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Abstract 

The Behavioral Risk Factor Surveillance Survey (BRFSS) is designed to produce estimates 

for states and large metropolitan areas. For some variables, county-level BRFSS estimates 

have been produced by others using small area estimation methodology. We generated 

county-level estimates of the proportion of adults with health insurance coverage (insured 

rate) using the New York BRFSS data. The goal was to demonstrate the small area 

estimation (SAE) technique using the readily-available R package BayesSAE. As a 

validation, we compared the results from BayesSAE with those from OpenBUGS, a well-

established software for Bayesian computation. We also compared the model-based 

estimates with direct design-based estimates. 

 

Keywords: SAE, area level model, Fay-Herriot model, hierarchical Bayes, BayesSAE, 

OpenBUGS, Behavioral Risk Factor Surveillance Survey (BRFSS)   

 

 

1. Background 

 

State and local government agencies need actionable data to effectively manage their 

programs. State and local agencies are particularly interested in health/welfare, education, 

labor, transportation, public safety, and special issues such as the opioid epidemic. Such 

agencies rarely have funds to conduct surveys on a regular basis, although they might have 

related administrative data for their own jurisdictions.  Federal programs, on the other hand, 

regularly produce data that inform federal policy, but it is typically not their mission to 

provide data at state and local levels. Even so, federal agencies struggling to justify their 

existence encourage state and local governments to use their data. One solution to leverage 

the federal data and fill the data gap for subnational areas is small area estimation (SAE). 

 

SAE is intended for situations in which a sample suitably designed for one purpose is too 

small for estimating subdomains or sub-geographies needing estimates. For example, a 

national sample may not be enough for providing state or county estimates. The key to 

successful subdomain estimation is to identify auxiliary data that are correlated with the 

outcomes of interest and available for the entire population. The relationships between the 

survey outcome variables and auxiliary variables are modeled, and the models are used to 

generate predictions, either at the unit level or at the domain/area level. By pooling many 

small areas together in the model, assuming they follow the same model, the estimation of 

the model parameters is strengthened. 

 

There are challenges in applying SAE methods for production in statistical systems. 

Czajka, Sukasih, and Queen (2013) identified a few factors including availability of 

auxiliary variables, computational challenges (software availability and programming 
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capability), comparative evaluations of alternative small area methods, validation, 

interpretation, and communication of the results. This paper specifically addresses software 

and programming capability, demonstrates the work with available software, determines 

appropriate models, and presents results in a compelling and useful way so that the 

estimates provide meaningful information to the customers. The goal is to demonstrate the 

capabilities of SAE for state and local agencies that may be new to SAE.  

 

2. Methodology and Data 

 

2.1.  Small Area Estimation Method 

Small Area Estimation uses a model or a set of models (either implicit or explicit) to link 

related areas/domains, time periods, and/or auxiliary data to the variables of interest. A 

recent, comprehensive guide to SAE is Rao and Molina (2015). Compared to direct 

estimation1 with survey data, SAE requires extra steps such as modeling (including variable 

and model selection), checking distributional assumptions for random effects in the model, 

and performing parameter estimation that involves iterative computation. Availability of 

good auxiliary data and determination of suitable model relationships are crucial factors to 

success with SAE techniques. When good auxiliary data are available with suitable model 

relationships, SAE techniques confer several advantages over direct estimation, such as the 

capability of making estimates for small domains with better precision due to “borrowing 

strength” from neighboring or related areas/domains, time periods, or auxiliary 

information. One well- known disadvantage is that the estimate is often biased; however, 

due to better precision/variance, the mean square error (defined as (bias)^2 + variance) is 

often smaller than that of the direct estimate. That is, reduction in the MSE is the main 

reason for using SAE. 

 

There are many variations of SAE techniques, and they can be grouped into implicit and 

explicit modeling (Rao and Molina 2015). While modern techniques of small area 

estimation are usually based on explicit modeling (linear mixed model, hierarchical model, 

etc.), traditional (implicit) linking models are still used to produce small domain estimates.  

