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Abstract

Combining survey and auxiliary data to produce official statistics is gaining interest at federal
agencies and among policy makers due to its efficiency. Moreover, there is an increase in reliable
estimates at detailed, disaggregated levels, a decrease in allocated budgets and an increase in usabil-
ity of available data. The United States Department of Agriculture’s National Agricultural Statistics
Service issues annually nearly 500 reports, including county-level estimates that play an important
role in the allocation of funds in some agricultural programs. In this paper, small area estimation
modeling approaches are considered that borrow information across areas and from auxiliary data,
to produce reliable county-level agricultural predictions. Challenges in assessing the quality and the
usability of different data sources are discussed in the context of planted acreage estimation.
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1. Introduction

Survey summary statistics at disaggregated levels may not be fit for use as official statistics
because the limited amount of information available may result in estimates with high lev-
els of uncertainty. With an increase in available data from auxiliary sources, an increase in
needs for official statistics at detailed levels of aggregation and a decrease in allocated bud-
gets, federal agencies have an increased interest in using models in the estimation process.
For example, the United States Department of Agriculture’s (USDA’s) National Agricul-
tural Statistics Service (NASS) conducts an annual series of surveys to provide acreage,
production and yield estimates at state and substate levels of aggregation. The survey sum-
mary statistics are used to produce the final official statistics, which play an important role
in the policy and decision making by other USDA agencies, such as the Farm Service
Agency (FSA) and the Risk Management Agency (RMA). In this paper, we explore aux-
iliary data sources and model-assisted methods to produce predictions for counties with
survey sample sizes as small as zero.

Area-level and subarea-level models are excellent reproducible tools that combine sur-
vey data and auxiliary data to produce reliable estimates for areas where survey estimates
are available. In the area-level model introduced by Fay and Herriot in 1979 (FH), the
survey estimates, θ̂k, are modeled using the sampling model,

θ̂k∣(θk, σ̂
2
k)

ind
∼ N(θk, σ̂

2
k),

where σ̂2k are the estimated sampling variances and k = 1, ...,m is an index for the small
area. The small area parameter of interest θk is estimated using a linkage model,

θk∣(β, σ
2
u)

ind
∼ N(x

′

kβ, σ
2
u), (1)
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where xk are area-level covariates with p components, including an intercept, and (β, σ2u)
is a vector of nuisance parameters. A rich literature is available for the FH model and its
extensions, using both frequentist and Bayesian methods. In a hierarchical Bayes analysis,
prior distributions are assigned to (β, σ2u).

As an extension to the FH model, Fuller and Goyeneche (1998) introduced a subarea-
level model (FG), to account for a grouping structure of the small subareas into areas. The
survey estimates at the subarea level, θ̂ij , are modeled using the sampling model,

θ̂ij ∣(θij , σ̂
2
ij)

ind
∼ N(θij , σ̂

2
ij),

where σ̂2ij are the estimated sampling variances, j = 1, ..., nci is an index for the small
subareas, i = 1, ...,m is an index for the areas, and nc = ∑mi=1 nci is the total number of
subareas. The parameter of interest is the small subarea mean θij , which is estimated using
a hierarchical linkage model,

θij ∣(β, σ
2
u, vi)

ind
∼ N(x

′

ijβ + vi, σ
2
u),

vi∣σ
2
v

ind
∼ N(0, σ2v),

(2)

where xij are subarea-level covariates with p components, including an intercept, and
(β, σ2u, σ

2
v) is a vector of nuisance parameters. Torabi and Rao (2014) studied the FG

model in a frequentist framework and Kim et al. (2018) extended the linkage model in
Torabi and Rao (2014) to allow for a hierarchical level for parameters β and to remove dis-
tributional assumptions in the first hierarchical level. Erciulescu et al. (2016, 2017, 2018)
studied the FG model using a hierarchical Bayes framework, adopting prior distributions
for (β, σ2u, σ

2
v).

In the area-level (subarea-level) sampling models, it is assumed that θ̂k(θ̂ij) and σ̂2k(σ̂
2
ij)

are valid estimates available from the survey summary, i.e., the estimates exist and are in
the parameter space. However, for the not-in-sample subareas (domains with missing sur-
vey data), inference conducted relies on the linkage model’s specification. Given (1), a
typical choice of estimator for the not-in-sample areas is the synthetic estimator x

′

kβ, see
Rao and Molina (2015) for more information on regression synthetic estimation. While
one choice for a not-in-sample subarea estimator, given (2), is the synthetic estimator x

′

ijβ,
a better estimator is the composite estimator x

′

ijβ + vi (note the contribution of both the
subarea-level auxiliary data and the area-level random effect). In a Bayesian approach, the
predictions are drawn from the assumed linkage model (1) or (2), for area-level or subarea-
level, respectively.

In this paper, we consider data collected by the USDA’s NASS using a probability
sample and auxiliary data from other sources, to produce end-of-season county-level and
agricultural statistics district-level predictions for planted acreage, where an agricultural
statistics district (hereafter, denoted by ASD or district) is defined as a group of contiguous
counties within a state. In particular, the probability sample of interest to this study is the
pooled sample from the quarterly crops Agricultural Production Surveys (USDA NASS
APS 2018) and their supplement, the County Agricultural Production Surveys (USDA
NASS CAPS 2018), and will be denoted hereafter by CAPS.

