+ 2

n−1∑
i=1

yiwiynwnγ
2

R∑
r=1

(hi+1,rhn+1,r − hi+1,rh2,r − hi+2,rhn+1,r + hi+2,rh2,r)

]
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Many of these expanded terms can simplify, using properties of the Hadamard
matrix. A general cross term,

∑R
r=1 hm,rhl,r, equals zero if m 6= l and R if m = l.

The first two terms in the sum simplify straightforwardly. For the third term,

2

n−2∑
i=1

n−1∑
j=i+1

yiwiyjwjγ
2

R∑
r=1

(hi+1,rhj+1,r − hi+1,rhj+2,r − hi+2,rhj+1,r + hi+2,rhj+2,r)

the four component sums vanish depending on the values of i and j. For∑R
r=1 hi+1,rhj+1,r and

∑R
r=1 hi+2,rhj+2,r, these sums are nonzero when i = j. This

is impossible because we have i + 1 ≤ j ≤ n − 1. Thus these two components are
always zero. For

∑R
r=1 hi+1,rhj+2,r, it is nonzero when i + 1 = j + 2. This implies

j = i− 1 which is impossible since j ≥ i+ 1. For the third,
∑R

r=1 hi+2,rhj+1,r, this
is nonzero only when i+ 2 = j + 1 or j = i+ 1. This three of the four components
of the third sum are always zero, and one is only nonzero when j = i+ 1. The third
term simplifies to

−2

n−2∑
i=1

yiwiyi+1wi+1γ
2R.

The fourth component is similar to the third described above. The only nonzero
component is

∑R
r=1 hi+1,rh2,r when i = 1.

1

2γ2R

[
n−1∑
i=1

w2
i y

2
i γ

2(R+R− 2 · 0) + w2
ny

2
nγ

2 (R+R− 2 · 0)

−2

(
n−2∑
i=1

yiwiyi+1wi+1γ
2R

)
− 2y1w1ynwnγ

2R

]

Finally,
n∑

i=1

w2
i y

2
i −

(
n−1∑
i=1

yiwiyi+1wi+1

)
− y1w1ynwn

equals

1

2

[
(w1y1 − wnyn)2 +

n∑
i=2

(yiwi − yi−1wi−1)
2

]
.
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