Estimation with implicit modeling includes:  

 

• synthetic estimation, i.e., the indirect estimator for a small area is derived from a 

direct estimator for a larger area covering several small areas;  

 

• composite estimation, i.e., the indirect estimator for a small area is computed as a 

weighted average of an indirect estimator for the small area (can be a synthetic 

estimator) and a direct estimator for the small area.   

 

Estimation with explicit modeling can be done using one of two model types, depending 

on the availability of data: 

 

• area level models, i.e., models that relate small area estimates to area-specific 

auxiliary variables; 

 

• unit level models, i.e., models that relate unit (element) level data to unit-specific 

auxiliary variables. 

 

                                                           

1
 Direct design-based estimation is the common approach where the statistics of interest are 

directly computed as weighted aggregations of individual raw data across responding samples.  
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For each type of explicit models, there is a wide range of model extensions depending on 

the type of study variables, estimation techniques, assumptions on parameters, etc. Rao and 

Molina (2015) provide a complete discussion of these models. 

 

Areal-level Fay-Herriot Model for Proportions 

 

As mentioned above, there are two types of SAE models; area-level models and unit-level 

models. Suppose an analyst is constructing an SAE model using data from a survey. When 

access to microdata at the individual observational unit level is possible, and when the 

variable indicating the “small area” is available to the data user, one can utilize these data 

to build SAE unit-level models. However, when access to microdata is limited to public 

use data files, usually the variable identifying the small area is protected (suppressed or 

dropped from the data) due to disclosure avoidance, so constructing unit-level models may 

not be possible. In addition, limitations on the auxiliary variables available from a 

particular survey discourage users from building unit-level models. Alternatively, one can 

build SAE area-level models where auxiliary data/covariates at the area-level can be used 

as predictors. The use of area-level models expands opportunities to include more auxiliary 

variables/covariates, which can come from the particular survey at hand or from other 

external surveys, as long as the covariates can be constructed at the small area level.  

 

A popular area-level model in the application of SAE is the Fay-Herriot (F-H) model (Rao 

and Molina 2015; Fay and Herriot 1979) where the analyst can model the estimation of an 

area-level parameter of interest through a regression model using area-level covariates as 

predictors. The Fay-Herriot model assumes that the variance in the model estimates comes 

from two sources: sampling variability and error in the model. The models are defined as 

the combination of a sampling model and linking model as follows: 

 

Sampling model:   ��� =  �� + �� 
 

Linking model:     �� = �	 + �
�
� + ⋯ + ��� + �� 
 

for small area � = 1, ⋯ , �. The term �� is the sampling error, and the term �� is the model 

error. When the sampling and linking models are said to be matched, we can combine the 

two into a single linear mixed model: 

 

��� =  �	 + �
�
� + ⋯ + ��� + �� + ��. 
 

In this paper we demonstrate the SAE F-H model to estimate a proportion �� for county i 

using data designed for state-level estimation. Therefore, the small area is defined as a 

county. The two variance sources are described with the following models. Because the 

value of the proportion has values between zero and one, the linking model is transformed 

into logit form:  

 

Sampling model:  �� =  �� + �� 
 

Linking model:     ��������� = ��� � ��

���

 = �	 + �
�
� + ⋯ + ��� + �� 

 

where �
, �!, ⋯ , � are the county-level covariates. Because the linking model for �� is 

not linear, the sampling model and the linking model are said to be unmatched, so that the 
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two models cannot be merged into a linear mixed model. The sampling errors and model 

error terms are all independent. 

 

Our approach used a Hierarchical Bayes model that put a prior distribution on model 

parameters. The sampling error �� may be assumed to follow a normal distribution with 

mean 0 and variance "� = 1/$�. That is, 

 

�� ~ &�0, "�� 

 

and "� is empirically estimated by the direct-estimate of the sampling error variance. 