Statistical challenges in combining data from multiple sources to produce official statis-
tics are discussed throughout the paper. In Section 2, we introduce different data sources
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and present a method that combines survey data and administrative data to identify and pre-
dict planted acreage for in-sample and not-in-sample subareas of interest for certain crop,
i.e., county-level corn, as in the case study illustrated here. Modeling strategies addressing
different scenarios of available data and the corresponding derived predictors are presented
in Section 3. In Section 4, we present nationwide prediction results for 2015 corn planted
acreage, including model efficiency and different contributions of administrative data to
produce official statistics. Concluding remarks are given in Section 5. Technical details on
derivations of closed-form expressions for the model predictions are given in Appendix A.
Additional results on corn, soybean, sorghum and winter wheat are presented in Appen-
dices B and C.

2. Data for Modeling End-of-Season Crop Acreage

County-level survey estimates may be improved using auxiliary information and small area
model-based procedures, especially for counties with small sample sizes. Estimation chal-
lenges are driven by the needs for multi-stage (county, district, state), nationwide, estimates,
constructed using a small amount of survey data. In this section, we describe the sources
of data considered to produce small area model predictions for end-of-season crop planted
acreage for corn in 2015. Prediction is conducted state by state and commodity by com-
modity. The NASS survey data and the auxiliary data available from other USDA agencies,
on corn planted acreage, are combined at the county level, for each state.

Due to the updates to the list sampling frame and the survey questionnaires, and to the
year-to-year changes in planting activity, the set of subareas to be estimated for a given year-
commodity combination is not predefined. For example, each survey response includes
information on the entire operation (farm or ranch), and for all the sampled commodities
with activity in the given season. As a result, the number of known operations in a county
may change over time, the number of sampled operations may vary from year to year, and
each of those operations may vary the type of crops grown annually. See Appendix A in
National Academies of Sciences, Engineering, and Medicine (2017) for more details on
NASS’s survey design and data collection. In this section, we introduce a method that
combines survey data and administrative data to identify the 2015 not-in-sample counties
of interest for corn planted acreage prediction. Also, we investigate the potential for using
auxiliary data as covariates in hierarchical models.

2.1 NASS Survey Data

County-level and ASD-level survey estimates and associated variance estimates are avail-
able from the NASS’s CAPS summary. The ASD-level survey data are derived directly
from the county-level survey data and, hence, only the county-level data will be used for
modeling. The ASD-level survey data will be used for comparing model predictions to the
survey estimates. In the 2015 crop season, NASS sampled 36 states for corn. The 36 states
were comprised of 2837 counties, and NASS produced survey estimates for 2426 in-sample
counties. Survey estimates are not available for the rest of 411 counties; we refer to these
counties as not-in-sample with respect to corn. A nationwide map of the end-of-season
positive county-level planted acreage survey estimates available for corn in 2015 is shown
in Figure 1. The 12 states that were not sampled for corn in 2015 are represented as blank
states. The counties with zero planted acreage predictions and not-in-sample counties for
corn in 2015 are represented in black. Since the range of planted acreages in counties with
available sample data is state-dependent and can vary from tens to hundreds of thousands of
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acres, the county-level map in Figure 1 depicts estimates on the log(10) scale. Dark-purple
areas correspond to high acreage intensity regions, in particular the Midwestern corn belt
states.

Figure 1
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COUNTY−LEVEL SURVEY ESTIMATES: CORN, 2015

As a result of the NASS survey and publication cycle, state-level planted acreage val-
ues are prepublished and considered as fixed targets in the substate-level estimation process.
The sum of the county-level survey estimates in a state does not necessarily equal the pre-
published state-level value, the latter being the result of an expert assessment of multiple
sources of data (including, but not limited to the survey data). Hence, one of the challenges
encountered was to attain consistency among estimates constructed for nested levels. To
overcome this challenge, we study a benchmarking adjustment applied to the substate-level
predictions, for the county-to-ASD-to-state agreement to hold. More details on the bench-
marking adjustment we utilize are presented in Section 3.3.

The number of counties and ASDs vary across the states and across commodities. For
2015 corn, the number of counties within ASDs ranges from 1 to 32, with a median of 8
and the number of ASDs within state ranges from 3 to 15, with a median of 9. Because
the source of survey data for this study is the survey summary at the county level and ASD
level, we denote the sample size by the number of positive records used to construct the
survey summary; a positive record refers to a survey record for which positive acreage was
reported. The county sample size differs from state to state and commodity to commodity.
For 2015 corn, the county sample sizes range from 1 to 191, with a median of 18 and the
district sample sizes range from 1 to 993, with a median of 206.

The estimated coefficients of variation (CVs) for the survey estimates increase as the
county sample sizes decrease, and their ranges also differ from state to state and commod-
ity to commodity. For 2015 corn, the CVs of the county-level survey estimates range from
0.07% to 107.66%, with a median of 31.94%, and the CVs of the ASD-level survey esti-
mates range from 3.27% to 100.70%, with a median of 10.67%. Figure 2 shows the inverse
relationship between the CVs of the 2015 corn county-level planted acreages survey esti-
mates in Illinois and the corresponding sample sizes. Similar patterns are observed in other
states, and for other commodities.
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Figure 2

2.2 Auxiliary Data

We explore auxiliary data, available from three USDA agencies: FSA, RMA, and NASS.
FSA administers U.S. farm programs, including those authorized by the Agricultural Act
of 2014, known as the “Farm Bill” (USDA FSA 2014), e.g., county-level revenue loss
protections. RMA oversees the Federal Crop Insurance Corporation, which provides crop
insurance to participating farmers and agricultural entities (USDA RMA 2014). For this,
FSA and RMA collect data from farmers participating in such programs. NASS produces
the Cropland Data Layer (CDL 2018), a crop-specific land cover product that uses satellite
and FSA ground-reference data to classify crop types on the continental United States (Bo-
ryan 2011, USDA NASS 2016a).

The levels and time of availability, and potential sources of error vary by data source
(FSA, RMA, NASS), geography and commodity. Combining data from multiple sources
and assessing its quality and usability is a challenging effort, often not mentioned in small
area studies. For example, the CAPS sample data are collected on farms or ranches that
the respondents operate and participation in the FSA and RMA programs is popular, but
not compulsory; farmers who choose to participate in either agency’s support programs
supply data to the FSA and RMA administrative offices voluntarily. However, the defini-
tion of farm or ranch and the spatial unit used differ among the three data sources: NASS,
FSA and RMA (National Academies of Sciences, Engineering, and Medicine, 2017, pages
96-97). Linking data at a fine scale has been of interest to NASS, but final solutions have
yet to be developed. The administrative data of interest for this study are the self-reported
corn planted acreage values supplied to FSA and RMA and the acreage values derived from
pixels classified as corn, aggregated at the county level.

Quantifying the quality of nonprobability sample data has been of interest to many gov-
ernment agencies but conclusive studies have yet to be published. Parsons (1996) evaluated
the quality of FSA acreage totals with respect to coverage. Kennedy et. al (2016) evaluated
nonprobability surveys and assumed that the nonprobability samples were drawn as simple
random samples from the population and constructed pseudo-weights when constructing
domain estimates and associated measures of uncertainty. While we acknowledge potential
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error sources in the aggregated data, in this study we will treat the nonprobability county-
level values as fixed and free of error. In Table 1, we report a summary of the number of
counties with data available on corn planted acreage in 2015 from at least one source. Note
that the sets of counties with data available from either of the four sources are not mutually
exclusive, as depicted in the Venn diagram in Figure 3. After accounting for the 2726 coun-
ties with corn planted acreage identified from the CDL, additional planted acreage activity
is identified in only 22 (= 11+3+6+0+1+1+0) counties from the CAPS, FSA and RMA,
see Figure 3. Hence, our goal is to construct 2015 corn predictions for the total of 2748
counties. The number of counties with corn planting activity differs across years, states,
commodities and data sources.

Table 1: Counties, in Sampled States, with Corn Planting Activity, 2015

Data Source (USDA) Number of Counties
NASS CAPS 2426
FSA 2398
RMA 2230
NASS CDL 2726

Figure 3: Counties, in Sampled States, with Corn Planting Activity, 2015

Since the values available from the three sources of auxiliary data are measurements of
the same county-level quantity, i.e., corn planted acreage, the three sources may be com-
bined at the county level to construct one set of values indicating the maximum number of
available, reported by volunteers or remotely classified, corn planted acreages. Let Admin
PL denote the constructed variable as such. If all FSA, RMA and CDL values are avail-
able, then the maximum value is considered. If only two of the values are available, the
maximum value is considered. If only one of the values is available, then that value is con-
sidered. To investigate the additional contributions of the CDL data, we will also consider
an Admin PL variable, as derived from FSA and RMA data only, and present results in
Section 4.

 
1353



2.3 Borrow Information from Multiple Data Sources

Nationwide analysis indicates strong linear relationships between the survey estimates and
the administrative data for all the states. A simple regression model of survey estimates on
FSA, RMA, CDL or Admin PL administrative values produces R2 values and estimated
slope coefficients b̂ summarized in Table 2 (25%,50%,75% quantiles). For illustration, we
use the data available for all the 102 counties in Illinois, since planted acreage values are
available from all the data sources. In Figure 4 we display the linear fit between the survey
estimates and the derived administrative values, Admin PL, and in Figure 9 in Appendix C
we display the linear fits between the survey estimates and the values available from each of
the three auxiliary sources, FSA, RMA and CDL, respectively. As a result of this analysis,
Admin PL will be included as a covariate in the model described in the next section.

Figure 4

Table 2: Nationwide Summaries

FSA RMA CDL Admin
1st Qu. Median 3rd Qu. 1st Qu. Median 3rd Qu. 1st Qu. Median 3rd Qu. 1st Qu. Median 3rd Qu.