 

The model error �� (area-specific random effect) is also assumed to be distributed as normal 

with mean 0 and variance ()! = 1/$2, where we specify a prior distribution on 

hyperparameter $2. That is,  

 

��  ~ &�0, ()!� 

 

()! = 1/$2 

 

$2 ~ +�0,20� 

 

In addition, we also specify a distribution on the model parameters �	, �
, ⋯ , � as  

, ~ -�., /...�. These prior distributions were chosen as diffuse proper prior 

distributions, as this application for proportions with unmatched sampling-linking models 

would not allow improper priors to generate a proper posterior distribution.  

 

The Hierarchical Bayesian method uses the sample data to iteratively update the model 

parameters Ω = � �, �, ()!�.2 Bayesian inference on �� and model parameters Ω is based on 

integrating the joint posterior distribution of  1��� , Ω |3� for data y. However, this 

integration may not be easily done. Therefore, we used simulation; i.e., random draws from 

the posterior distribution to generate R replicates of Markov Chain Monte Carlo (MCMC) 

samples of �	
�4�, �


�4�, ⋯ , �
�4�, ��

�4�
, where 5 = 1, ⋯ , 6. Then we substituted 

�	
�4�, �


�4�, ⋯ , �
�4�, ��

�4�
 into the linking model above and solved for ��

�4�
. The model-based 

estimate of ��
789 is then the (posterior) mean of ��

�4�
 across R replicates.  

 

Due to unmatched sampling and linking models in the application of the Fay-Herriot 

estimator, the final estimates are calculated as a combination of the direct survey estimate 

and the model-based prediction, where the importance placed on each component is based 

on the variance associated with each component. That is, if the sample size is relatively 

large so that the direct estimate has smaller variance, more of the weight is on the direct 

                                                           
2 In traditional statistical inference, the parameter of interest π is considered as an unknown but 

fixed quantity. In Bayesian analysis, the parameter of interest π is considered as a quantity that has 

a variation and is modeled by a probability distribution (called a prior distribution). Then a sample 

is taken, and the data are observed, say Y. The prior distribution is then updated with these data, 

and it is then called the posterior distribution., which is the conditional distribution of π given Y. 

The Bayesian estimation of π can be done by making statements about π from the posterior 

distribution. For example, the point estimate of π is computed as the mean/expected value from the 

posterior distribution. 
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estimate, but if the model prediction has smaller variance, more of the weight is on the 

model prediction. If fact, if a county had no sample data, all the weight would be on the 

model prediction. 

 

2.2. Data 

 

Survey Outcomes 

 

In this paper, we demonstrated this Hierarchical Bayes SAE method for estimating the 

county-level proportion of adults with health care insurance (insured rates) in the state of 

New York using data from the New York Behavioral Risk Factor Surveillance Survey 

(NY-BRFSS).3 The BRFSS is an annual system of statewide random telephone 

surveillance surveys designed by the Centers for Disease Control and Prevention. The 

BRFSS data provide valuable information in support of health care policy decisions, and 

the BRFSS surveys are intended for estimates at the state and large metropolitan area 

levels. When direct design-based estimation is used to compute statistics at small area 

levels such as counties, the statistics may not be sufficiently reliable because the sample 

was not designed for those levels. Our paper created model-based estimates to provide a 

more reliable prediction of adult insured rates for NY counties by making use of direct 

estimates and covariates from other sources with larger sample sizes.  

 

Under a data user agreement with the New York State Department of Health (NYSDOH), 

we obtained the 2016 NY-BRFSS restricted use file. This data file has a county 

identification variable and an analysis weight that can be used for direct design-based 

estimation at the county level. Any analyses, interpretations, or conclusions based on these 

data are to the responsibility of the authors rather than NYSDOH or BRFSS. 