R2 0.82 0.89 0.92 0.76 0.86 0.91 0.85 0.90 0.93 0.85 0.90 0.93
b̂ 0.85 0.91 0.99 0.89 0.97 1.17 0.75 0.84 0.91 0.75 0.84 0.89

3. Modeling Strategies

Following Erciulescu et al. (2018), the proposed model for a given state is a subarea-
level model, where the area represents the ASD, the subarea represents the county and the
subarea-level survey variances are treated as fixed and known. Of interest is prediction of
planted acreage at the county and ASD levels.

3.1 Hierarchical Bayes Model

Let i = 1, ...,m be an index for the m ASDs in the state under consideration; j = 1, ..., nci ,
be an index for the nci counties in ASD i; and nij be the sample size of the jth county in
the ith ASD. The total number of counties in the state is ∑mi=1 nci = n

c and the state sample
size is ∑mi=1∑

nc
i
j=1 nij = n.
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Let θ̂ij be the survey estimate for county i in ASD j and σ̂2ij be the corresponding
estimated survey variance. Illustrated for one state, one commodity and one parameter, the
hierarchical Bayes subarea-level model is

θ̂ij ∣(θij , σ̂
2
ij , vi)

ind
∼ N(θij , σ̂

2
ij), (3)

θij ∣(vi,β, σ
2
u)

ind
∼ N(x

′

ijβ + vi, σ
2
u),

vi∣σ
2
v

ind
∼ N(0, σ2v).

(4)

To complete the Bayesian model specification, we consider a priori independent param-
eters and adopt noninformative, proper priors for (β, σ2u, σ

2
v). The least squares estimates

of β are obtained from fitting a simple linear model for the county-level survey estimates
against the county-level auxiliary information, and then used as parameters in the prior
distribution for β. In particular, we adopt a multivariate normal prior distribution for β,
with mean and variance denoted by the least squares estimate for the mean and the least
squares estimate for the variance, multiplied by 103, respectively. By assigning a large
prior variance, we adopt a diffuse prior for β. The prior distributions for the model vari-
ance components σ2u and σ2v are Uniform(0,108) and Uniform(0,108), respectively.
For more details on the prior distribution for the random-effects variance component see
Browne and Draper (2005).

The model (3, 4) borrows information from all the counties in an ASD and from all the
ASDs in the state, while combining auxiliary information available at the subarea level, xij .
The result model predictions are composite predictions, denoted by the weighted average
of the subarea survey estimate and the best fitted values, after accounting for the area effect.
That is, for a county j, in district i, the posterior mean is

θ̃ij = x
′

ijβ̃ + γ̃i(
¯̂
θγi − x̄

γ′

i β̃) + γ̃ij {θ̂ij − x
′

ijβ̃ − γ̃i(
¯̂
θγi − x̄

γ′

i β̃)}

= γ̃ij θ̂ij + (1 − γ̃ij) {x
′

ijβ̃ + γ̃i(
¯̂
θγi − x̄

γ′

i β̃)} ,

(5)

where γ̃ij =
σ̃2
u

σ̃2
u+σ̂2

ij
, γ̃i. = ∑

nc
i
j=1 γ̃ij , γ̃i =

σ̃2
v

σ̃2
v+σ̃2

u(γ̃i.)−1 , ¯̂
θγi = (γ̃i.)

−1
∑
nc
i
j=1 γ̃ij θ̂ij and x̄γi =

(γ̃i.)
−1
∑
nc
i
j=1 γ̃ijxij . Technical details on the derivation are provided in Appendix B.

A discussion on the choice of county-level covariate values xij is provided in the next
subsection, as it depends on the availability of the data. When available, the county-level
covariate values, xij , are Admin PL values constructed as described above, and the model
is denoted by M. For comparison, a model with no covariates and a model with Admin PL
constructed using only the FSA and the RMA data are also fit, and denoted by M0 and M1,
respectively. In addition, the comparison of models M and M1 may be of interest to the
agency because the current NASS process of setting official statistics uses FSA and RMA
data, but it does not use CDL data directly; see Cruze et al. (2016) for a detailed description
of the process.

3.2 Incomplete Data

Complete sets of data are needed to define the counties with corn planted acreage activity
and for models (3, 4) to be fit. One other challenge in combining data from multiple
sources is the incomplete availability of the data. For this, we develop modeling strategies
to account for three cases of available information for a given county j, in ASD i:
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1. (θ̂ij , σ̂2ij) are available, but xij is missing,

2. (θ̂ij , σ̂2ij , xij) are available,

3. (θ̂ij , σ̂2ij) are missing, but xij is available.

For the missing data cases, we assume the missing at random mechanism, since most of the
missing covariate values correspond to smaller survey planted acreage estimates.

The first step in the modeling strategies is to impute the missing covariate values xij ,
for counties j in districts i, where survey estimates (θ̂ij , σ̂2ij) are available. For this, we
use the xij values available for the most similar counties in the state. Similarity is defined
using the absolute-value norm applied to the available survey estimates,

xij ← xij′ ∣ j
′

= arg mink {∣θ̂ik − θ̂ij ∣} ,

over all counties k with survey and auxiliary data available. The resulting set of counties
nc with survey and auxiliary data (θ̂ij , σ̂2ij , xij) available denotes all the counties with corn
planting activity for the study.

After imputation, the models are fit to the nc counties for which (θ̂ij , σ̂2ij , xij) are avail-
able, using R JAGS, and posterior distributions are constructed using MCMC simulation.
We use 3 chains, each of 10,000 Monte Carlo samples, 1,000 burn-in samples and thinned
every 9 samples. Convergence diagnostics are conducted for selected states. The conver-
gence is monitored using trace plots, the multiple potential scale reduction factors (values
less than 1.1) and the Geweke test of stationarity for each chain (Gelman and Rubin, 1992
and Geweke, 1992). Also, once the simulated chains have mixed, we construct the effective
number of independent simulation draws to monitor simulation accuracy.

Using the chains of iterates obtained from the model fit, we construct posterior sum-
maries from the posterior distributions of the nuisance parameters and of the county-level
and ASD-level parameters of interest,

• nuisance parameters iterates : βr, (σ2u)
r, (σ2v)

r,

• county-level iterates: θrij ,

• district-level iterates: θri ∶= ∑
nc
i
j=1 θ

r
ij ,

where r = 1, ...,R, and R denotes the total MCMC iterates, after burn-in and thinning,
equal to 3000 in the application study.

In the last step in the modeling strategies, the model output from the complete data
fit is used to predict for counties where (θ̂ij , σ̂2ij) is missing but xij is available. For this,
{θrij}r=1,...,R are drawn from the linking model (4),

θrij ∣(v
r
i ,β

r, (σ2u)
r
)
ind
∼ N(x

′

ijβ
r
+ vri , (σ

2
u)
r
).

3.3 Consistency among Nested Levels

As discussed in the Section 1, NASS publishes the state-level value of corn planted acreage
before estimation is conducted at the substate levels. To overcome the challenge of attain-
ing consistency among predictions constructed for nested levels, we consider an external
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benchmarking adjustment, that is timely and practically usable. A detailed discussion of
classic benchmarking adjustments is given in Rao and Molina (2015). Studies on differ-
ent benchmarking adjustments to crop acreage prediction are discussed in Erciulescu et
al. (2018). In this section, we illustrate a benchmarking adjustment applied to the model
predictions constructed under the different data availability cases, so that the county-level
predictions aggregate to the ASD-level predictions and the ASD-level predictions aggre-
gate to the prepublished state-level value.

Raking provides a suitable benchmarking adjustment to ensure consistency of substate
predictions with state targets. For this study, we use the extension of the classic ratio ad-
justment given in Erciulescu et al. (2018), and we apply the constraint at the (MCMC)
iteration level. This type of benchmarking adjustment is not adopted as part of the prior
information or the model, but it facilitates its application to the set of in-sample and not-in-
sample counties, in a small amount of time.

Let the state-level target be denoted by a. Then the relation

nc∗

∑
i,j

θ̃Bij = a, (6)

needs to be satisfied, where nc
∗

is the total number of counties in the state and θ̃Bij is the
final model prediction for county j and district i. Note that nc

∗

= nc + (nc
∗

−nc), where nc

is the number of in-sample counties and (nc
∗

−nc) is the number of not-in-sample counties.
The ratio adjustment is applied at the MCMC iteration level as follows

θBij,r ∶= θij,r × a ×
⎛
⎜
⎝

m

∑
k=1

nc∗

k

∑
l=1
θkl,r
⎞
⎟
⎠

−1

, (7)

where θBij,r is the benchmarking-adjusted iteration, for r = 1, ...,R. Final county-level and
district-level posterior summaries are constructed using the county-level iterates θBij,r and

district-level iterates θBi,r ∶= ∑
nc∗

i
j=1 θ

B
ij,r. For example, the resulting posterior means/variances

are constructed as Monte Carlo means/variances of iterates. The county-level and district-
level posterior means satisfy the multi-level benchmaking to state-level target a; note that
nc

∗

i is the total number of counties in district i.

From (7), note the importance of correctly specifying the set of counties to be esti-
mated, since a smaller/larger than the truth number of counties would result in an overad-
justment/underadjustment in the predictions.

4. Results

Planted acreage data from the four sources summarized in Table 1 are used to define the
set of counties to be estimated. For models fit and prediction, we define the set of counties
with complete data after implementing the first step in the modeling strategies enumerated
in Section 3.2. As previously mentioned, we consider three models for comparison: M0,
the model fit to the survey data and no covariate; M1, the model fit to the survey data with
covariate derived from FSA and RMA data (directly and imputed, when applicable); and
M, the model fit to the survey data with covariate derived from FSA, RMA and CDL data
(directly and imputed, when applicable). Note that the survey data modeled in all M0, M1
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and M is the same, only the covariate data differ.