 

Auxiliary Variables 

 

Graven and Turner (2011), and Bauder et al. (2017) have tested and used many auxiliary 

variables in small area estimation models of health care coverage rates. It is clear from the 

literature that health care coverage, or lack thereof, is related to race/ethnicity, age, sex, 

education level, employment status, usage of public assistance, and various measures of 

income or poverty. Some of the variables such as sex that are important for predicting 

insurance coverage for an individual are less meaningful at the county level. These 

covariates are publicly available, or derived from public sources, most at no cost to the 

user. We started with the covariates used in those two papers as candidates for our insured 

rate model. The initial set of auxiliary variables for consideration as model covariates and 

the source of data (in brackets) are listed below: 

 

�
 = total adult population (ACS4 5-year) 

�! = percent Hispanic (ACS 5-year) 

�: = percent AIAN (ACS 5-year) 

�; = percent household 65 and over (ACS 5-year) 

�< = percent non-citizen (ACS 5-year) 

�= = percent adults employed by non-retail firms (County Business Patterns) 

�> = percent of housing units that are rural (2010 Census) 

�? = percent of housing units that are resident-owned (ACS 5-year) 

                                                           
3 https://www.health.ny.gov/statistics/brfss/ 
4 ACS = American Community Survey (https://www.census.gov/programs-surveys/acs/) 
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�@ = percent adults with less than high school (ACS 5-year) 

�
	 = average unemployment rate (Bureau Labor Statistics) 

�

 = median AGI or median HH income (SAIPE5 covariate) 

�
! = ACS-Like Poverty Universe, all age (SAIPE covariate) 

�
: = SNAP6 benefit recipients (SAIPE covariate) 

�
; = per capita income (Bureau of Economic Analysis) 

 

We implemented variable selection methods to select a subset of these variables for the 

model. With potential correlations among these covariates and the limited number of 

observations (counties) used to build the model, we selected four variables as predictors as 

follows: percent non-citizen (�<), percent of housing units that are resident-owned (�?), 

percent adults with less than high school education (�@), and average unemployment rate 

(�
	). 

 

2.3.  Software 

For SAE calculations, there are several statistical software packages available, either 

commercially or as freeware. For our demonstration on Hierarchical Bayes models, we 

used R packages that are freeware. 

 

R Packages 

 

Several packages for SAE are available in R, including Sae, Sae2, Rsae, JoSAE, 

saeRobust, hbsae, saery, mme, smallarea, saeSim, maSAE, and BayesSAE. 

However, some packages were developed for specific models only. For estimating small 

area proportions (unmatched sampling and linking models), we used the BayesSAE 

package (Shi 2018) that can handle Hierarchical Bayes models, runs MCMC samples, and 

has an option for logit transformation (tran="logit" option). The code to run the SAE 

model is very simple (“one line”) and does not require high level programming skill. We 

fit the model by using the function BayesSAE() using the default prior distribution. To 

evaluate this package, we ran a comparison using another freeware called OpenBUGS, a 

popular software package for Bayesian analysis. 

 

OpenBUGS 

 

OpenBUGS (http://www.openbugs.net/w/FrontPage) is an open source statistical software 

package for Bayesian analysis of complex statistical models using MCMC techniques 

(Robert and Casella 1999). OpenBUGS programs were run within R using the 

R2OpenBUGS package (Sturtz, Liggesy, and Gelman 2017). Because the use of the 

Hierarchical Bayes method with MCMC simulation produces replicates of variance 

components, as well, the software also produces estimates of mean squared errors. 

OpenBUGS also allows more than one chain of simulated data.  