The goodness of fit for models M0, M1 and M, fitted state by state, is evaluated using
the Deviance Information Criterion (DIC) and results are presented in Figure 5. The x-axis
in Figure 5 illustrates the two-digit Federal Information Processing Standards (FIPS) codes
for the 36 states, sampled for corn in 2015. Model comparison is conducted for each state,
and not between states. The goodness of fit increases when auxiliary information is incor-
porated in the model, the best fit being when the Admin PL is defined using FSA, RMA and
CDL. Models M1 and M result in similar performance; however, there are other benefits of
using the CDL, as discussed in Section 4.2.

Figure 5

Models M0, M1 and M are further compared with respect to the contribution of auxil-
iary data to the final model predictions. Three-number summaries (25%,50%,75% quan-
tiles) of the estimated shrinkage coefficients, γ̃ij (%) and γ̃i (%) defined for (5), are con-
structed over all the 36 states for which the models are fit and illustrated in Tables 3 and
4. Again, models M1 and M perform similarly. The auxiliary data and their relationship
with the survey estimates receive larger weights in the final predictions under model M
compared to model M0.

Increased Number of Reliable Estimates

Of great interest is the contribution of administrative data to increasing the number
of county-level estimates. A nationwide map of the 2015 corn positive planted acreage
county-level model predictions on the log10 scale, using model M, is illustrated in Figure
6. Model predictions are produced for 2627 counties, of which 2420 are in-sample counties
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Table 3: Summary of Estimated Shrinkage Coefficients γ̃ij (%)

Approach Covariate ADMIN PL 1st Qu. Median 3rd Qu.
Model M0 None 60.66 85.69 98.01
Model M1 FSA and RMA 2.67 11.41 44.92
Model M FSA, RMA and CDL 2.42 10.25 40.94

Table 4: Summary of Estimated Shrinkage Coefficients γ̃i (%)

Approach Covariate ADMIN PL 1st Qu. Median 3rd Qu.
Model M0 None 85.37 92.25 95.48
Model M1 FSA and RMA 46.04 62.13 77.36
Model M FSA, RMA and CDL 47.90 66.35 82.54

and 207 are not-in-sample counties. Additionally, 121 model predictions were set to zero.
Darker areas correspond to higher intensity regions. Not-in-sample predictions are mostly
produced for counties located in non-major corn producing states and with small acreage
amounts (the maximum not-in-sample model prediction is approximately 60% the median
of the in-sample model predictions) and large CVs. In contrast, recall that survey estimates
are available for 2426 counties, as illustrated in Figure 1.

Figure 6
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COUNTY−LEVEL MODEL PREDICTIONS: CORN, 2015

Model Efficiency

Model efficiency comparisons are conducted for the set of counties where both a survey
estimate and a model prediction are available. Compared to the survey estimates, the SEs
and CVs of the model predictions are lower for most counties and districts. In Figure 7 we
illustrate the reduction in CVs for the 2015 county-level estimates of corn planted acreage
in Illinois, under model M.

In Tables 5 and 7 we illustrate nationwide results (25%,50%,75% quantiles), com-
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paring the county-level survey SEs/CVs to the model SEs/CVs for models M1 and M. In
Tables 6 and 8 we illustrate nationwide results (25%,50%,75% quantiles), comparing the
district-level survey SEs/CVs to the model SEs/CVs for models M1 and M. Comparing
a model’s performance versus survey’s performance based on precision/relative precision,
we observe an increase in precision/relative precision in the range 34 − 70%/32 − 72% in
most of the county-level SE/CV and in the range 27−57%/48−54% in most of the district-
level SE/CV, with slight improvement at the county level for model M versus model M1.
We do not see an overall increase in precision at the district level for model M versus model
M1 because the districts are composed of both in-sample and not-in-sample counties, and
more predictions for not-in-sample counties are constructed using model M1.

Figure 7

Table 5: SE Summaries for Counties with Available Survey Estimates

Approach Covariate ADMIN PL 1st Qu. Median 3rd Qu.
Survey 640.90 2719.00 9494.00
Model M1 FSA, RMA 429.40 1233.00 2850.00
Model M FSA, RMA and CDL 429.30 1166.00 2839.00

Table 6: SE Summaries for Districts

Approach Covariate ADMIN PL 1st Qu. Median 3rd Qu.
Survey 4681.00 12220.00 36400.00
Model M1 FSA, RMA 2597.00 6121.00 15200.00
Model M FSA, RMA and CDL 2958.00 6470.00 15310.00

The three-number summaries in Tables 5 - 8 do not reflect the relative efficiency at the
domain (county or district) level. So, we report additional results in Figure 8, in the first row
for 2420 counties with positive survey estimates and model predictions, and in the second
row for the corresponding 272 districts (which may include additional model predictions);
domains with relative efficiency values greater than 3 are removed. The relative SE/CV
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Table 7: CV(%) Summaries for Counties with Available Survey Estimates

Approach Covariate ADMIN PL 1st Qu. Median 3rd Qu.
Survey 21.08 31.91 55.42
Model M1 FSA, RMA 5.97 12.60 38.74
Model M FSA, RMA and CDL 5.90 11.84 37.92

Table 8: CV(%) Summaries for Districts

Approach Covariate ADMIN PL 1st Qu. Median 3rd Qu.
Survey 7.03 10.50 16.04
Model M1 FSA, RMA 3.19 4.58 8.19
Model M FSA, RMA and CDL 3.22 4.73 8.50

is the ratio of the model prediction standard error/coefficient of variation to the survey
estimate standard error/coefficient of variation. Values larger than one for the county-level
relative SE are due to the benchmarking adjustments and values larger than one for the
district-level relative SE are due to the not-in-sample predictions and to the benchmarking
adjustments.