 

The R2OpenBUGS package allowed us to run OpenBUGS from R. the associated coda 

package contains a suite of functions that can be used to summarize, plot, and diagnose 

convergence from MCMC samples. It also provides a set of convergence diagnostics such 

                                                           
5 SAIPE = Small Area Income and Poverty Estimates (https://www.census.gov/programs-

surveys/saipe.html) 
6 SNAP = Supplemental Nutrition Assistance Program 

(https://www.fns.usda.gov/snap/supplemental-nutrition-assistance-program-snap) 
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as Gelman & Rubin’s potential scale reduction factor (Gelman and Rubin 1992). However, 

the user needs to have substantial knowledge of the BUGS language to specify the models 

and distributions. 

 

We used 10,000 replicates in MCMC with 5,000 iterations of burn-in.  In addition, to 

reduce the potential autocorrelation in the replicate samples, we sampled from every kth 

iteration, where k = 5. 

 

3. Results 

 

Table 1 shows the comparison of the model-based estimates of proportions of insured 

adults computed using BayesSAE and OpenBUGS for all counties in New York, as well 

as their variance (posterior variance for the Bayesian estimates). For comparison, we also 

included the direct design-based estimates of proportions of insured adults. 

 

Table 1. Design-based and model-based estimates for adult insured rates for New York 

counties, 2016 

 

County 

Point estimate Variance* 

Bayes 

SAE 

Open 

BUGS 

Design-

based 

Bayes 

SAE 

Open 

BUGS 

Design-

based 
Albany County 0.928 0.928 0.932 0.00019 0.00018 0.00023 

Allegany County 0.924 0.923 0.928 0.00026 0.00027 0.00037 

Bronx County 0.825 0.825 0.830 0.00047 0.00046 0.00046 

Broome County 0.927 0.926 0.934 0.00031 0.00030 0.00047 

Cattaraugus County 0.918 0.918 0.923 0.00028 0.00027 0.00038 

Cayuga County 0.900 0.900 0.905 0.00038 0.00038 0.00054 

Chautauqua County 0.905 0.905 0.904 0.00023 0.00022 0.00028 

Chemung County 0.948 0.948 0.964 0.00017 0.00018 0.00014 

Chenango County 0.937 0.937 0.960 0.00021 0.00022 0.00013 

Clinton County 0.914 0.914 0.923 0.00022 0.00023 0.00025 

Columbia County 0.882 0.884 0.886 0.00049 0.00048 0.00064 

Cortland County 0.933 0.932 0.943 0.00034 0.00034 0.00051 

Delaware County 0.912 0.912 0.919 0.00032 0.00032 0.00041 

Dutchess County 0.908 0.908 0.912 0.00030 0.00030 0.00038 

Erie County 0.897 0.897 0.889 0.00031 0.00031 0.00047 

Essex County 0.947 0.947 0.965 0.00015 0.00016 0.00011 

Franklin County 0.880 0.879 0.879 0.00067 0.00067 0.00115 

Fulton County 0.880 0.880 0.869 0.00058 0.00058 0.00106 

Genesee County 0.924 0.924 0.935 0.00029 0.00029 0.00036 

Greene County 0.857 0.857 0.844 0.00094 0.00097 0.00191 

Hamilton County 0.900 0.898 0.909 0.00082 0.00085 0.00164 

Herkimer County 0.922 0.921 0.924 0.00027 0.00026 0.00039 

Jefferson County 0.913 0.912 0.898 0.00036 0.00036 0.00070 

Kings County 0.838 0.838 0.836 0.00021 0.00021 0.00023 

Lewis County 0.901 0.900 0.878 0.00057 0.00061 0.00133 

Livingston County 0.893 0.894 0.889 0.00064 0.00060 0.00128 

Madison County 0.906 0.907 0.900 0.00063 0.00064 0.00170 

Monroe County 0.923 0.923 0.929 0.00020 0.00022 0.00025 

Montgomery County 0.873 0.873 0.868 0.00068 0.00068 0.00115 

Nassau County 0.900 0.900 0.904 0.00029 0.00029 0.00034 

New York County 0.870 0.870 0.864 0.00022 0.00023 0.00026 

Niagara County 0.914 0.914 0.903 0.00045 0.00046 0.00104 

Oneida County 0.902 0.902 0.908 0.00040 0.00042 0.00059 

Onondaga County 0.891 0.891 0.886 0.00028 0.00028 0.00037 

Ontario County 0.909 0.910 0.905 0.00042 0.00041 0.00078 
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County 

Point estimate Variance* 

Bayes 

SAE 

Open 

BUGS 

Design-

based 

Bayes 

SAE 

Open 

BUGS 

Design-

based 
Orange County 0.901 0.901 0.904 0.00026 0.00026 0.00033 

Orleans County 0.854 0.853 0.827 0.00082 0.00089 0.00171 

Oswego County 0.910 0.910 0.914 0.00038 0.00037 0.00058 

Otsego County 0.885 0.884 0.867 0.00057 0.00057 0.00112 

Putnam County 0.897 0.897 0.893 0.00045 0.00044 0.00069 

Queens County 0.861 0.860 0.865 0.00023 0.00023 0.00023 

Rensselaer County 0.947 0.948 0.967 0.00017 0.00017 0.00012 

Richmond County 0.894 0.893 0.888 0.00046 0.00047 0.00075 

Rockland County 0.899 0.898 0.906 0.00026 0.00026 0.00028 

St. Lawrence County 0.948 0.948 0.972 0.00022 0.00021 0.00013 

Saratoga County 0.931 0.932 0.938 0.00020 0.00020 0.00025 

Schenectady County 0.912 0.912 0.917 0.00029 0.00028 0.00037 

Schoharie County 0.893 0.893 0.882 0.00070 0.00067 0.00164 

Schuyler County 0.886 0.885 0.844 0.00077 0.00076 0.00226 

Seneca County 0.861 0.861 0.859 0.00063 0.00063 0.00090 

Steuben County 0.914 0.913 0.911 0.00037 0.00040 0.00067 

Suffolk County 0.872 0.872 0.866 0.00045 0.00045 0.00064 

Sullivan County 0.890 0.890 0.899 0.00050 0.00050 0.00066 

Tioga County 0.918 0.918 0.927 0.00038 0.00038 0.00057 

Tompkins County 0.911 0.911 0.893 0.00045 0.00045 0.00098 

Ulster County 0.913 0.914 0.918 0.00022 0.00021 0.00025 

Warren County 0.927 0.927 0.931 0.00019 0.00020 0.00026 

Washington County 0.918 0.918 0.938 0.00038 0.00037 0.00041 

Wayne County 0.887 0.887 0.877 0.00046 0.00047 0.00078 

Westchester County 0.880 0.880 0.882 0.00038 0.00039 0.00048 

Wyoming County 0.902 0.902 0.906 0.00043 0.00043 0.00065 

Yates County 0.648 0.648 0.584 0.00151 0.00151 0.00179 

*Posterior variance for Bayes estimates 

 

BayesSAE produced results that are very close to those from OpenBUGS. The differences 

of estimates of proportions are trivial (the largest difference is 0.002). Furthermore, both 

BayesSAE and OpenBUGS produced the same or very close posterior variances. We are 

pleased with these results because computational coding in BayesSAE is much simpler 

than in OpenBUGS.  

 

Comparing model-based estimates with the direct design-based estimates, in Figure 1 we 

plotted the ratio of the direct point estimates over the BayesSAE model-based point 

estimates7 against the sample size as another way to evaluate the model. The ratio should 

converge to one, as large counties do not need to borrow strength. The plot shows the 

convergence of the estimates and the gradual decrease in borrowing strength as the sample 

size gets larger. The same pattern is observed for the model-based estimates using the 

OpenBUGS package. 

 

                                                           
7 Given that the estimates of proportions and posterior variances obtained through OpenBUGS and 

BayesSAE are almost identical, the comparison of the model-based estimates with the direct 

design-based estimates were done using the results from BayesSAE. 
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Figure 1. Ratio of design-based to model-based point estimates for county insured rates in 

New York, 2016. 