Figure 8
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4.1 Official Statistics

The current NASS publication standard is based on the survey summary and on relative
properties of the final estimates (the official statistics determined by NASS), for acreage and
production; see page 117 in National Academies of Sciences, Engineering, and Medicine
(2017) for more details. First, harvested acreage is defined as the difference between
planted acreage and failed acreage, and yield is defined as the ratio of production to har-
vested acreage. A county is candidate for publication if a minimum of 30 valid positive
reports of production or yield (respondents may report either quantity on the questionnaire)
is available in the sample. If this sample size threshold is not met, then a county is a candi-
date for publication if the ratio between the sum of unweighted harvested acreage reports
and the final harvested acreage estimate is greater than or equal to 25%, and based on at
least 3 positive yield reports. Estimates are published or suppressed for all parameters
(acreage, production and yield) with respect to each commodity in the county. Verifying
nondisclosure limitations, the same publication standard may be applied to groups of coun-
ties, too. In 2015, NASS published estimates of corn for 1433 counties, which are available
in NASS QuickStats (USDA NASS 2016b).

In (5), we provided the closed-form expression for the model predictions. Since they
are composite predictions of various sources, the nationwide set of model predictions is
candidate for official publication. However, the challenge in constructing fit-for-use offi-
cial statistics is the need for a publication standard that would permit publication of model
predictions. While the current publication standard may be adopted for the model predic-
tions, it would not make use of other properties of the model predictions, such as standard
errors or credible intervals. For this application study, we investigate a hypothetical CV-
based assessment, consistent with the publication standards at other government agencies.
For example, Marker (2016) reports that many government agencies use a CV-based assess-
ment to determine the areas for which estimates can be published, with cutoffs typically in
the range of 30% − 50%. At NASS, Bell and Barboza (2012) consider an evaluation of
CV-based publication standard and conclude that CVs should play a role in the publication
of official statistics. We use a 30% threshold for the county-level CVs across the nation,
leading to 1694 candidate county-level planted acreage predictions for publication of corn
in 2015.

4.2 Discussion

In this paper the methodology developed was illustrated using corn planted acreage, and the
results for 2015 were presented. As an external validation exercise, models with specifica-
tion M1 were fit to data from years 2014, 2015 and 2016, on corn, soybean and sorghum, to
each year-commodity-state combination. The number of model predictions is larger than
the number of survey estimates in each case, but the number of predictions differs. For the
counties and districts where both a model prediction and a official value were available, we
compared the two using metrics such as median absolute difference, median absolute rela-
tive difference and credible interval coverage. In general, results indicated close agreement
between the model predictions and the official values (constructed under the current NASS
process).

As a consequence of the model specification, in particular the normality assumption
in the linkage model, predictions are set to zero in some counties because the posterior
means were negative. While we acknowledge that other choices of distributions may be
considered, for example lognormal, we recognize the simplicity of the current specifica-
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tion, especially with respect to prediction and benchmarking at multiple levels of interest.
Also, the zero value was a reasonable choice for the counties where posterior means were
negative, as corresponding to posterior quantiles close to 50%.

Among the states sampled for corn, soybean, sorghum, winter wheat in 2015, the largest
numbers of not-in-sample predictions are for Texas, Texas, Mississippi, Georgia, where, re-
spectively, 42, 70, 28 and 38 out of 184, 122, 73 and 154 counties were predicted. Their
total planted acreage accounted for approximately 0.7%, 11.83%, 5.23% and 12.47%, re-
spectively, of total planted acreage in the state. See Appendix D for additional results on
soybean, sorghum and winter wheat. Hence, benchmarking only the set of counties where
survey estimates are available would have resulted in overadjusting the predictions. While
the proportion of total acreage accounted for by the not-in-sample counties is small, the
predictions play an important role in setting predictions for other variables of interest, such
as harvested acreage, production and yield.

5. Conclusions

The quality and usability of different data sources are discussed, and contributions of ad-
ministrative data are illustrated for the 2015 corn planted acreage estimation study. Some
results are presented for additional commodities: soybean, sorghum and winter wheat.
Blending survey and administrative data, we produce model county-level and district-level
predictions for a set of counties predefined using in-sample data available from the survey
summary and not-in-sample data available from administrative sources.

Our initial contribution is to use the administrative data to determine the set of subar-
eas with crop-specific planting activity in 2015. This approach is novel and we encour-
age similar investigations for other small area estimation applications where small domain
characteristics are diverse within the large domains and not-in-sample predictions are of in-
terest, such as agricultural applications (i.e. county-level cash rental rate estimation makes
sense only for counties where at least one cash rental contract exists), health applications
(i.e. youth smoking prevalence estimation make sense only for domains where at least one
youth smoker actually exists) or education applications (i.e. estimation of American Indian
children ageing 5-17 in poverty makes sense only for domains where at least one American
Indian child ageing 5-17 lives).