 

 

 

Figure 2.  BayesSAE model-based vs. design-based 95% confidence intervals for county-

level adult insured rates in New York, 2016 

 

Figure 2 shows the 95% confidence intervals and Bayesian credible intervals for estimated 

insured rates for each county in New York, with the estimates given on the Y-axis and 

counties ordered by increasing sample size on the X-axis. The solid blue lines show 

confidence intervals for direct estimates while the red lines show credible intervals for 
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model-based estimates using the BayesSAE function for the corresponding counties. 

Because the adult insured rates were transformed using the logit transformation, the 

confidence intervals for the model-based estimates were calculated on the logit scale and 

transformed back to the original scale.  

 

We observed that the model-based SAE and design-based estimates did not differ greatly 

(except for Yates County).8 We noticed that the sample sizes in all these counties are not 

small, ranging from 166 to 1,009 with an average of 369 cases. With the design-based point 

estimates ranging from 0.58 to 0.97, and with the coefficients of variation (CVs) of the 

design-based estimates all less than 10%, the counties may not be considered as “small 

areas”. However, we noticed from Figure 2 that when the sample size is smaller, there is a 

reduction in variance when comparing design-based vs. model-based estimates. 

 

Figure 3 shows the ratio of variances of proportion based on the direct design-based 

estimation to those based on the model-based estimation against the sample size on the X-

axis. For most of the counties, especially for counties with smaller sample sizes, the model-

based estimates have an advantage of decreasing the variance over the direct-design-based 

estimates, even though the actual magnitude of the reduction may not be large. We can 

observe that as the sample size becomes larger, such advantage diminishes.  

 

 
Figure 3. Ratio of design-based to model-based variance estimates for county insured rates 

in New York, 2016. 

 

As part of our demonstration for state and local agencies, we summarized the county 

insured rates in an interactive map. Figure 4 shows a static version of one such map in 

which the county insured rates are highlighted in ranges.   

 

                                                           

8
 We did not investigate further data in Yates county. However, our estimates of adult insured rate 

in Yates county are lower than those from other data sources (the American Community Survey 

and the Small Area Health Insurance Estimates Program).  
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Figure 4. Visualization of the county insured rates in New York, 2016. 

 

 

4. Conclusion and Discussion 

 

In this paper, we explored the performance and capabilities of the R package BayesSAE 

and OpenBUGS to perform Bayesian estimation using the Fay-Herriot Hierarchical Bayes 

approach for small area estimation of proportions where the sampling and linking models 

are unmatched. We implemented these methods in estimating county-level estimates of 

adult insured rates in the state of New York. Both packages BayesSAE and OpenBUGS 

performed similarly in terms of point estimates and posterior variances. The differences 

were trivial. 

 

The R package BayesSAE makes the application of SAE methods almost as simple as 

fitting a linear regression model, reducing the gap between theoretical advances and their 

application. One advantage about this package is that it allows for transformations to be 

taken on the response variable in the linking model. However, the package lacks evaluation 

and diagnostic tools and has limited prior distribution choices.  

 

In this demonstration, from looking at the lengths of the Bayes credible intervals and the 

design-based confidence intervals, we may not see an obvious advantage of SAE methods 

for county-level estimation of insured rates using BRFSS data in NY counties. The 

relatively large BRFSS sample sizes may account for the strong showing of the direct 

estimates.  Even so, the small area estimates performed well and demonstrated an option 

for estimation where sample sizes are not so robust. 

 

Note that this paper was limited only to comparisons of estimates of proportions as the 

statistics of interest, and to area-level models. This work may be extended to other types 

of statistics and to unit-level modeling. For other types of statistics, we may also explore 
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and compare other available software packages such as JAGS, an additional off-the-shelf 

package for small area estimation.  
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