For the methodology illustrated, we presented the implicit subarea-level weights asso-
ciated with the different components of the final prediction. The contribution of admin-
istrative data to final predictions was evaluated using the shrinkage parameter γij . Model
specifications, using a covariate derived from FSA and RMA data alone (M1), or from FSA,
RMA and CDL data (M) are compared. Model M is slightly more efficient than model M1;
however, it is important to note that, under model M1, 110 county-level Admin PL values
were imputed, while under model M, only 11 county-level Admin PL values were imputed.
Alternative strategies for imputation of missing auxiliary values and accounting for differ-
ent errors in the covariates in the final model predictions are of interest for future research.

The number of positive model predictions is larger than the number of available survey
estimates; however, a more robust model specification is of future interest, to avoid the con-
struction of negative predictions. Under model specification M, a total of 2629 county-level
predictions were constructed, while under model M1, only 2486 county-level predictions
were constructed. For the set of counties where survey estimates are available and positive
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model predictions are constructed, the county-level and district-level model SEs and CVs
are lower than the corresponding survey SEs and CVs, respectively.

Another major contribution of this paper is the operational framework presented, as
it applies to any small area estimation application, from data preparation and challenges
in dealing with specific features and incompleteness, to constructing a pool of predictions
as candidates for official statistics and challenges associated with the publication process.
Areas of improvement include exploration of state-specific, commodity-specific and time-
specific covariates, revision of the set of counties with indicated corn planted acreage ac-
tivity and improvement of the prediction by accounting for key periods of time in the crop
development.

Finally, the current NASS publication standard is being revised. Literature review indi-
cates CV-based publication standards for other government agencies around the world. In
this paper, we investigated the effect of a simple threshold of 30% on the model CV, but
concurrent research is being conducted; see Cruze et al. (2018).
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Appendix A. Posterior Mean Derivation

It is easy to show that
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γ
i − x̄

γ′

i β), (1 − γi)σ
2
v),

where γij = σ2u(σ̂
2
ij+σ

2
u)
−1 and γi = σ2v(σ

2
v+σ

2
u(∑

nc
i
j=1 γij)

−1)−1, for i = 1, ...,m, j = 1...nci .

The result follows.

Appendix B. Borrow Information from Multiple Data Sources

Figure 9

Appendix C. Increased Number of Reliable Estimates for Other Commodities

The county-level maps in Figures 10-13 depict positive survey (CAPS) estimates, offi-
cial values and model (M) predictions on the log10 scale, for corn, soybean, sorghum and
winter wheat, respectively. Dark areas correspond to high intensity regions.
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Figure 10
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COUNTY−LEVEL SURVEY ESTIMATES: CORN, 2015
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COUNTY−LEVEL OFFICIAL VALUES: CORN, 2015
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COUNTY−LEVEL MODEL PREDICTIONS: CORN, 2015

• 1433 official values

• 2426 survey estimates; 1125 have CVs ≤ 30%

• 2627 model predictions; 1694 have CVs ≤ 30%

– Texas: largest number of not-in-sample predictions, 42 out of 184 counties, accounting for ∼0.7% of
planted acreage in the state

– 121 zero predictions  
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Figure 11
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COUNTY−LEVEL SURVEYS ESTIMATES: SOYBEAN, 2015
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COUNTY−LEVEL OFFICIAL VALUES: SOYBEAN, 2015
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COUNTY−LEVEL MODEL PREDICTIONS: SOYBEAN, 2015

• 1306 official values

• 2012 survey estimates; 1046 have CVs ≤ 30%

• 2224 model predictions; 1472 have CVs ≤ 30%

– Texas: largest number of not-in-sample predictions, 70 out of 122 counties, accounting for ∼11.83% of
planted acreage in the state

– 173 zero predictions  
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Figure 12
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COUNTY−LEVEL SURVEYS ESTIMATES: SORGHUM, 2015
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COUNTY−LEVEL MODEL PREDICTIONS: SORGHUM, 2015

• 218 official values

• 754 survey estimates; 135 have CVs ≤ 30%

• 922 model predictions; 390 have CVs ≤ 30%

– Mississippi: largest number of not-in-sample predictions, 28 out of 73 counties, accounting for ∼5.23%
of planted acreage in the state

– 89 zero predictions  
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Figure 13
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COUNTY−LEVEL SURVEYS ESTIMATES: WINTER WHEAT, 2015
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COUNTY−LEVEL MODEL PREDICTIONS: WINTER WHEAT, 2015

• 1049 official values

• 2191 survey estimates; 697 have CVs ≤ 30%

• 2417 model predictions; 1321 have CVs ≤ 30%

– Georgia: largest number of not-in-sample predictions, 38 out of 154 counties, accounting for ∼12.47%
of planted acreage in the state

– 64 zero predictions  
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